
Petri Net
Theory and Applications

Petri Net
Theory and Applications

Edited by
Vedran Kordic

I-TECH Education and Publishing

Published by the I-Tech Education and Publishing, Vienna, Austria

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the Advanced Robotic Systems International, authors have the right to
republish it, in whole or part, in any publication of which they are an author or editor, and the make
other personal use of the work.

© 2008 I-Tech Education and Publishing
www.i-techonline.com
Additional copies can be obtained from:
publication@i-techonline.com

First published February 2008
Printed in Croatia

A catalog record for this book is available from the Austrian Library.
Petri Net, Theory and Applications, Edited by Vedran Kordic
 p. cm.

ISBN 978-3-902613-12-7
1. Petri Net. 2. Theory. 3. Applications.

Preface

Although many other models of concurrent and distributed systems have been de-
veloped since the introduction in 1964 Petri nets are still an essential model for
concurrent systems with respect to both the theory and the applications.
The main attraction of Petri nets is the way in which the basic aspects of concurrent
systems are captured both conceptually and mathematically. The intuitively ap-
pealing graphical notation makes Petri nets the model of choice in many applica-
tions. The natural way in which Petri nets allow one to formally capture many of
the basic notions and issues of concurrent systems has contributed greatly to the
development of a rich theory of concurrent systems based on Petri nets.
This book brings together reputable researchers from all over the world in order to
provide a comprehensive coverage of advanced and modern topics not yet re-
flected by other books. The book consists of 23 chapters written by 53 authors from
12 different countries.
In the name of I-Tech, editor is very much indebted to all the authors entrusted us
with their newest research results.

Contents

Preface ..V

1. Petri Net Transformations ..001
Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg,
Claudia Ermel, Ulrike Prange, Enrico Biermann and Tony Modica

2. Modelling and Analysis of Real-time Systems with RTCP-nets.................................017
Marcin Szpyrka

3. Petri Net Based Modelling of Communication in Systems on Chip041
Holger Blume, Thorsten von Sydow, Jochen Schleifer and Tobias G. Noll

4. An Inter-working Petri Net Model between SIMPLE and IMPS for XDM Service.....073
Jianxin Liao, Yuting Zhang and Xiaomin Zhu

5. Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains091
Mariagrazia Dotoli, Maria Pia Fanti, Alessandro Giua and Carla Seatzu

6. Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets113
Latefa Ghomori and Hassane Alla

7. Use of Petri Nets for Modeling an
Agent-Based Interactive System: Basic Principles and Case Study131
Houcine Ezzedine and Christophe Kolski

8. On the Use of Queueing Petri Nets
for Modeling and Performance Analysis of Distributed Systems..................................149
Samuel Kounev and Alejandro Buchmann

9. Model Checking of Time Petri Nets ..179
Hanifa Boucheneb and Rachid Hadjidj

10. A Linear Logic Based Approach to Timed Petri Nets..207
Norihiro Kamide

VIII

11. From Time Petri Nets to Timed Automata ...225
Franck Cassez and Olivier H. Roux

12. Timed Hierarchical Object-Oriented Petri Net ..253
Hua Xu

13. Scheduling Analysis of FMS Using the Unfolding Time Petri Nets.........................281
Jong kun Lee and Ouajdi Korbaa

14. Error Recovery In Production Systems:
A Petri Net Based Intelligent System Approach ...303
Nicholas G. Odrey

15. Estimation of Mean Response Time of Multi-Agent Systems Using Petri Nets337
Tomasz Babczyniski and Jan Magott

16. Diagnosis of Discrete Event Systems with Petri Nets...353
Dimitri Lefebvre

17. Augmented Marked Graphs and the Analysis of Shared Resource Systems377
King Sing Cheung

18. Incremental Integer Linear
Programming Models for Petri Nets Reachability Problems ..401
Thomas Bourdeaud'huy, Saad Hanafi and Pascal Yim

19. Using Transition Invariants For Reachability Analysis Of Petri Nets435
Alexander Kostin

20. Reliability Prediction and Sensitivity Analysis of Web Services Composition.....459
Duhang Zhong, Zhichang Qi and Xishan Xu

21. Petri Nets for Component-based Software Systems Development471
Leandro Dias da Silva, Kyller Gorginio and Angelo Perkusich

22. Formalizing and Validating UML
Architecture Description of Service-oriented Applications ...497
Zhijiang Dong, Yujian Fu, Xudong He and Yue Fu

23. Music Description and Processing:
An Approach Based on Petri Nets and XML..525
Adriano Barata

1

Petri Net Transformations
Hartmut Ehrig, Kathrin Hoffmann, Julia Padberg, Claudia Ermel,

Ulrike Prange, Enrico Biermann and Tony Modica
Institute for Software Technology and Theoretical Computer Science

Technical University of Berlin
Germany

1. Introduction
Modelling the adaption of a system to a changing environment gets more and more
important. Application areas cover e.g. computer supported cooperative work, multi agent
systems, dynamic process mining or mobile networks. One approach to combine formal
modelling of dynamic systems and controlled model adaption are Petri net transformations.
The main idea behind net transformation is the stepwise development of place/transition
nets by given rules. Think of these rules as replacement systems where the left-hand side is
replaced by the right-hand side while preserving a context. This approach increases the ex-
pressiveness of Petri nets and allows in addition to the well known token game a formal
description of structural changes.
The chapter is structured as follows: We start with a general overview of net
transformations [25, 30, 7, 10] in Section 2. In Section 3, we illustrate the rule-based
refinement of place/transition nets in terms of a case study in the area of an emergency
scenario [4]. The case study shows how to use Petri net transformations as refinement
concept and demonstrates the compatibility of net refinement and net composition which
indicate the relevance of Petri net transformations for software engineering. In Section 4, we
present precise definitions of basic notions concerning Petri net transformations in the case
of place/transition nets. The union theorem shows the compatibility of net transformations
with the union of nets via a common interface provided that the net transformations are
preserving this interface. Furthermore, results for high-level nets are also briefly discussed
at the end of Section 4. In the conclusion we discuss how tools for graph transformation
systems can also be used for Petri net transformations.

2. General overview of net transformations
The main idea of net transformations is the rule-based modification of nets where each
application of a rule leads to a net transformation step. While the well-known token game of
Petri nets does not change the net structure, the concept of Petri net transformations is a
rule-based approach for dynamic changes of the net structure of Petri nets. Since Petri nets
can be considered as bipartite graphs the concept of graph transformations can be applied to
define transformations of Petri nets. In the following we give a general overview of graph
and net transformations, for more details see [30, 8, 12, 7, 14].
The research area of graph transformation is a discipline of computer science which dates
back to the early seventies. Methods, techniques, and results from the area of graph

Petri Net: Theory and Applications 2

transformation have already been studied and applied in many fields of computer science
such as formal language theory, pattern recognition and generation, compiler construction,
software engineering, concurrent and distributed systems modelling, database design and
theory, logical and functional programming, AI, visual modelling, etc. Graph
transformation has at least three different roots, namely from Chomsky grammars on strings
to graph grammars, from term rewriting to graph rewriting, and from textual description to
visual modelling.
Computing by graph transformation is a fundamental concept for programming,
specification, concurrency, distribution, and visual modelling. A state of the art report for
applications, languages and tools for graph transformation on the one hand and for
concurrency, parallelism and distribution on the other hand is given in volumes 2 and 3 of
the Handbook of Graph Grammars and Computing by Graph Transformation [8] and [12]. In our
paper [14], we have presented a comprehensive presentation of graph and net
transformations and their relation. Petri net transformations can also be realized for
algebraic high-level nets [25], which is a high-level net concept integrating algebraic
specifications with place/transition nets.
In contrast to most applications of the graph transformation approach, where graphs denote
states of a system, and rules and transformations describe state changes and the dynamic
behavior of systems, in the area of Petri nets we use rules and hence transformations to
represent stepwise modification of nets. This kind of transformation for Petri nets is
considered to be a vertical structuring technique, known as rule-based net transformation.
Basically, a rule (or production) r = (L, R) is a pair of graphs (or nets) called left-hand side L
and right-hand side R. Applying the rule r = (L, R) means to find a match of L in the source
graph (or net) and to replace L by R. In order to replace L by R we need to connect R with
the context leading to the target graph (respectively the target net) of the transformation.
The well-known argument in favour of formal techniques, to have precise notions and rigid
mathematical results, clearly holds for this approach as well. Moreover, we have already
investigated net transformations in high-level Petri net classes (see Subsection 4.6) that are
even more suitable for system modelling than the place/transition nets in our case study.
The impact for system development is founded in what results from net transformations:

Stepwise Development of Models: The model of a complex software system may reach a
size that is difficult to handle and may compromise the advantages of the (formal)
model severely. The one main counter measure is breaking down the model into sub-
models, the other is to develop the model top-down. In top-down development the first
model is a very abstract view of the system and step by step more modelling details and
functionality are added. In general, however, this results in a chain of models that are
strongly related by their intuitive meaning, but not on a formal basis. Petri net
transformations fill this gap by supporting the formal step-by-step development of a
model. Rules describe the required changes of a model and their applications yield the
transformations of the model. Moreover, the representation of changes in a visual way
using rules and transformations is very intuitive and does not require a deeper
knowledge of the theory.

Distributed Development of Models: Decomposing a large model is an important technique
for the development of complex models. To combine the advantages of a horizontal
structuring with the advantages of step-by-step development, vertical structuring
techniques for ensuring the consistency of the composed model are required. Then a
distributed step-by-step development is available that allows the independent
development of submodels. The theory of net transformation comprises horizontal

Petri Net Transformations 3

structuring techniques and ensures compatibility between these and the transforma-
tions. In Subsection 4.4 we introduce the union construction for the decomposition, and
the union theorem in Subsection 4.5 allows to develop the subnets independently of
each other. The theory allows complex compositions and decompositions, where the
independence of the sub-models is essential. So, the formal foundation for the
distributed development of complex models is given.

Incremental Verification: Pure modification of Petri nets is often not sufficient, since the
net has some desired properties that have to be ensured during further development.
Verification of each intermediate model requires a lot of effort and hence is cost
intensive. But refinement can be considered as the modification of nets preserving
desired properties. Hence the verification of properties is only required for the net
where they can be first expressed. In this way properties are introduced into the devel-
opment process and are preserved from then on. Rule-based refinement modifies Petri
nets using rules and transformations so that specific system properties are preserved.
For a brief discussion see Subsection 4.6.
Foundation for Tool Support: A further advantage is the formal foundation of rule-based
refinement and/or rule-based modification for the implementation of tool support. Due
to the theory of Petri net transformations we have a precise description how rules and
transformations work on Petri nets. Tool support is the main precondition for the
practical use. The user should get tool support for defining and applying rules. The tool
should assist the choice as well as the execution of rules and transformations.
Variations of the Development Process: Another application area, where transformations
are very useful, concerns variations in the development process. Often a development is
not entirely unique, but variations of the same development process lead to variations
in the desired models and resulting systems. These variations can be expressed by
different rules yielding different transformations, that are used during the step-by-step
development.

3. Emergency scenario case study
In this section we illustrate the main idea of net transformations by a case study of a pipeline
emergency scenario where an unknown source of a natural gas leak is detected in a
residential area1: A postal worker delivering mail in a residential street smells a strong odor
of gas. She immediately notifies the fire department. A single engine company is dispatched
by the fire department with four firefighters led by one company officer. At the scene, the
postal worker meets the company officer and describes the problem. He calls the gas
company and requests additional law enforcement officers to control traffic into the area.
While three firefighters evacuate the homes in the immediate area and afterwards deny
entry to this area, the forth one reads the gas indicator and detects that the gas is highest in
front of a home located on 114 Maple Street. After electricity and gas lines are shut off to
each home the fire department people stand by with fully charged hose lines and wait for
the arrival of the gas company. The cooperative process enacted by the firefighter company
is depicted as Petri net PN1 in Fig. 1. This Petri net is decomposed into five parts
corresponding to the team members described above, and in addition start as well as end
activities. The union describes the gluing of the subnets along the interface given by the post
domain places of transition Start (respectively pre domain places of transition End).

1 www. pipelineemergencies.com

Petri Net: Theory and Applications 4

In this case the interface net consists of places only, so that the union corresponds to the
usual place fusion of nets. But the general union construction allows having arbitrary
subnets as interfaces.
In the following we show how Petri net transformations can be used in the case study before
we present the basic concepts in Section 4. The three firefighters responsible for the
evacuation process need more detailed information how to proceed. So the company officer
gives the instruction that first of all the residents shall be notified of the evacuation.
Afterwards the firefighters shall assist handicapped persons and guide all of them to the
extent possible. To introduce the refinement of the Evacuate homes-transition into the Petri
net PN1 we provide the rule revacuate depicted in the upper row of Fig. 2.

Fig. 1. Petri Net PN1
We show explicitly the direct transformation with rule revacuate from Firefighters 1-3 (see
Fig. 1) to Firefighters 1-3' in Fig. 2. The application of the rule is given as follows: the match
morphism m is given by the obvious inclusion and identifies the relevant parts of the left
hand side L1 of rule revacuate in Firefighter 1-3. In the first step we delete from Firefighter 1-3
the Evacuate homes-transition and adjacent edges, but we preserve all places of L1, because
they are also in K1 and R1, leading to the context net C in Fig. 2. In the second step we glue
together C and R1 via K1 by adding the transitions Notify residents, Assist handicapped persons
and Guide persons together with their (new) environment to the context net C leading to
Firefighters 1-3' in Fig. 2. Thus we obtain the direct transformation Firefighters 1-3

 Firefighters 1-3'.

Petri Net Transformations 5

Since the rule revacuate and the direct transformation are preserving the interface of the
corresponding union in Fig. 1, the interfaces are still available and can be used to construct a
resulting net. The union theorem in Section 4 makes sure that this construction leads to the
same result as if we would have applied the rule revacuate to the entire net PN1 in Fig. 1.
This is a typical example for compatibility of horizontal structuring (union) with vertical
refinement (rule-based transformation).
After the problem identification the odor of gas grows stronger and the firefighter takes an
additional reading of the gas indicator and informs the company officer about the result, so
that the company officer is able to determine if the atmosphere in the area is safe, unsafe, or
dangerous. To extend our process by these additional activities we use the rule ranalyse in Fig.
3.

Fig. 2. Direct transformation Firefighters 1-3 Firefighters 1-3'

Petri Net: Theory and Applications 6

Fig. 3. Rule ranalyse

Fig. 4. Rule rexpand

Based on the additional results of the gas indicator the company officer analyses that the
atmosphere in this area is over the lower explosive limit and thereby more dangerous than
expected. He determines that the best course of action is to call for additional resources to
maintain the isolation perimeter and expand the area of evacuation as a precaution. Here,
we use rule rexpand depicted in Fig. 4 to extend the Petri net by the additional activities.
Summarizing, after the sequential application of the rules revacuate, ranalyse and rexpand to the
Petri net PN1 in Fig. 1. we obtain the Petri net PN4 in Fig. 5.

4. Concepts of Petri net transformations
Following up the informal overview in Section 2 we give in this section the precise
definitions of the notions that we have already used in our case study. For notions and
results beyond that we give a brief survey in Subsection 4.6 and refer to literature.
The concept of Petri net transformations [30, 8, 12, 7, 14] is a special case of high-level
replacement systems. High-level replacement systems have been introduced in [9] as a
categorical generalisation of the double-pushout approach to graph transformation, short
DPO-approach. The theory of high-level replacement systems can be successfully employed
not only to graph transformation, but also to other areas as Petri nets (see [9]). This leads to
the concept of Petri net transformations as an instantiation of high-level replacements
systems. In the following we explicitly present the resulting concepts of Petri net transform-
ations for the case of place/transition nets.

Petri Net Transformations 7

Fig. 5. Petri net PN4

Petri Net: Theory and Applications 8

4.1 Place/transition nets and net morphisms
Let us first present a notation of place/transition net that is suitable for our transformation
approach. We assume that the nets are given in the algebraic style as introduced in [21]. A
place/transition net N = (P, T, pre, post) is given by the set of places P, the set of transitions

T, and two mappings pre,post : T , the pre-domain and the post-domain,

where is the free commutative monoid over P that can also be considered as the set of
finite multisets over P. The pre- (and post-) domain function maps each transition into the
free commutative monoid over the set of places, representing the places and the arc weight
of the arcs in the pre-domain (respectively in the post-domain). For finite P, an element w

can be presented as a linear sum with N or as a function w : P
 N. In the infinite case we have to require that 0 only for finitely many p P that

means the corresponding w : P N has finite support.
In the net L3 in Fig. 4, T consists of one transition t and P of four places, where p1,p2,p3 are

shown above and p4 below of t. The function pre : T and post : T are defined by
pre(t) = p1 p2 p3 and post(t) = p4, respectively.
Based on the algebraic notion of Petri nets we use simple homomorphisms that are
generated over the set of places. These morphisms map places to places and transitions to
transitions. A morphism ƒ : N1 N2 between two place/transition nets N1= (P1,T1,pre1,post1)
and N2 = (P2,T2, pre2, post2) is given by ƒ = (ƒP, ƒT) with mappings ƒP : P1 P2 and ƒT : T1 T2

that pre2 ƒT = ƒP pre1 and post2 ƒT =ƒP post1. These conditions ensure that the pre-
domain as well as the post-domain of a transition are preserved, so that, even if places may
be identified, the number of tokens that are taken remains the same. Note that the extension

ƒP : 1 2 of ƒP : P1 P2 is defined by . The
morphism ƒ = (ƒP, ƒT) is called injective, if ƒP and ƒT are injective. The diagram schema for
net morphisms is given in the following diagram.

Several examples of net morphisms can be found in Fig. 2 where the horizontal and vertical
arrows denote injective net morphisms.

4.2 Rules and transformations
The formal definition of rules and transformations is based on concepts of the following
category PT. The category PT consists of place/transition nets as objects and
place/transition net morphisms as morphisms. In order to formalise rules and
transformations for nets we first state the construction of pushouts in the category PT of
place/transition nets. For any span of morphisms N1 N0 N2 the pushout can be

Petri Net Transformations 9

constructed and means intuitively the gluing of nets N1 and N2 along N0. The construction is
based on the pushouts for the sets of transitions and places in the category Set. In the
category Set of sets and functions the pushout object D is given by the quotient set D = B +
C/ , short D = B + A C, where B + C is the disjoint union of B and C and is the equivalence
relation generated by ƒ (a) g(a) for all a A. In fact, D can be interpreted as the gluing of B
and C along A: Starting with the disjoint union B + C we glue together the elements ƒ (a) B
and g(a) C for each a A. Given the morphisms ƒ : N0 N1 and g : N0 N2 then the
pushout N3 in the category PT with the morphisms ƒ : N2 N3 and g : N1 N3 is
constructed (see diagram below) as follows:

Two examples of the pushout construction of nets are depicted in Fig. 2. We have the
embedding of K1 into L1 and C. The pushout describes the gluing of the nets L1 and C
along the two places of the interface K1. Hence we have the pushout L1 + K1 C
=Firefighters 1-3 on the left hand side of Fig. 2. Similarly, we have the pushout R1 + K1 C
=Firefighters 1-3' on the right hand side of Fig. 2.
Since rule application always involves the construction of two pushouts, we speak of the
double-pushout (DPO) approach to graph and net transformation, where transformation
rules describe the replacement of the left-hand side net by the right-hand side net in the
presence of an interface net.

A rule consists of place/transition nets L, K and R, called left-
hand side, interface and right-hand side net respectively, and two injective net

morphisms .
Given a rule , a direct transformation N1 N2 from N1 to N2

is given by two pushout diagrams (1) and (2) in the following diagram. The morphisms
m : L N1 and n : R N2 are called match and comatch, respectively. The net C is
called pushout complement or the context net.

Petri Net: Theory and Applications 10

The illustration of a transformation can be found for our case study in Fig. 2, where the rule
revacuate is applied to the net Firefighters 1-3 with match m. As explained above, the first
pushout denotes the gluing of the nets L1 and C along the net Kl resulting in the net
Firefighters 1-3. The second pushout denotes the gluing of the nets R1 and C along the net
Kl resulting in the net Firefighters 1-3'.

4.3 Gluing condition and context nets
Given a rule r and a match m as depicted in the diagram above, then we construct in the
first step the pushout complement C provided that a suitable gluing condition holds. This
leads to the pushout (1) in the diagram above. In the second step we construct the pushout
of c and k2 leading to N2 and the pushout (2) in the diagram above.
Intuitively the gluing condition makes sure that we can construct a context net C, also called
pushout complement, from rule r and match m such that the gluing C + K L of C and L along
K is equal to the net N1. Formally we have to require that dangling points and identification
points are gluing points in the following sense:
Gluing Condition for Nets: DP IP GP, where the gluing points GP, dangling points DP
and the identification points IP of L are defined by

Now the pushout complement C is constructed by:

Note that the pushout complement C leads to the pushout (1) in the diagram above and that
it is unique up to isomorphism.
In our case study in Section 3, the gluing condition is satisfied in the direct transformation in
Fig. 2 since the match is injective and places are not deleted by the rule revacuate. In fact, the
dangling points DP of the match in Fig. 2 are given by one place of L1, while the gluing
points GP consists of all places in L1. The set of identification points IP is empty, because

the match is injective, hence we have .

Petri Net Transformations 11

4.4 Union construction
The union of two Petri nets sharing a common subnet, that may be empty, is defined by the
pushout construction for nets. The union of place/transition nets N1, N2 sharing an
interface net I with the net morphisms ƒ : I N1 and g : I N2 is given by the pushout

diagram (1) below. Subsequently we use the short notation N = N1 +I N2 or N1; N2>
N.

In our example in Fig. 1 we can use the union construction several times to describe the net
PN1 as the composition of five different subnets given by Firefighters 1-3, Officer,
Firefighter 4, Start and End. The interface nets I are given by the intersection of the
corresponding nets.

4.5 Union theorem
The Union Theorem states the compatibility of union and net transformations in the
following sense: A union of two nets followed of a parallel transformation of the united
nets yields the same result as two transformations of the original two nets
followed by a union of the two transformed nets.

Given a union N1 +I N2 = N and net transformations N1 M1 and N2 M2 then we
have a parallel rule r1+r2 = (L1+L2 K1+K2 R1+R2), where L1 + L2, K1+ K2 and R1 + R2

are disjoint unions of the respective nets of rules r1 and r2, and a parallel net transformation

N M . Then M = M1 +I M2 is the union of M1 and M2 with the shared interface I,
provided that the given net transformations preserve the interface I. The Union Theorem is
illustrated in the following diagram and especially stated and proven in [22]:

Note that the compatibility requires an independence condition stating that nothing from
the interface net I may be deleted by one of the transformations of the subnets.
This allows in Section 3 to apply either the rules r1 = revacuate and r2 = ranalyse, respectively, to
N1 =Firefighters 1-3 in Fig. 1 and N2 constructed as union in four steps of the nets Officer,
Firefighter 4, Start and End, or in parallel to the union N = N1 +IN2, where I consists of two

places which are preserved by both transformations N1 M1 and N2 M2. This allows

Petri Net: Theory and Applications 12

to obtain the same net M by union M = M1 +IM2 and by transformation N M . Finally,
applying rule r3 = rexpand to M leads to the net PN4 in Fig. 5.

4.6 Further results
We briefly introduce the main net classes which have been studied up to now and
subsequently present some main results.

Place/transition nets in the algebraic style have already been introduced in Subsection
4.1. In [11, 17, 10] we have transferred these results to place/transition systems, where a
place/transition system is a place/transition net with an initial marking.

Coloured Petri nets [18, 19, 20] are high-level nets combining P/T nets and ML
expressions for data type definitions. They are very popular due to the tool CPN-tools
[5].

Algebraic high-level nets are available in quite a few different notions e.g. [28, 25]. We
use a notion that reflects the paradigm of abstract data types into signature and algebra.
An algebraic high-level net (as in [25]) is given by N = (SPEC,P,T,pre,post,cond,A), where
SPEC = (S,OP,E;X) is an algebraic specification in the sense of [13] with additional
variables X not occurring in E, P is the set of places, T is the set of transitions, pre,post :

 are the pre- and post-domain mappings, cond : T
Pfin(EQNS(SIG, X)) are the transition guards, and A is a SPEC algebra.

Horizontal Structuring Union and fusion are two categorical structuring constructions for
place/transition nets that merge two subnets (fusion) or two different nets (union) into one.
The union has been introduced in the previous subsection. Now let us consider the fusion:
Given a net F that occurs in two copies in the net N1, represented by two morphisms

, the fusion construction leads to a net where both occurrences of F in N1 are

merged. If F consists of places p1,...,pn then each of the places occurs twice in net N1,
namely as ƒ(p1), ..., ƒ(pn), and ƒ (p1),..., ƒ (pn). N2 is obtained from the net N1 by fusing both
occurrences ƒ(pi) and ƒ (pi) of each place pi for 1 i n.
The Union Theorem has been presented in the previous subsection. The Fusion Theorem
[23] is expressed similarly: Given a rule r and a fusion then we obtain the same

result whether we derive first and then construct the fusion
resulting in N2' or whether we construct the fusion first, resulting in N2, and

then perform the transformation step . Similar to the Union Theorem, a certain
independence condition is required. Both theorems state that Petri net transformations are
compatible with the corresponding structuring technique under suitable independence
conditions. In short these conditions guarantee that the interface net I and respectively the
fusion net F are preserved by all net transformations.
Interleaving and Parallelism We are able to realize model interleaving and parallelism of
net transformations. The Local Church- Rosser Theorem states a local confluence in the
sense of formal languages corresponding to interleaving. The required condition of parallel
independence means that the matches of both rules overlap only in parts that are not
deleted. Sequential independence means that those parts created or used by the first
transformation step are not used or deleted in the second step, respectively. The
Parallelism Theorem states that sequential or parallel independent transformations can be
carried out either in arbitrary sequential order or in parallel. In the context of step-by-step
development these theorems are important as they provide conditions for the independent

Petri Net Transformations 13

development of different parts or views of the system. More details on horizontal
structuring or parallelism are given in [25] and [23].
Refinement Rule-based refinement comprises the transformation of Petri nets using rules
while preserving certain net properties. For Petri nets the desired properties of the net
model can be expressed e.g in terms of Petri nets (as liveness, boundedness etc.), in terms of
logic (e.g. temporal logic, logic of actions etc.), in terms of relation to other models (e.g.
bisimulation, correctness etc.), and so on.
For place/transition nets, algebraic high-level nets and Coloured Petri nets the most
important results for rule-based refinement are presented in Table 1. For more details see
[27].

Table 1. Achieved results

5. Conclusion
The main idea of Petri net transformations is to extend the classical theory of Petri nets by a
rule-based technique that allows to model the changes of the Petri net structure.
There have been already a few approaches to describe transformations of Petri nets formally
(e.g. in [2, 3, 31, 6, 32]). The intention has been mainly on reduction of nets to support
verification, and not on the software development process as in our case. This use of
transformations has been one of the main focus areas of the DFG-Research group Petri Net
Technology. There are some large studies in various application areas as medical information

Petri Net: Theory and Applications 14

systems [15], train control systems [26], or as sketched in this paper in emergency scenarios.
These case studies clearly show the advantages using net transformation in system
development and the practical use of the results stated in Table 1. Although the area of Petri
net transformations is already well-established, there are many promising directions for
further research to follow, for example:

Transfer to other net classes
There is a large variety of Petri net classes, and in principle the idea of Petri net
transformation is applicable to all of them. The concept of transformation we have
employed is an algebraic one, so the use of algebraic approaches to Petri nets is more
suggesting. Algebraic higher-order nets [16] have been recently developed and are one
of the promising targets to transfer the idea of transformations to. These nets extend
algebraic high-level nets as they are equipped with a higher-order signature and
algebra. This allows most interesting applications and supports structure flexibility and
system adaptability in an extensive way.

Reconfigurable place/transitions systems
In [17], the concept of reconfigurable place/transition (P/T) systems has been
introduced that is most important to model changes of the net structure while the
system is kept running. In detail, a reconfigurable P/T-system consists of a P/T-system
and a set of rules, so that not only the follower marking can be computed but also the
structure can be changed by rule application to obtain a new P/T-system that is more
appropriate with respect to some requirements of the environment. Moreover these
activities can be interleaved. In [11] we have continued our work by transferring the
results of local Church-Rosser which are well known for term rewriting and graph and
net transformations (see [30, 7, 10]) to the consecutive evolution of a P/T-system by
token firing and rule applications. In more detail, we assume that a given P/T-system
represents a certain system state. The next evolution step can be obtained not only by
token firing, but also by the application of one of the rules available. Hence, we have
presented conditions for (co-)parallel and sequential independence, such that each of
these evolution steps can be postponed after the realization of the other, yielding the
same result and, analogously, they can be performed in a different order without
changing the result.

Component technology
Components present an advanced paradigm for the structuring of complex systems and
have been advocated in the recent years most strongly. Components that use Petri nets
for the specification of the interfaces and the component body have been defined in [24].
There are three nets that represent the import, the export and the body of the
component. The export is an abstraction of the body and the import is embedded into
the body. There are two operations: the hierarchical composition and the union of
components. Unfortunately, up to now there is no transformation concept in the sense
of graph and net transformation. Based on net transformations the transformation of the
import, the export and the body can be defined straightforward.

Tool support
The practical use of graph transformation is supported by several tools. The algebraic
approach to graph transformation is especially supported by the graph transformation
environment AGG (see [1]). A tool for net transformations using the graph

Petri Net Transformations 15

transformation engine AGG has been developed recently [29] as an Eclipse plug-in to
support a special class of reconfigurable P/T-systems.

6. References
[1] AGG Homepage, http://tfs.cs.tu-berlin.de/agg.
[2] G. Berthelot. Checking Properties of Nets using Transformations. In Advances in Petri

Nets, volume 222 of LNCS, pages 19-40. Springer, 1986.
[3] G. Berthelot. Transformations and Decompositions of Nets. In Advances in Petri Nets,

volume 254 of LNCS, pages 359-576. Springer, 1987.
[4] P. Bottoni, F. De Rosa, K. Hoffmann, and M. Mecella. Applying Algebraic Approaches for

Modeling Workflows and their Transformations in Mobile Networks. Mobile
Information Systems, 2(1):51—76, 2006.

[5] CPN Tools Homepage. http://wiki.daimi.au.dk/cpntools/_home.wiki.
[6] R. David and H. Alia, editors. Petri Nets and Grafcet. Prentice Hall (UK), 1992.
[7] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
2006.

[8] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 2: Applications, Languages
and Tools. World Scientific, 1999.

[9] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concurrency in
high-level replacement systems. Math. Struct, in Comp. Science, 1:361-404, 1991.

[10] H. Ehrig, K. Hoffmann, U. Prange, and J. Padberg. Formal Foundation for the
Reconfiguration of Nets. Technical Report Technical Report 2007-02, Technical
University Berlin, Fak. IV, 2007.

[11] H. Ehrig, J. Padberg K. Hoffmann, U. Prange, and C. Ermel. Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems. In
Proc. Application and Theory of Petri Nets (ATPN), volume 4546 of LNCS, pages 104-
123, 2007.

[12] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation. Vol 3: Concurrency, Parallelism and
Distribution. World Scientific, 1999.

[13] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics. EATCS Monographs on Theoretical Computer Science. Springer, 1985.

[14] H. Ehrig and J. Padberg. Graph Grammars and Petri Net Transformations. In Lectures
on Concurrency and Petri Nets, Special Issue Advanced Course PNT, volume 3098 of
LNCS, pages 496-536. Springer, 2004.

[15] C. Ermel, J. Padberg, and H. Ehrig. Requirements Engineering of a Medical Information
System Using Rule-Based Refinement of Petri Nets. In Proc. Integrated Design and
Process Technology (IDPT), volume 1, pages 186— 193. Society for Design and Process
Science, 1996.

[16] K. Hoffmann. Formal Approach and Applications of Algebraic Higher Order Nets. PhD thesis,
Technical University Berlin, 2005.

[17] K. Hoffmann, H. Ehrig, and T. Mossakowski. High-Level Nets with Nets and Rules as
Tokens. In Proc. Application and Theory of Petri Nets (ATPN), volume 3536 of
LNCS, pages 268-288. Springer, 2005.

Petri Net: Theory and Applications 16

[18] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, volume
1: Basic Concepts, of EATCS Monographs in Theoretical Computer Science. Springer,
1992.

[19] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, volume
2: Analysis Methods of EATCS Monographs in Theoretical Computer Science. Springer,
1995.

[20] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use, volume
3: Practical Use of EATCS Monographs in Theoretical Computer Science. Springer,
1997.

[21] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and Computation,
88(2):105-155, 1990.

[22] J. Padberg. Abstract Petri Nets: A Uniform Approach and Rule-Based Refinement. PhD
thesis, Technical University Berlin, 1996. Shaker Verlag.

[23] J. Padberg. Categorical Approach to Horizontal Structuring and Refinement of High-
Level Replacement Systems. Applied Categorical Structures, 7(4):371-403, 1999.

[24] J. Padberg. Basic Ideas for Transformations of Specification Architectures. In Proc.
Workshop on Software Evolution through Transformations (SET 02), volume 74 of
ENTCS, 2002.

[25] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science, 5(2):217-256, 1995.

[26] J. Padberg, P. Schiller, and H. Ehrig. New Concepts for High-Level Petri Nets in the
Application Domain of Train Control. In Proc. Symposium on Transportation
Systems, pages 153-160, 2000.

[27] J. Padberg and M. Urbasek. Rule-Based Refinement of Petri Nets: A Survey. In Proc.
Petri Net Technology for Communication-Based Systems, volume 2472 of LNCS, pages
161-196. Springer, 2003.

[28] W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Computer Science, 80:1-34,
1991.

[29] RON Editor Homepage, http://tfs.cs.tu-berlin.de/roneditor/.
[30] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transformations, Volume

1: Foundations. World Scientific, 1997.
[31] Vanio M. Savi and Xiaolan Xie. Liveness and Boundedness Analysis for Petri Nets

with Event Graph Modules. In Proc. Application and Theory of Petn Nets (ATPN),
volume 254 of LNCS, pages 328-347. Springer, 1992.

[32] W.M.P. van der Aalst. Verification of workflow nets. In Application and Theory of Petri
Nets, volume 1248 of LNCS, pages 407-426. Springer, 1997.

2

Modelling and Analysis of Real-Time Systems
with RTCP-Nets

Marcin Szpyrka
AGH University of Science and Technology, Krakow

Poland

1. Introduction
RTCP-nets (Real-Time Coloured Petri nets, (Szpyrka 2006a), (Szpyrka & Szmuc 2006c)) are a
subclass of timed coloured Petri nets (CP-nets, (Jensen 1992-1997)) defined for modelling
and analysis of real-time systems. In comparison to timed CP-nets, RTCP-nets use a
different time model, transitions' priorities and they are forced to fulfil some structural re-
strictions. These characteristics of RTCP-nets enable designers direct modelling of elements
typical for concurrent programming (e.g. in Ada programming language, (Barnes 2006)), such
as task priorities, timeouts, etc.
Formal methods (Cheng 2002) are used in the development of embedded systems for
design, specification, validation, and verification of such systems. The use of formal
methods can reduce the amount of testing and ensure more dependable products
(Sommerville 2004). Especially, this is very important for safety-critical systems that may result
in injury, loss of life or serious environmental damage upon their failure. A wide class of real
time systems perform on the basis of a set of rules, which are used to compute outputs in
response to current state of inputs that are monitored in such system environment. This set
of rules specified in the analysis phase as functional requirements may be formally
described, and then incorporated into the system model.
The presented approach uses RTCP-nets as modelling language for safety-critical systems.
The modifications defining this subclass were introduced in order to improve modelling and
verification means in the context of analysis and design of embedded systems. Especially, this
technique has mostly been concerned with relatively small, critical kernel systems. RTCP-nets
have been also prepared for modelling of embedded systems incorporating rule-based
systems. A rule-based system in decision table form can be simply included into a model.
Another advantage of RTCP-nets is relatively simple transformation from a formal model
into an implementation in Ada 2005 programming language. Such an implementation is done
with the use of so-called Ravenscar profile (Burns et al. 2003). The profile is a subset of Ada
language. It has been defined to allow implementation of safety-critical systems in Ada.
The goal of the chapter is to present the most important parts of the RTCP-nets theory and
to describe the possibilities of practical applications of the nets. The chapter is organized as
follows. The first section deals with a formal definition of RTCP-nets. The behaviour of
the nets is presented in details so as to emphasize the differences between RTCP-nets and
CP-nets. This part of the chapter is illustrated with an example of a non-hierarchical RTCP-net

Petri Net: Theory and Applications 18

(an example of a simple train protection systems).
The second section describes the analysis methods. It focuses on coverability graphs that
are typical for RTCP-nets. If a net is strongly bounded, it is possible to construct a finite
coverability graph that represents the set of all reachable states regardless of the fact the set is
finite or infinite. Such a graph contains only one node for each equivalence class of the
coverability relation. Not only can one use such a graph for the analysis of typical Petri nets'
properties such as boundedness, liveness or fairness, but it also may be used for verification
of timing properties, which are very important for most real-time embedded systems.
The last section deals with practical aspects of modelling with RTCP-nets. To speed up and
facilitate drawing of more complex models the so-called canonical form of hierarchical RTCP-
nets has been defined. The canonical form is shortly described in this section and an
RTCP-net model of a real size railway traffic management system for a train station is
presented to illustrate the possibilities of modelling with the nets.
The chapter is concluded with a short summary that describes possibilities of semiautomatic
generation of an Ada 2005 source code from RTCP-nets models in canonical form.

2. RTCP- nets - basic notions
The definition of RTCP-nets is based on the definition of non-hierarchical timed CP-nets
presented in (Jensen 1992-1997), but a few differences between timed CP-nets and RTCP-
nets can be pointed out:

Each transition has a priority value attached. The use of priorities allows direct
modelling of deterministic choice.

The set of arcs is defined as a relation due to the fact that multiple arcs are not allowed.
Each arc has two expressions attached: a weight expression and a time expression. For
any arc, each evaluation of the arc weight expression must yield a single token
belonging to the type (colour) that is attached to the corresponding place; and each
evaluation of the arc time expression must yield a non-negative rational value.

The time model used by RTCP-nets differs from the one used by timed CP-nets. Time
stamps are attached to places instead of tokens. Any positive value of a time stamp de-
scribes how long a token in the corresponding place will be inaccessible for any transition.
A token is accessible for a transition, if the corresponding time stamp is equal to or less
than zero. For example, if the stamp is equal to -3, it means the token is 3 time-units old.
It is possible to specify how old a token should be so that a transition may consume it.

For any variable will be used to denote the type of the variable i.e. the set of all
admissible values, the variable can be associated with. Let x be an expression. will
denote the set of all variables in the expression x, and will denote the type of the
expression, i.e. the set of all possible values that can be obtained by evaluating of the
expression. For any given set of variables V, the type of the set of variables is defined as
follows: .
Let Bool denote the boolean type (containing the elements {false,true}, and having the
standard operations from propositional logic). Let denote the set
of natural, rational and non-negative rational numbers respectively. For an arc a, P(a) and
T(a) will be used to denote the place node and the transition node of the arc, respectively.
Definition 1. An RTCP-net is a tuple satisfying the
following requirements.

Modelling and Analysis of Real-Time Systems with RTCP-Nets 19

1. is a non-empty finite set of non-empty types (colour sets).
2. P is a non-empty finite set of places.
3. T is a non-empty finite set of transitions such that .
4. is a set of arcs.
5. is a fype function, which maps each place to its type.
6. G is a guard function, which maps each transition to an expression such that:

.
7. is a priority function, which maps each transition to a non-negative integer

called transition priority.
8. EM is an arc expression function, which maps each arc to a weight expression such that:

.
9. ES is an arc time expression function, which maps each arc to a time expression such

that: ,
10. M0 is an initial marking, which maps each place to a multiset , where

denotes the set of all multisets over the set C(p).
11. is an initial time stamp function, which maps each place to a rational value

called initial time stamp.

Fig. 1. Model of a simple ATS system

A model of a simple Automatic Train Stop (ATS) system is used to introduce main features
of RTCP-nets. In the ATS system, a light signal is turned on every 60 seconds to check
whether the driver controls the train. If the driver fails to acknowledge the signal within 6
seconds, a sound signal is turned on. Then, if the driver does not disactivate the signals
within 3 seconds, using the acknowledge button, the emergency brakes are applied
automatically to stop the train. A model of such a system is shown in Fig. 1. More
information on using RTCP-nets for modelling train protection systems can be found in
(Szpyrka & Szmuc 2006b).

Petri Net: Theory and Applications 20

The RTCP-net presented in Fig. 1 contains six places: ContrSyst (the control element of the
ATS system), Console (to display warning signals), Brake, Driver, Timerl and Timer2; and five
transitions: TurnOnLS (turn on light signal), TurnOnSS (turn on sound signal), TurnOnBr
(turn on brake), Disactivate (driver disactivates warning signals) and Activity (to introduce
into model some delays of the driver response). Initial markings are placed into parenthesis
and initial time stamps equal to 0 are omitted. The transition's Disactivate priority is equal
to 1, while other transition's priorities are equal to 0. The weight and time expressions are
separated by the @ sign. If a time expression is equal to 0 it is omitted. Each arc with double
arrows stands for a pair of arcs.
Definition 2. A marking of an RTCP-net is a function M defined on the set of places P,
such that: . A time stamp function is a function S defined on the set of
places P, such that: .
If we assume that P is ordered set, both a marking M and a time stamp function S can be
represented by vectors with |P| entries. Therefore, the term a time stamp vector (or a time
vector) will be used instead of a time stamp function.
Definition 3. A state of an RTCP-net is a pair (M, S), where M is a marking and S is a time
stamp vector. The initial state is the pair (M0, S0).
Let's consider the net presented in Fig. 1 and let the set of places be ordered as follows P =
{ContrSyst, Timer1, Console, Brake, Driver, Timer2}. The initial state of the considered net is as
follows:

M0= (safe, on, (off, off), off, active, on),
S0 = (0,0,0,0,0,0). (1)

Let denote the set of all nodes of an RTCP-net and . In(x) and Out(x)
denote the set of input and output nodes of the node x, i.e. and

. Let be the set of variables that occur in the
expressions of arcs surrounding the transition t and in the guard of the transition.
Definition 4. A binding of a transition is a function b defined on , such that:

.
Intuitively, a binding of a transition t is a substitution that replaces each variable of

with a value of the corresponding type, such that the guard evaluates to true. The set of
all bindings of a transition t is denoted by . denotes the evaluation of the guard
expression in the binding b. Similarly, and denote the evaluation of the
weight and the time expression in the binding b, respectively.
Definition 5. A transition is enabled in a state in a binding b iff the following
conditions hold:

(2)

and for any transition that satisfies the above conditions in some binding ,
.

It means that a transition is enabled if all input places contain suitable tokens and have
suitable time stamps, all output places are accessible and no other transition with a higher
priority strives for the same input or output places.
A transition is enabled in a state (M, S) if it is enabled in the state (M, S) in one of its
bindings. If a transition is enabled in a state in a binding b it may fire,

Modelling and Analysis of Real-Time Systems with RTCP-Nets 21

changing the state to another state , such that
, and

(3)

In other words, if a transition fires, it removes one token from each input place, adds one
token to each output place, sets time stamps of input places to 0 and sets time stamps of
output places to values specified by time expressions of arcs leading from the transition to
the places.

If a transition is enabled in a state in a binding b and a state is

derived from firing of the transition, then we write . The binding b
will be omitted if it is obvious or redundant.
Two transitions Activity and TurnOnLS are enabled in the initial state. The first transition is
enabled in three different bindings: (the value of the variable n is equal to 5),

, while the second one is enabled in the binding b = () (a trivial
binding). For example, the result of firing of the transition TurnOnLS in the initial state is the
state , where:

(4)

A global clock is used to measure time. Every time the clock goes forward, all time stamps
are decreased by the same value.
Definition 6. Let (M, S) be a state and a vector with entries. The
state (M, S) is changed into a state (M', S') by a passage of time , denoted by

, iff and the passage of time is possible, i.e., no transition is

enabled in any state (M, S"), such that: .
The result of firing of transitions TurnOnLS and Activity (in binding b2) is the state
(M2,S2), where and . None transition is enabled in the
state but it is possible a passage of time that leads to the state , where

. A timeout occurs in this state. A token in the place Console is
6 seconds old (the driver did not response within 6 seconds), so the transition TurnOnSS will
fire.
A firing sequence of an RTCP-net is a sequence of pairs such that
bi is a binding of the transition ti for The firing sequence is feasible from a state

iff there exists a sequence of states such that:

(5)

For the sake of simplicity, we will assume that there is at most one passage of time
(sometimes equal to 0) between firings of two consecutive transitions. A firing sequence may
be finite or infinite. The set of all firing sequences feasible from a state (M, S) is denoted by

.
A state (M', S') is reachable from a state (M, S) iff there exists a finite firing sequence
feasible from the state (M, S) and leading to the state (M', S'). In such case, we can also say
that the marking M' is reachable from the marking M. The set of all states that are reachable

Petri Net: Theory and Applications 22

from (M, S) is denoted by , while denotes the set of all markings
reachable from the marking M.

3. Analysis of RTCP-nets
A major strength of Petri nets is their support for analysis of many properties and problems
associated with concurrent systems. Three types of properties are distinguished for RTCP-
nets: boundedness, liveness and timing ones.
Definition 7. Let an RTCP-net , a place , a multiset and a non-negative
integer k be given.
1. k is upper integer bound for iff
2. X is upper multiset bound for iff:
Lower bounds are defined analogously. A place is said to be bounded if it has an upper
integer bound. If the upper integer bound is equal to one, the place is said to be safe. A place
is said to be strongly bounded if it has a finite upper multiset bound. An RTCP-net is said to
be bounded if each place has an upper integer bound. Safe and strongly bounded
RTCP-nets are defined analogously.
An RTCP-net is conservative iff the number of tokens in the net remains constant. An RTCP-
net is conservative with respect to a weighting vector , where

, iff the weighted number of tokens remains constant, i.e.

The concept of liveness is closely related to the complete absence of deadlocks. Five different
levels of liveness can be defined for Petri nets (see (Murata 1989)).
Definition 8. Let an RTCP-net be given. A transition is said to be:

An RTCP-net is said to be if each transition of the net is ,
Definitions 9. Let an RTCP-net be given. A
marking M is said to be dead if the net is
dead. A state (M, S) is said to be dead if the marking M is dead.
Live markings and states are defined analogously. A live net does not guarantee that each
transition fires as often as the others. Some transitions may be starved by others.
Definition 10. Let an RTCP-net and a firing sequence be given. A firing
sequence is said to be fair if it is either finite or infinite and each transition appears
infinitely often in . The net is said to be fair if every firing sequence is fair.
Definition 11. The duration of a firing sequence is the sum:

(6)

where values denote passages of time between consecutive states (see

Modelling and Analysis of Real-Time Systems with RTCP-Nets 23

equation (5)).
Definition 12. Let (M, S) and (M', S') be the states of an RTCP-net such that

. A time of transition from the state to , denoted by ,
, is the duration of any sequence a leading from the state to .

The duration of a firing sequence is unambiguous, while a time of transition from one
state to another is not. If there are a few firing sequences leading from the state (M, S) to
(M',S'), we receive a few possibly different times of transition between these states. The
most important ones are the minimal and maximal times of transition.
Analysis of RTCP-nets may be carried out using reachability graphs. The set of reachable
states is represented as a weighted, directed graph. Each node corresponds to a
unique state, consisting of a net marking and a time vector, such that the state is a result of
firing of a transition. Each arc represents a change from a state to a state
resulting from a passage of time and a firing of a transition t in a binding .
Let's consider the net presented in Fig. 1. None transition is enabled in the state , but
it is possible a passage of time that leads to the state . The transition
TurnOnSS is enabled in the state and its firing leads to the state , where:

(7)

Thus, in the reachability graph, there will be nodes for the states and , and
an arc going from to with label
A finite reachability graph may be used to verify the RTCP-nets' properties presented in this
section. Analysis of boundedness and conservativeness properties may be carried out by
using markings of the graph nodes, while analysis of liveness and fairness properties may be
carried out by using labels of arcs. Each label of an arc is a pair of a transition with its
binding and a passage of time. The second element of a pair can be treated as the weight of
the arc. Thus, arcs' weights capture the time taken by transition from one state to the next.
(We consider only states that are results of transitions' firing). Using the reachability graph,
one can find the minimal and maximal times of transition from one state to another. To do this
we can use typical algorithms for finding the shortest or longest paths between two nodes in
a directed graph (multigraph). However, a reachability graph for an RTCP-nets may be infinite
even though the net is strongly bounded. In such a case it is not very useful for analysis
purposes. More detail description of reachability graphs can be found in (Szpyrka 2006a).
One of the main advantages of strongly bounded RTCP-nets (in practical applications RTCP-
nets are usually strongly bounded) is the possibility to present the set of reachable states of
an RTCP-net using a finite coverability graph. Such a graph can be used to verify most of the
RTCP-net's properties, including the timing ones.

x@2 x@2 x

x x x@3
Fig. 2. Example of an unfair RTCP-net

Petri Net: Theory and Applications 24

Let's consider the RTCP-net presented in Fig. 2. The set contains only one element
and only one variable x is used. The initial marking

 does not change while the net is working. The states change due to the
changing of time stamps. The RTCP-net is not fair. The transition t2 may be starved by the
other one. Let's consider a firing sequence where only the transition t1 is fired. In such a case
the time stamp of the place p2 will be infinitely decreasing. Therefore, the reachability graph for
the considered net is infinite. A part of the reachability graph for the RTCP-net is shown in
Fig. 3.

Fig. 3. Part of the reachability graph for the RTCP-net presented in Fig. 2

Let's consider two states of the RTCP-net , where ,
. The same transitions are enabled in both states and the same

sequences of actions are feasible from the states. Both states have the same markings and the
same level of tokens accessibility, i.e. we have to wait 2 time-units to take the token from the
place p1 and the token in the place p2 is already accessible. The token in the place p2 is
accessible if its age is at least 3 time-units, i.e. the value of the time stamp is equal to or less
than —3. It makes no difference whether the time stamp is equal to —4, —6, etc. The states

 will be said to cover each other and only one node in the coverability

graph will be used to represent them.
Definition 13. Let be a place of an RTCP-net and let denote the set of
output arcs of the place p. The maximal accessibility age of the place p is the number:

(8)

The maximal accessibility age of a place p denotes the age when tokens in the place become
accessible for all output transitions of the place.
Definition 14. Let be an RTCP-net and let be states of the net. The
state is said to cover the state and
the following condition holds:

(9)

Proposition 1. The coverability relation is an equivalence relation on .
Proposition 2. Let be the states of an RTCP-net such that

and , then

Proposition 3. Let be the states of an RTCP-net such that
. The following equality holds: .

The reachability and coverability graphs are constructed in a similar way. They differ only

Modelling and Analysis of Real-Time Systems with RTCP-Nets 25

about the way a new node is added to the graph. For the coverability graph, after
calculating a new node, we check first whether there already exists a node that covers the
new one. If so, we add only a new arc that goes to the found state and the new one is
omitted. Otherwise, the new state is added to the coverability graph together with the
corresponding arc. The coverability graph contains only one node for each equivalence class
of the coverability relation.
Let's consider coverability graph for the net presented in Fig. 2. After calculating the state

we affirm that there already exists the state that covers it. Therefore, we
add only an arc that goes back to the state . The coverability graph for the RTCP-net
is shown in Fig. 4. The coverability graph for the net presented in Fig. 1 is shown in Fig. 5.

Fig. 4. Coverability graph for the RTCP-net presented in Fig. 2

Proposition 4. If an RTCP-net is strongly bounded and each type is finite, then
the coverability graph is also finite.
Proofs for the presented propositions can be found in (Szpyrka 2006a).
The coverability graph for an RTCP-net provides similar capabilities of analysis of the net
properties as the full reachability graph. It contains all reachable markings so it is possible to
check the boundedness properties. The coverability graph contains similar arcs' labels as the
reachability one (with the same pairs (t,b)), therefore, it is also possible to check the liveness
properties. Possibilities of analysis of timing properties using coverability graphs are limited
insignificantly so some states are not presented directly. To find the minimal and maximal
times of the transition from one state to another we use the same algorithms as for reachability
graphs. For more details see (Szpyrka 2006a).

4. Practical modelling with RTCP-nets
For the effective modelling RTCP-nets enable to distribute parts of the net across multiple
subnets called pages. Hierarchical RTCP-nets are based on hierarchical CP-nets. Substitution
transitions and fusion places (Jensen 1992-1997) are used to combine pages but they are a
mere designing convenience. The former idea allows the user to refine a transition and its
surrounding arcs to a more complex net, which usually gives a more precise and detailed
description of the activity represented by the substitution transition. In comparison with CP-
nets general ports are not allowed in RTCP-nets. Moreover, each socket node must have
only one port node assigned and vice versa. Thus, a hierarchical net can be easily "squash"
to a non-hierarchical one.
A fusion of places allows users to specify a set of places that should be considered as a
single one. It means, that they all represent a single conceptual place, but are drawn as
separate individual places (e.g. for clarity reasons). The places participating in such a fusion
set may belong to several different pages. They must have the same types and initial

Petri Net: Theory and Applications 26

markings. Global fusion sets only are allowed in RTCP-nets.

Fig. 5. Coverability graph for the RTCP-net presented in Fig. 1

4.1 Canonical form
A special form of hierarchical RTCP-nets called canonical form has been defined to speed up
and facilitate drawing of models (Szpyrka and Szmuc 2006c). RTCP-nets in canonical form
consist of four types of subnets with precisely defined structures: primary place pages,
primary transition pages, linking pages, and D-nets. Such a model describes the structure
of the corresponding system as well as its behaviour and functional aspects. Furthermore,

Modelling and Analysis of Real-Time Systems with RTCP-Nets 27

rule-based systems can be simply included into such models. The general structure of an
RTCP-net in canonical form is shown in Fig. 6.

Fig. 6. General structure of an RTCP-net in canonical form

Moreover, it is assumed that an RTCP-net in canonical form satisfies some extra conditions.
The set of places P is divided into two subsets: PM, the set of main places and PA, the set of
auxiliary places. Main places represent the distinguished parts (elements) of a modelled
system, e.g. objects. The set T of all transitions is also divided into two subsets: TM (main
transitions) and TA (auxiliary transitions). Main transitions represent actions of a modelled
system. Auxiliary places and transitions are used on subpages, which describe system
activities in detail. Main places may be connected to main transitions only. Initial time
stamps of auxiliary places must be equal to or less than 0. Moreover, if an arc goes from or
to an auxiliary place, its time expression must be equal to 0.
Primary place pages are used to represent active objects (i.e. objects performing activities) and
their activities. They are oriented towards objects presentation and are top level pages. Such
a page is composed of one main place that represents the object and one main transition for
each object activity. Primary transition pages are oriented towards activities' presentation and
are second level pages. Such a page contains all the places, the values of which are
necessary to execute the activity, i.e. the page is composed of one main transition that
represents the activity and a few main places.
Linking pages belong to the functional level of a model. They are used (if necessary) to
represent an algorithm that describes an activity in details. Moreover, a linking page is used as
an interface for gluing the corresponding D-net into a model. Such a page is used to gather all
necessary information for the D-net and to distribute the results of the D-net activity. A linking
page contains port nodes for socket nodes from the corresponding primary transition page.
The substitution transition (from the corresponding primary transition page) is split into
two main transitions an input and an output one. All elements placed between those transitions
are auxiliary ones, so there is no delay between firing of the input and output transitions.
Hence, if time properties are considered, we can focus on primary transition pages and
pass over their subpages. Any activity of a linking page starts with the firing of the input
transition and ends with the firing of the output one. In addition, each occurrence of the input

Petri Net: Theory and Applications 28

transition must be followed by a sequence of transitions' occurrences such that the last of
them is the output transition, and all the others are auxiliary ones. Any such activity is
similar to a procedure call in programming languages.
D-nets (Szpyrka & Szmuc 2006a) are used to represent rule-based systems in a Petri net form.
They are utilized to verify a rule-based system properties and constitute parts of an RTCP-
net model. A D-net contains two places: a conditional and a decision place. Each decision rule
is represented by a transition and its input and output arcs. A token placed in the
conditional place denotes a sequence of values of conditional attributes. Similarly, a token
placed in the decision place denotes a sequence of values of decision attributes. D-nets
belong to the bottom level of the model. All its nodes belong to auxiliary ones. A simplified
structure of these four types of pages is shown in Fig. 7.

Fig. 7. Simplified structure of RTCP-net pages: a) primary place page; b) primary transition
page; c) linking page; d) D-net

All connections among pages are presented using a page hierarchy graph. A node in such a
graph represents a single page, and an arc represents a connection between a subpage and
its substitution transition.
System decomposition is the first step of a model development. It starts with distinguishing
objects that constitute the system. Objects are divided into active, i.e., objects performing ac-
tivities, and passive ones, that do not perform any individual activity. An object is
represented by a main place. For each object, a list of attributes and their types are defined.
The Cartesian product of the defined types specifies the corresponding place type.
Construction of primary place pages for active objects ends this development stage.
The next stage deals with description of model dynamic that is especially important for
reactive systems. Transitions placed in primary place pages are usually substitution
transitions. For each of these substitution transitions a primary transition page is drawn.
Designing of a primary transition page is similar to declaring a procedure in Ada
programming language. It is necessary to describe input, output and input/output
parameters. If a primary transition page does not contain a substitution transition, then it
constitutes a complete definition of the corresponding activity. After completion of this
stage, RTCP-net represents all elements (objects) that constitute the modelled system and all

Modelling and Analysis of Real-Time Systems with RTCP-Nets 29

its activities.
The last stage is related to development of functional aspects of the system. Linking pages
and D-nets (if necessary) are used for this purpose.

4.2 Railway traffic management system – case study
RTCP-nets can be used as modelling language for real embedded systems. A model of
railway traffic management system for a real train station is discussed in this subsection.
The system is used to ensure safe riding of trains through the station. It collects some
information about current railway traffic and uses a rule-based system to choose routes for
trains. The presented approach based on RTCP-nets seems to be valuable and worth
consideration as an alternative for other approaches such as SDL language (Bacherini et al.
2003), statecharts (Banci et al. 2004) and others.
The size of a train station has a great influence on the size of the corresponding RTCPnet
model. To give a brief outline of the presented approach a small train station (Czarna
Tarnowska) has been chosen. The station belongs to the Polish railway line no 91 from
Kraków to Medyka. This example seems to be suitable for RTCP-nets presentation.

Fig. 8. Czarna Tarnowska – topology of the train station

The topology of the train station with original signs is shown in Fig. 8. The letters A, B, D,
etc. stand for color light signals, the symbols Z3, Z4, Z5, etc. stand for turnouts and JTA, JTB,
JT1, etc. stand for track segments. Some simplification have been introduced to reduced the
size of the model. We are not interested in controlling local shunts so the track segment JT6
will not be considered. We assume that light signals display only two signals: stop, way free.
Moreover, outside the station the trains can ride using the right track only.
A train can ride through the station only if a suitable route has been prepared for it i.e.,
suitable track segments must be free, we have to set turnouts and light signals and to
guarantee exclusive rights to these elements for the train. Required position of turnouts for
all possible routes are shown in Tab. 1. For example, the symbol B4 stands for the input
route from the light signal B to the track no. 4. The symbol F2W stands for the output route
from the track no. 2 (from the light signal F) to the right (to Wola Rzedzinska), etc. The
route B4 can be used by a train only if: turnouts 7, 8, 15, 16 are closed, turnouts 3, 4, 6 are
open, and the track segments JTB, JT4, JZ4/6 (a segment between turnouts 4 and 6), JZ7
(diagonal segment leading to the turnout 7) and JZ16 are free. The Tab. 2 shows which routes
are mutually exclusive. The system is expected to choose suitable routes for moving trains. It
should take under consideration that some trains should stop at the platform, while others are
only moving through the station and two routes (an input and an output one) should be

Petri Net: Theory and Applications 30

prepared for them. In such a case, if it is not possible to prepare two routes, only an input
one can be prepared.

Table 1. Required position of turnouts for all possible routes

Table 2. Relationships between routs

The main part of the developed system is a rule-based system that is used to determine
which routes should be prepared depending on the data collected from sensors. In the
considered approach generalized decision tables (tables with non-atomic values of
attributes, (Szpyrka & Szmuc 2006a)) are used to represent rule-based systems. A cell in
such a decision table contains a formula that evaluates to a boolean value for conditional
attributes, and to a single value (that belongs to the corresponding domain) for decision
attributes. After verification such a decision table is transformed into a Petri nets form called
D-net (Szpyrka & Szmuc 2006a).
The decision table for the considered model contains 20 conditional and 2 decision

Modelling and Analysis of Real-Time Systems with RTCP-Nets 31

attributes. The conditional attributes stand for: information about current position of the
train (attribute JT) - before the light signal B, F, G, etc.; information about type of the train
(attribute TT) - only moves through the station (1) or must stop at the platform (0);
information about current status of track segments (attributes JT1, JT2, JT3, JT4, JOA, JOP) -
a segment is free (0) or is taken (1); information about already prepared routes (attributes B1,
B2, B3, etc.) - a route is already set (1) or not (0). The decision attributes In and Out represent
the input and output routes (that will be prepared for the train) respectively. Domains for
these attributes are defined as follows:

Fig. 9. Part of the D-net for the decision table presented in Table 3 and 4

The decision table is shown in Tab. 3 and 4. Moreover, the table contains 81 so-called
negative rules (Szpyrka & Szmuc 2006a) that state in an explicit way that the particular
combinations of values of conditional attributes are impossible or not allowed. The negative
rules are used to check whether the table is complete and are usually omitted when the cor-
responding D-net is generated. Thus they will not be considered in the paper. Together with
the negative rules, the rule-based system is complete and deterministic. A small part of the
D-net for the decision table (only three rules) is shown in Fig. 9. Names beginning with "v"
(e.g. vf2w) denote variables.
In the considered model two active objects are distinguished: Driver used to handle with
trains requests and SignalBox used to set and unset routes. The first object contains infor-
mation about all requests waiting for service, while the second one about states of all routes.
Definitions of main types and variables used in the model are as follows:

Petri Net: Theory and Applications 32

Table 3. Decision table (part 1)

Modelling and Analysis of Real-Time Systems with RTCP-Nets 33

Table 4. Decision table (part 2)

As it was said before, primary place pages are used to represent active objects. Such pages
for objects Driver and SignalBox are shown in Fig. 10 and 11 respectively.

Fig. 10. Primary place page Driver

Petri Net: Theory and Applications 34

Fig. 11. Primary place page SignalBox
The RTCP-net model contains some passive objects such as light signals, turnouts and track
segments. For simplicity turnouts that work together e.g. Z34 and Z78 are considered as
single objects. Places that represent light signals and turnouts have the colour State
assigned. The value 0 denotes that the stop signal is displayed or that the turnout is closed.
Places that represent track segments have the colour TrainType assigned. A positive value
denotes that the track segment is taken while the value 2 denotes that the train that occupies
it must stop at the platform.

Fig. 12. Primary transition page RequestHandling

Modelling and Analysis of Real-Time Systems with RTCP-Nets 35

Transitions placed in primary place pages are usually substitution transitions. For each of
them a primary transition page is drawn. Primary transition page for the RequestHandling is
shown in Fig. 12. The transition performs on basis of the considered D-net. To connect the
D-net with the substitution transition RequestHandling from the Fig. 12 a linking page must be
used. The linking page used to gather all necessary information for the D-net and to distribute
the results of the D-net activity is shown in Fig. 13.

Fig. 13. Linking page for the transition

Petri Net: Theory and Applications 36

Primary transition pages for transitions SetB1 and UnsetK1D are shown in Fig. 14 and 15
respectively. A route is unset if the second of the light signals (set for the route) displays the
stop signal (light signals switch to stop signal when trains move) and the corresponding track
segment is free. As the result of unset operation all used turnouts are switch to the closed
position. Pages for other Set and Unset transitions are designed in similar way.

Fig. 14. Primary transition page SetB1

Fig. 15. Primary transition page UnsetK1D

A part of the page hierarchy graph for the RTCP-net is shown in Fig. 16. The complete
model contains also pages that represent trains and are use to simulate the train traffic.
Verification of such a model is carried out in two ways. In the first one, simulation is used to
check how the model works. Simulation of an RTCP-net model is similar to a program
debugging. It can be used to check whether the model performs as expected or for some
statistical analysis of its properties. A small part of a simulation report for the considered

Modelling and Analysis of Real-Time Systems with RTCP-Nets 37

model is presented below. Each part of the report contains the following pieces of information:
a state number, markings of places, time stamps of places (in square brackets), a transition
name, a binding of the transition and a passage of time (before the transition can fire). For
example in the state 13 there is possible a passage of time equal to 20 time-units and then the
transition FreeFA1 (connected with a train moving) in the binding b = (1/p1) is fired.

Fig. 16. Part of the page hierarchy graph

Petri Net: Theory and Applications 38

The real formal verification is based on coverability graphs. The textual form of the cov-
erability graph is similar to the one of simulation report. In comparison with the simulation
report, the coverability graph represents not one but all possible paths of the system perfor-
mance. The following conclusions are results of the coverability graph analysis:

The net is strongly bounded, live but it is not fair.

Mutually exclusive routes are never set at the same time.

Routes are set only if there is a need to do so, and are unset immediately after the corre-
sponding train leaves the suitable track segments.

The way free signal is displayed only if a suitable route is set and the stop signal is set
only as a result of trains mowing.

Trains never ride through taken track segments.
It should be also emphasized that the verification of the decision table (at its design stage) has
also great influence on the presented model properties. The complete and deterministic
decision table guarantees correct performance of the RequestHandling transition.
The design and verification of the presented model has been done with a software support.
CASE tools for RTCP-nets called Adder Tools are being developed at AGH University of
Science and Technology in Krakow. Adder Tools contain:

Adder Designer- for design and verification of rule-based systems;

Adder Editor- for design of RTCP-nets;

Adder Simulator- for simulation of RTCP-nets.
Some preliminary version of the software and more information about it can be found at
http://adder. ia. agh. edu.pl.

5. Conclusions
RTCP-nets are an adaptation of CP-nets to make modelling and verification of embedded
systems easier and more efficient. Based upon the experience with application of CP-nets for
embedded systems' modelling, some modifications were introduced in order to make timed
CP-nets more suitable for this purpose. The main advantage of the presented formalism is
the new time model. Together with transitions' priorities, the time model enable designers
direct modelling of task priorities, timeouts, etc. that are typical for concurrent
programming.
The next advantage of RTCP-nets is the possibility of analysis of model properties with
coverability graphs. Timed CP-nets can be also used to model embedded systems. A few
different analysis methods have been proposed for untimed CP-nets but analysis of the
timed ones may be difficult. In most cases, the state space of a live timed CP-net is infinite,
so it is impossible to construct a full reachability graph that allows to analyse timing
properties. To reduce such an infinite state space a few kinds of reduced reachability graphs
have been defined, for example: graphs with stubborn sets, (Kristensen & Valmari 1998),
graphs with equivalence classes (Jorgensen & Kristensen 1997), graphs with symmetries
(Jorgensen & Kristensen 1999) and others. In most cases, analysis of time properties is
impossible or limited significantly. In case of RTCP-nets coverability graphs can be used for
these purposes. It has been proved (Szpyrka 2006a) that for strongly bounded RTCP-nets we
may construct a finite coverability graph. Such a graph can be used for the analysis of
typical Petri nets' properties as well as timing ones.
The other advantage of RTCP-nets is the way hierarchical models are constructed. Using of

Modelling and Analysis of Real-Time Systems with RTCP-Nets 39

the canonical form speeds up and facilitate drawing of models. Moreover, some parts of a
model can be generated automatically, because they have precisely defined structure.
Furthermore, an RTCP-net in canonical form represents the structure of a modelled system,
its dynamic and also functional relationships. Each part (object) of the modelled system and
each system activity is represented by a distinguished part of the corresponding RTCP-net.
Hence, it is possible to identify parts of Ada source code that should be defined e.g.: tasks,
protected objects, suspending objects, etc. Some aspects of the transformation from the
formal RTCP-net model into an implementation in Ada 2005 programming language can be
found in (Szpyrka 2006b). The received source code meets the requirements of the Ravenscar
profile (Burns et al. 2003). The transformation algorithm is the first step toward working out
tools for automatic transformation of an RTCP-net into Ada source code framework. The
algorithm has been successfully used for generation Ada 2005 source code for the railway
traffic management system presented in the chapter.
Our future plans will focus on the development of Adder tools capabilities (e.g. wizards for
automatic generation of some part of models) and implementation of analysis methods.
Development of the software seems to be the most important task to put the presented
theory into practice.

6. References
Bacherini, S.; Bianchi, S.; Capecchi, L; Becheri, C.; Felleca, A.; Fantechi, A. & Spinicci, E.

(2003). Modelling a railway signalling system using SDL, Proceedings of FORMS
2003 Symposium on Formal Methods for Railway Operation and Control Systems, pp.
107-113, ISBN 963-9457-450, Budapest, Hungary, May 2003, L'Harmattan Hongrie,
Budapest

Banci, M.; Fantechi, A. & Gnesi, S. (2004). The role of formal methods in developing a dis-
tributed railway interlocking system, Proceedings of the 5th Symposium on Formal Meth-
ods for Automation and Safety in Railway and Automotive Systems (FORMS/FORMAT
2004), pp. 220-230, ISBN 3-9803363-8-7, Braunschweig, Germany, December 2004,
Technical University of Braunschweig

Barnes, J. (2006). Programming in Ada 2005, Addison Wesley, ISBN 0-321-34078-7, Harlow,
England

Burns, A.; Dobbing, B. & Vardanega, T. (2003). Guide for the Use of the Ada Ravenscar Profile in
High Integrity Systems, Technical Report No. YCS-2003-348, University of York

Cheng, A. M. K. (2002). Real-time Systems. Scheduling, Analysis, and Verification, Wiley
Interscience, ISBN 978-0-471-18406-5, New Jersey

Jensen, K. (1992-1997). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use,
Vol. 1-3, Springer-Verlag, ISBN 3-540-62867-3, Berlin

Jorgensen, J.B. & Kristensen, L.M. (1997). Verification of coloured Petri nets using state
spaces with equivalence classes, Proceedings of the Workshop on Petri Nets in System
Engineering, Modelling, Verification and Validation, pp. 20-31, ISBN 3-89586-597-4,
Hamburg, Germany, September 1997, Universitat Hamburg

Jorgensen, J.B. & Kristensen, L.M. (1999). Computer aided verification of Lamport's fast mu-
tual exclusion algorithm using coloured Petri nets occurrence graphs with
symmetries. IEEE Transactions on Parallel and Distributed Systems, Vol. 10, No. 7 (1999)
714-732, ISSN 1045-9219

Kristensen, L.M. & Valmari, A. (1998). Finding stubborn sets of coloured Petri nets without

Petri Net: Theory and Applications 40

unfolding, Proceedings of the 19th International Conference on Application and Theory of
Petri Nets, pp. 104-123, ISBN 3-540-64677-9, Lisbon, Portugal, June 1998, LNCS, Vol.
1420, Springer-Verlag, London

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
Vol. 77, No. 4, (April 1989) 541-580, ISSN 0018-9219

Sommerville, I. (2004). Software Engineering, Pearson Education Limited, ISBN 0-321-21026-3,
Boston

Szpyrka, M. (2006a). Analysis of RTCP-nets with reachability graphs. Fundamenta Informaticae,
Vol. 74, No. 2-3, (2006) 375-390, ISSN 0169-2968

Szpyrka, M. (2006b). Development of embedded systems - from RTCP-net model to Ada
code. Concurrency, Specification and Programming CS&P'2006, Vol. 2, pp. 231-242,
ISSN 0863-095X, Wandlitz, Germany, September 2006, Informatik Berichte, No. 206,
Humboldt-Universitatzu Berlin

Szpyrka, M. & Szmuc, T. (2006a). D-nets- Petri net form of rule-based systems. Foundations of
Computing and Decision Sciences, Vol. 31, No. 2 (2006) 157-167, ISSN 0867-6356

Szpyrka, M. & Szmuc, T. (2006b). Verification of automatic train protection systems with RTCP-
nets. Proceedings of the 25th International Conference on Computer Safety, Security
and Reliability, pp. 344-357, ISBN 3-540-45762-3, Gdansk, Poland, September 2006,
LNCS, Vol. 4166, Springer-Verlag, Berlin

Szpyrka, M. & Szmuc, T. (2006c). Integrated approach to modelling and analysis using RTCP-
nets. IFIP International Federation for Information Processing, Vol. 227, 115-120, ISBN
978-0-387-39387-2, Springer, New York

3

Petri Net Based Modelling of
Communication in Systems on Chip

Holger Blume, Thorsten von Sydow, Jochen Schleifer and Tobias G. Noll
Chair of Electrical Engineering and Computer Systems

RWTH Aachen University
Germany

1. Motivation
Due to the progress of modern microelectronics the complexity of integrated electronic
systems is steadily increasing. For example, the number of transistors which can be
integrated on a single piece of silicon doubles every 18 months according to Moore’s Law
(Moore, 1965). At the same time, the costs for manufacturing deep-sub-μ devices with
feature sizes down to 45 nm are dramatically increasing.
Due to this progress, today, complete systems are integrated on a single silicon die as so-
called Systems on Chip (SoCs). The huge complexity of these SoCs and the very high
manufacturing costs demand sophisticated design strategies as it is not possible to simulate
a sufficiently large number of implementation alternatives in advance. Furthermore, errors
within the design process lead to dramatically increased costs.
Therefore, the field of model based design space exploration (DSE) is of increasing
importance. Model based DSE allows a reduction of the number of implementation
alternatives in an early stage of the design process by quantitative analysis of possible
implementation alternatives (Blume, 2005).
Especially, the design of a sophisticated communication structure on a SoC is of great
interest. For SoCs with moderate complexity mainly bus based communication structures
are applied, but this is not sufficient for modern high complex SoCs, since bus based
communication provides only very limited scalability, reduced bandwidth and no
guaranteed latencies. Furthermore, with a high number of system components the need for
simultaneous communication between different communicating units increases. All these
requirements are already known from multi computer networks. Therefore, for complex on-
chip communication requirements also network-like structures are considered. Hence, the
concept of multi computer networks is transferred and adapted to on-chip communication
problems building so-called Networks on Chip (NoCs) featuring in future the
communication infrastructure for many processor cores.
Generally, NoCs consist of

network-interfaces (NI), where clients like e.g. processor cores can access the NoC,

routing-switches (RS), which route the data through the NoC and

links, through which the data is transported (see Fig. 1).

Petri Net: Theory and Applications 42

Fig. 1. Network-on-Chip (NI: Network-Interface, RS: Routing-Switch)

These NoCs imply a huge parameter space featuring parameters like network topology,
routing strategy, link properties, arbitration mechanisms etc.. Some of these parameters are
roughly sketched in the following:
Topology in this case is the way of connecting the various network components to each other,
common examples (see Fig. 2) are networks based on mesh, torus and ring topologies
(Bjerregaard, 2006), besides further regular topologies also heterogeneous and/or
hierarchical topologies as well as completely irregular ones (for example optimized for
specialized signal processing tasks) are discussed.

Fig. 2. Common NoC topologies: mesh (a), torus (b), ring (c)

The switching concept defines the way information is sent through the network. Concepts for
this are line and packet switching. In a line switched network a complete route from source
to destination is established before information is passed along this route. In the packet
switching approach information is divided into small packets that are delivered

Petri Net Based Modelling of Communication in Systems on Chip 43

independently of each other. While line switching generates a considerable overhead for
route establishment there is no need to send destination information along with each
message and vice versa for packet switching. Furthermore, concepts such as wormhole
routing combine characteristics of both approaches (Duato, 2003).
In any of the cases described before, the actual route through the network is determined by
the routing algorithm. In each network node, information is routed from an input to an
output port according to the routing algorithm. These algorithms can be divided into static
and adaptive algorithms as well as minimal-path and non-minimal-path ones. When using a
static routing algorithm there is only a single route for each possible pair of source and
destination. Adaptive algorithms allow for different routes dependent on the current
network state and generally tend to reduce congestion for the cost of higher complexity.
Minimal-path routing algorithms only consider those routes with minimum possible length
while non-minimal-path algorithms also regard further routes featuring non-minimal path
lengths.
Arbitration mechanisms define the way to resolve resource conflicts; this can range from
simple first-come-first-serve or Round Robin schemes to complex schemes including
priority access and disruption of routes.
All of these parameters have a significant influence on congestion, latency and network
load, thereby affecting and possibly limiting SoC and NoC performance.
It is a key task of modern SoC and NoC design to efficiently explore the design space
regarding aspects like performance, flexibility and power consumption presumably in an
early stage of the design flow in order to reduce design time and design costs.
Different approaches for exploring the design space concerning performance aspects have
been proposed:

Emulation on FPGA based platforms (Neuenhahn, 2006)

Simulative approaches, e.g. applying SystemC (Kogel, 2003), (Madsen, 2004),
(Sonntag, 2005)

Combined simulative-analytic approaches (Lahiri, 2001)

formal communication modelling and refinement systems applying dedicated
modelling languages like the Action Systems Formalism (Plosila, 2004)

stochastic approaches applying Markov Models (Mickle, 1998), Queuing Theory
(Kleinrock, 1975) or different forms of Petri Nets incl. deterministic and stochastic Petri
Nets (DSPN) (Ciardo, 1995), (Blume, 2006), (Blume, 2007) and Coloured Petri Nets
(CPN) (Zaitsev, 2004)

Each of these techniques provides its individual advantages and disadvantages. For
example, simulative approaches based on SystemC like (Kogel, 2003) provide highly
accurate results but suffer from long simulation times, making them not appropriate for an
early stage of communication modelling and evaluation. Emulation of communication
architectures and scenarios on FPGA based platforms (Neuenhahn, 2006) provides on one
hand the possibility to quickly acquire results for different aspects. If a suitable FPGA based
model is available it is much faster to attain results than using a simulation based method.
On the other hand the modelling and realization effort of the emulation (incl. the synthesis
of the NoC on the FPGA) is very high. The complexity of the modelled scenarios is limited
by the capacity of the used FPGA. Recently, communication modelling approaches which
are based on so-called deterministic and stochastic Petri Nets (DSPNs) have been presented.
In (Blume, 2006), (Blume, 2007) it could be shown that with the application of these DSPN

Petri Net: Theory and Applications 44

modelling techniques it is possible to efficiently trade modelling effort and modelling
accuracy. Basic but exemplary test scenarios like resource conflicts in state-of-the-art DSP
architectures, basic bus based communication test cases and basic NoC structures
demonstrate a very good modelling accuracy at low modelling effort.
In this chapter the usability of different Petri Net based modelling techniques like DSPNs
and CPNs for modelling complex NoC communication scenarios is investigated and their
specific properties are discussed. This chapter is structured as follows: section 2 provides an
introduction into the Petri Net variants DSPN and CPN. In section 3 these modelling
techniques are applied in order to model different forms of on-chip communication. The
corresponding accuracy of the models compared to values which were derived using FPGA
and DSP based testbeds are provided and discussed. Furthermore, the related modelling
effort is analyzed. Section 4 provides a conclusion and a short outlook to possible future
applications of Petri Net based techniques in the domain of design space exploration for
NoC-architectures.

2. Introduction to Petri nets
In the following section a short introduction to the Petri Net methods which have been
applied in context of this chapter is given. The modelling with these specific methods will be
illustrated by means of descriptive basic examples. First of all, the design with so called
deterministic and stochastic Petri Nets (DSPNs) is sketched. Afterwards, coloured Petri Nets
which extend the possibilities of DSPNs are briefly presented.

2.1 Deterministic and stochastic Petri nets
Deterministic and stochastic Petri Nets have been introduced in 1987 by Ajmone Marslan
and Chiola (Ajmone Marslan, 1987) as an extension of classical Petri Nets. DSPNs extend the
modelling possibilities of classical Petri Nets by introducing the concept of deterministic
transition times. In the following, only a subset of all features provided by DSPNs is
discussed. For a thorough overview see e.g. (Lindemann, 1998).
Petri Nets consist of so-called places, arcs and transitions. Places, depicted as circles in the
graphical representation, correspond to states of e.g. system components. E.g. a place could
be named copy word to illustrate that this place represents the state of copying a word. Places
can be unmarked or marked with one or even more tokens. This illustrates that the
corresponding place is currently allocated. E.g. if a place called copy word is marked, the
associated component is in the state of copying a word.
In Petri Nets a state change is modelled by means of so called (timed) transitions. Three
types are differentiated in DSPNs: immediate transitions, transitions with a probability
density function of their delay (e.g.: negative exponential) or deterministic transitions with a
fixed delay.
Transitions and places are connected via arcs. There are two types of arcs, regular or
inhibitor arcs. Inhibitor arcs are identified by a small inversion circle instead of an
arrowhead at the destination end of it (see Fig. 3). If more than one input place is connected
to a transition via regular arcs, the transition will only be activated when all connected
places are marked. In case of one or more of these arcs being inhibitor arcs the transition will
not fire if the corresponding place is marked. Furthermore, a numeric weight can be

Petri Net Based Modelling of Communication in Systems on Chip 45

assigned to each arc. A weighted arc is only activated if the number of tokens, located in the
place the arc is originating from, is greater or equal than the assigned weight.
The form of graphical representation is often used to build DSPNs. The underlying
mathematical representation of DSPNs can be specified as a nine-tuple

WDMHOITPDSPN ,,,,,,,, 0

with

P, a finite number of places,

T, a finite number of transitions,

HOI ,, denote the input-, output- and inhibitor-functions, which connect

transitions and places,

 denotes the firing-priority-function (specifying firing-priority-levels) for all

immediate transitions,

0M denotes the initial marking of the DSPNs,

D denotes the firing-delay-function (specifying the average delay) for timed

transitions,

W denotes the firing-weight-function, which specifies the weights which are

associated to each transition.
When a Petri Net model has been implemented by use of a graphical design tool or by
directly defining the characteristic DSPN nine-tuple, the belonging mathematical models of
the implemented Petri Net can be analyzed. Then, this analysis yields for example

the static expectation value of the marking of places (occurrence of tokens at a given
place),

the stationary probability for the occurrence of a specific marking of a place,

the average number of tokens passing a transition per unit of time, i.e. the throughput
of a transition.

For the acquisition of results three different approaches exist:

mathematical analysis, within which a closed equation system is deduced from the
Petri Net and this equation system can be solved in order to acquire the desired results,

mathematical approximation, which is based on numeric methods of calculation being
suited for Petri Nets, which cannot be solved in the form of closed equation systems,

simulation, within which the flow of tokens through the net is simulated. This
simulation is carried out until the desired results can be computed according to a
specified confidence bound. Therefore, the relative occurrences of tokens within the
single places are acquired.

Each alternative provides its specific advantages and disadvantages regarding required
computational effort, achievable accuracy etc.. In case of two or more concurrently enabled
deterministic transitions, mathematical analysis is not possible and simulative or
approximative methods have to be applied (Lindemann, 1998).
A further advantage of Petri Nets is the availability of comfortable mathematical methods in
order to determine features of Petri Nets such as the so-called liveness or the absence of
deadlocks (non-resolvable blockades) (Lindemann, 1998). The associated mathematical
methods are often included in the modelling tools and therefore allow a fast verification of
features like absence of deadlocks.

Petri Net: Theory and Applications 46

In order to demonstrate the application of DSPNs to model communication structures a
basic DSPN is depicted in Fig. 3. A simplified arbitration scheme which handles the
competition of a DMA controller and a CPU for the critical resource memory interface is
modelled here. The DSPN consists of two components: a section of a CPU and a DMA-
controller.
In the following, two aspects of the current state and their implications for the following
state of this simple net will be explained. As can be seen in Fig. 3 the memory request place of
the CPU and the memory access granted place are connected to the immediate transition via
regular arcs. These two places are the only places which are connected to this transition and
both are marked with tokens. Thus, the transition is going to fire immediately. The
mentioned places are going to be cleared and the memory access place of the CPU is marked.
This transition example describes the situation where the CPU requests the memory at a
time where the memory access is available. The CPU accesses the memory and transfers data
from or to the memory. The resource memory is therefore busy until the deterministic
transition fires and the place memory access granted is marked again. Thus, access to the
memory by another device (here the DMA-controller) cannot be granted.

Fig. 3. Basic DSPN example (depicted here for a specific state)

The upper immediate transition of the DSPN depicted in Fig. 3 behaves differently
compared to transition as one of the three places connected to transition is connected
via an inhibitor arc. Therefore, this transition is not going to fire as long as all three
connected places are marked. In case that the memory request place of the CPU is not marked
and the other ones are marked, transition will fire immediately. Thus, the DMA-controller
only gets access to copy a word if the CPU is not having or requesting memory access.
Therefore, in this arbitration scheme the CPU has higher priority than the DMA.
The described DSPN requires input parameters such as the memory access delay time T
etc. to determine probabilities and expectations of previously defined places as mentioned
above.
A variety of DSPN modelling environments is available today (Petri Nets World, 2007). For
the DSPN modelling experiments described in this chapter, the modelling environment
DSPNexpress (DSPNexpress, 2003) has been applied. DSPNexpress provides a graphical
editor for DSPN models, as well as a solver backend for analysis of DSPNs. Experiments can

Petri Net Based Modelling of Communication in Systems on Chip 47

be performed for a fixed parameter set and for a parameter sweep across a user-defined
range of values. The package supports the computation of the transient response e.g. the
distribution of tokens (using Picards Iteration Algorithm) as well as computation of the
steady state behaviour of the DSPN model. The latter can be determined by iteratively using
the Generalized Minimal Residual Method, by employing the direct quadrature method or
by utilizing the discrete event simulator backend (Lindemann, 1998). These methods
correspond to the DSPN computation methods mentioned in the beginning of this section.

2.2 Coloured Petri nets
In this section a short introduction to Coloured Petri Nets (CPN) and to the software
CPNtools (Ratzer, 2006) that has been used for the modelling examples discussed here, is
given. First, the basic features of this modelling approach are presented then it is explained
using a basic application example.
Coloured Petri Nets have been developed by K. Jensen in course of his PhD thesis (Jensen,

1980) to expand the modelling possibilities of classical Petri Nets. Like other forms of Petri

Nets a CPN consists of places, tokens, transitions and arcs. The primary feature unique to

CPNs is the inclusion of data structures into tokens. These data structures are called

coloursets and resemble data structures in high level programming languages; they can

range from simple data types such as integers to complex structures like structs or unions in

C/C++. Similar to programming languages it is possible to define variables associated with

these coloursets. Some examples of colourset and variable definitions are shown in Fig 4.a.

Tokens as well as places of a CPN are always associated with a colourset and a place may

only contain tokens of the same colourset as its own. Places in a CPN are depicted as ellipses

(Fig 4. b) with the name of the place written into it and the associated colourset (word)

below. A token in a CPN is represented by a circle (Fig 4. b). Its value (the data stored in the

token) is shown in a rectangle attached to the circle. A number in the circle denotes the

number of tokens with the same value. Fig 4. b for example shows a place called link

associated with the colourset word and holding three tokens, two storing the value (ack, 5)

one with a value of (req, 13). Tokens associated with the predefined colourset unit do not

store any data and thus resemble tokens in an ordinary Petri Net or a DSPN.

Fig. 4. Colourset and variable definitions (a) and graphical representation of a place in a
CPN (b)

Transitions in a CPN are represented by rectangles (Fig. 5) and can access the data
stored in tokens by mapping tokens to variables. There are two possibilities to access
this data:

Petri Net: Theory and Applications 48

Guard conditions: The transition is enabled only if a specific condition – called a guard
condition – regarding one or more variables is met. Guard conditions are encased in
brackets and written above the transition (Fig. 5a).

Transfer function: The transition reads and writes variables according to a specified
function that can range from simple addition of values to complex conditional
commands. Transfer functions consist of the definition of input() variables, output()
variables and the commands to be carried out (action()) and are attached below the
transition (Fig. 5b).

The examples depicted in Fig. 5 show a transition that only fires if the variable ctrl has the
value req (Fig. 5a) and a transition that generates an output variable dest without taking any
input variables (Fig. 5b), the variable dest is filled with the return value of the function
defined in the action part which in this case is a uniformly distributed random number
between 0 and 15.

Fig. 5. Transitions with guard condition (a) and transfer function (b)

Places and transitions in a CPN are linked by arcs. Arcs in a CPN can be unidirectional like
in a DSPN or bidirectional. Unidirectional arcs transfer tokens from a place to a transition or
vice versa (Fig. 6 a), bidirectional arcs transfer the same token from a place to a transition
and back (Fig. 6 b). Arc inscriptions define the mapping of tokens to variables. An
inscription can either be a constant value (Fig. 6 a) or a variable of the colourset that is
associated to the place the arc is connected to (Fig. 6 b). In case of complex coloursets an
inscription can also contain a set of variables. The word colourset defined in Fig. 4 a for
example consists of two parts, a control and an address part. A token of the colourset word can
be either mapped to a single variable of word or to a set (var1, var2) with var1 having the
colourset control and var2 being of the colourset address.
If all places connected to a transition by unidirectional input arcs or by bidirectional arcs
hold tokens and its (optional) guard condition is met, the transition is said to be enabled. In
case of more than one enabled transition in a CPN the one to fire is chosen randomly. Upon
firing a transition deletes the appropriate tokens from input places and generates tokens in
its output places. Places linked to the transition by bidirectional arcs are treated as both
input and output places.

Fig. 6. Unidirectional arc with mapping to value 3 (a), bidirectional arc with mapping to
variable dest (b)

Petri Net Based Modelling of Communication in Systems on Chip 49

For an analysis of clocked systems it is possible to define timed coloursets, defined by the
keyword timed (Fig. 7a) and transition delays marked by the characters @+ (Fig. 7b). If a
colourset is defined as timed, a timestamp is added to the tokens of this colourset. The
timestamp cannot be accessed by guard conditions or transfer functions. When using timed
coloursets the firing of transitions depends on a global clock counter. Transitions can only
fire if the clock value is the same as the largest timestamp of its input tokens. When a timed
transition fires, the timestamp of its output tokens is the sum of the current clock value and
the transition delay, in the example in Fig. 7b this delay is 100 clock cycles.

Fig. 7. Timed colourset definition (a) and transition with associated delay (b)

As an introductory example to CPN modelling a basic model of NoC communication is
presented in the following paragraph. Clients in the NoC are identified by their addresses
(here, integers ranging from 0 to 15). Since the communication in this NoC is based on line
switching a route from source to destination has to be established before starting data
transmission. The coloursets and variables used in this example are those shown in Fig. 7 a
as well as the colourset unit. Messages sent through the NoC are represented by tokens of
the colourset word. This colourset contains a part with the colourset control that designates
how the message is to be handled and a destination address. Possible values for the control
colourset are req (request route), ack (acknowledge route) and rel (release route).
In the beginning, the data source in the modelling example depicted in Fig. 8 is idle – no
data is to be sent. The global clock (clock counter) is supposed to be 0. The place idle is
marked, thus the transition request is enabled. This transition then fires and generates a
token in the place wait – the source is now waiting for establishing of the route. At the same
time the transition generates a token (req, dest) @ 100 in the place link, with @ 100 denoting
the timestamp. This is a request to the network to make a route available from the source to
the client with the address dest. The value of dest is a random number between 0 and 15
generated by the transfer function of the transition request (input (); … discrete(0, 15));) (see
Fig. 8). With a token (req, dest) in link the transition routing becomes enabled. It fires as
soon as the clock reaches 100 and generates an acknowledgement to notify the source of
successful routing. Supposing the routing takes Troute = 30 clock cycles the token generated
in link is (ack, empty) @ 130. Transition ack is now enabled and fires at a clock value of 130
generating a token in the place send. This means that the source switches from wait to the
send mode (data transmission). Because the colourset associated with send is unit timed
rather than unit like for idle and wait the token generated in send receives a time stamp of
130+Tburst, where Tburst describes the duration of a data burst. The transition release
therefore cannot fire until the clock value is 130+Tburst. Transmission of a data burst is
modelled only by setting the source to send mode for Tburst clock cycles. After sending the
data burst (global clock at 130+Tburst) the transition release fires. Firing of this transition

Petri Net: Theory and Applications 50

resets the source state to idle and generates a token (rel, empty) in the place link, signalling
the network to release the route as it is no longer needed. The rel token enables transition
relNet that handles the actual release of the route, which is not modelled explicitly.

Fig. 8. CPN model of communication between a network and an attached data source

This example shows that the inclusion of data structures into CPN modelling increases the
modelling capabilities compared to DSPNs. Both, the inclusion of data structures and the
related use of transfer functions allow for greater functionality and smaller models that
are easier to handle. With a DSPN model for example it would not be possible to store
destination address information in a token or generate random addresses. In a DSPN it
would be necessary to store the address in a binary format in a number of places while
random generation of an address needs a sophisticated DSPN for modelling this process.
The software tool CPNtools (Ratzer, 2006), which has been used for NoC performance
analysis, is a package for modelling and simulation with CPN. It consists of a graphical user
interface for composition of CPN models and a simulator. CPN models are described in a
format derived from Standard Markup Language (SML) called CPNml. Furthermore,
CPNtools allows hierarchical definition of CPNs to facilitate reuse and simplify handling of
large models. Parts of a model that are used multiple times can be encapsulated in a
submodel. These submodels are included in higher hierarchy levels as substitute transitions
with a defined mapping of input and output places of the transition to places in the
submodel. In contrast to DSPNexpress CPNtools does not provide a means of analytical or

Petri Net Based Modelling of Communication in Systems on Chip 51

iterative solution but is centred on simulation. In principle it is possible to generate an
ordinary Petri Net with the same functionality as a CPN that can then in turn be solved
analytically. Due to the complex data structures (coloursets) and transfer functions included
in a CPN the equation system describing such an underlying Petri Net would be very large.
Model parameters can be measured by definition of monitors that collect data relating to
different parts of the CPN such as occupation of places or the number of times a specific
transition fires. The markup language used for model description also allows to use more
complex monitors, including for example conditional data collection.

3. Petri net modelling of exemplary communication scenarios
In this section the exemplary application of Petri Nets for modelling communication
scenarios is presented. The modelling possibilities span from simple bus based processor
communication scenarios to complex NoC examples.

3.1 DSPN based processor communication model
The TMS320C6416 (Texas Instruments, 2007) (see
Fig. 9) is a high performance digital signal processor (DSP) based on a VLIW-architecture.
This DSP features a couple of interfaces, an Enhanced DMA-controller (EDMA) handling
data transfers and two dedicated coprocessors (Viterbi and Turbo decoder coprocessor).
Exemplary communication scenarios on this DSP have been modelled. The C6416 TEB (Test
Evaluation Board) platform including the C6416 DSP has been utilized to measure
parameters of these modelled communication scenarios described in the following. Thus,
modelling results have been proved and verified by comparison with measured values.

Fig. 9. Basic block diagram of the TMS320C6416 DSP

In Fig. 10 a block diagram of the C6416 and different communication paths of basic
communication processes (, and) are depicted.
In the first scenario two operators compete for one critical resource, the external memory
interface (EMIF). Requests for the external memory and with it the memory interface are
handled and arbitrated by the enhanced direct memory access controller (EDMA) applying
an arbitration scheme which is based on priority queues including four different priorities.

Petri Net: Theory and Applications 52

Fig. 10. Communication paths on the C6416 of different analysis scenarios

An FFT (Fast Fourier Transformation) operator runs on the CPU and reads and stores data
from the external memory (e.g. for a 64-point FFT, 1107 read and 924 write operations are
required which can be determined by analysis of the corresponding C-code). The
corresponding communication path of this operator is illustrated on top of the simplified
schematic of the C6416. The communication path of the copy operator is also depicted in
Fig. 10. This operator utilizes the so called Quick Direct Memory Access mechanism
(QDMA) which is a part of the EDMA. It copies data from the internal to the external
memory section. Here, it requests a copy operation every CPU cycle. Since both operators
run concurrently, both aim to access the critical external memory interface resource.
Requests are queued in the assigned transfer request queue according to their priority. If the
CPU and the QDMA both simultaneously request the memory with the same priority, the
CPU request will be handled at first. In all modelled communication scenarios the priority
of request initiated by the CPU and the QDMA were both assigned to the same priority
which means that a competition situation for this waiting queue has been forced. The
maximal number of waiting requests of this queue is 16.
The DSPN depicted in Fig. 11 represents the concurring operators and the arbitration of
these two operators for the memory resource. It is separable into three subnets
(see dashed boxes: Arbitration, FFT on CPU and QDMA-copy operator). The QDMA-copy
operator works similar to the DMA-controller device depicted in Fig. 3.
The proprietary transfer request queue is modelled by the place TransferRequestQueue. The
depth of the queue is modelled by inhibiting arcs with the weight 16 (the queue capacity)
originating from this place. This means that these arcs inhibit the firing of transitions they
are connected to if the corresponding place (TransferRequestQueue) is marked with 16 tokens.
These inhibiting arcs are linked to subnets representing components of the system which
apply for the transfer request queue. The deterministic transition T6 repetitively removes a
token with a delay which corresponds to the duration of an external memory access (see
parameterization in the following).
The QDMA copy operator is modelled by a subnet which produces a memory request to the
EDMA every CPU cycle. The delay of deterministic transition T5 corresponds to the CPU
cycle time. The places belonging to this subnet are COPY_Start and COPY_Submitted. The
token of the place COPY_Start is removed after the deterministic delay assigned to

Petri Net Based Modelling of Communication in Systems on Chip 53

transition T5. The places COPY_Submitted and TransferRequestQueue are then both marked
with a token. If no FFT request initiated by the CPU is pending this process recurs.

Fig. 11. DSPN of FFT / copy operator resource conflict scenario

The subnet representing the FFT operator executed on the CPU (FFT on CPU) is depicted in
the upper left of Fig. 11. If one of the places FFT_Ready2Read (connected to stochastic
transition T1) or FFT_Ready2Write (connected to stochastic transition T2) is marked the place
FFT_RequestPending is also marked by a token. Hereby, a part of the model is activated
which represents the queuing of the CPU requests and the assignment of the associated
memory access. Places belonging to this part are: FFT_RequestPending, BackingUpQueue,
BackupOfQueue, CopyingQueue, CopyOfQueue and FFT_RequestSubmitted. The place
CopyOfQueue is a copy of the place TransferRequestQueue. That means that these places are
marked identically. This copy proceeds by firstly removing every token in
TranferRequestQueue and transferring it via an immediate transition to the place
BackUpQueue. This procedure is controlled by the place BackingUpQueue. As soon as every
token is transferred the place CopyingQueue is marked. Now every token in the BackUpQueue
place is transferred simultaneously to TransferRequestQueue as well as to CopyOfQueue. Thus,
the original marking of TransferRequestQueue is restored and also copied in the CopyOfQueue
place. Now the FFT_RequestSubmitted is marked and an additional token is added to the
TransferRequestQueue representing a further CPU request. The transitions between
FFT_RequestSubmitted and FFT_Reading as well as FFT_Writing remove the token from the
first mentioned place as soon as the CPU request is granted. The deterministic transition T7

Petri Net: Theory and Applications 54

detracts tokens from CopyOfQueue in the same way T6 does in context with
TransferRequestQueue. The external memory access requested by the CPU is granted when
the CopyOfQueue is not marked by any token. The inhibiting arcs between CopyOfQueue and
the transitions connected to FFT_Reading and FFT_Writing ensure that only then the
duration of a read and respectively a write access is modelled with the aid of deterministic
transitions T3 and T4. During memory access initiated by the CPU no further request to the
memory is processed. This is modelled by the inhibiting arcs originating in FFT_Reading and
FFT_Writing (connected to T6). Thus, no further token from the TransferRequestQueue is
removed.
The required parameters of the deterministic and stochastic transitions T1-T7 of this DSPN
model are given in Table 1.
Here, it holds:

transitionspecificaoftimedelaytheoffunctiondensityyprobabilit:
memoryexternalthefrom/towordaread/writetorequiredtime:

operationFFTperaccessesread/writememoryofnumber:
operation)copyparallelwithoutlength,FFTondependent(

operationFFTblocksingleaofduration:

tp
T
N

T

i

ext.mem,Read/Write

Read/Write

FFT

Transition Transition type Formula and parameters

T1

stochastic
(negative

exponential
distributed)

t
1 etp 11 for t > 0 with

memextWriteWritememextReadReadFFT

Read
1 TNTNT

N

.,.,

T2

stochastic
(negative

exponential
distributed)

t
2 etp 22 for t > 0 with

memextWriteWritememextReadReadFFT

Write
2 TNTNT

N

.,.,

T3 deterministic s188.03 Readmemext.Read, NTt

T4 deterministic s088.04 Writememext.Write, NTt

T5 deterministic ns2MHz50011 Pr5 ocft

T6 deterministic ns5.7MHz13311 .6 memextft

T7 deterministic ns5.7MHz13311 .7 memextft

Table 1. Transition type and transition parameters of the DSPN model of Fig. 11

The required input parameters for the DSPN model like the duration of a single block FFT
without running the concurrent copy operator (TFFT) have been determined by

Petri Net Based Modelling of Communication in Systems on Chip 55

measurements performed on a DSP board. In order to verify the assumptions e.g. for

TRead,ext.mem and TWrite,ext.mem, several experiments with a variation of external factors have

been performed. For example, the influence of the refresh frequency has been studied. By
modification of the value within the so-called EMIF-SDTIM register the refresh frequency of
the external SDRAM could be set. Through different measurements it could be verified that
the resulting influence on the read and write times is below 0.3 % and therefore negligible.
For the final measurements a refresh frequency of 86.6 kHz (what is equal to a refresh
period of 1536 memory cycles and therefore an EMIF-SDTIM register value of 1536) has
been applied.

The influence of the parameter NRead will be explained exemplarily in the following. The

probability density function p1(t) which is a function of NRead characterizes the probability

for each possible delay of the stochastic transition T1. NRead directly influences the expected

delay respectively the firing probability of T1. Here, high values for NRead correspond to a

low firing probability respectively a large expected delay and vice versa.
The modelling results of the DSPN for the duration of the FFT are depicted in Fig. 12. Here,
the calculation time of the FFT operator determined by simulation with the DSPN model has
been plotted against different FFT lengths. In order to attain a quantitative evaluation of the
computed FFT's duration, reference measurements have been made again on a DSP board.
As can be seen from Fig. 12 the model yields a good estimation of the duration for the FFT
operator. The maximum error is less than 10 % (occurring in case of an FFT length of 1024
points).

DSPN model

measured values

measured values
(without parallel
copy operator)

0

2e3

4e3

6e3

8e3

10e3

12e3

14e3

16e3

64 128 256 512 1024

du
ra

tio
n

of
 F

FT
 c

al
cu

la
tio

n
[μ

s]

length of FFT [Samples]
Fig. 12. Comparison of measured values with DSPN (FFT vs. copy operator)

Another example based on this DSP was analyzed in order to consolidate the suitability of
using DSPNs for modelling in terms of on-chip communication: Now, the Viterbi
Coprocessor (VCP) and the copy operator compete for the critical external memory interface
resource. The VCP also communicates with the internal memory via the EDMA (commu-

Petri Net: Theory and Applications 56

nication path in Fig. 10). Arbitration is handled by a queuing mechanism configured here
in that way that only a single queue is utilized. This is accomplished by assigning the same
priority to all EDMA requestors i.e. memory access is granted to the VCP and the copy
operator according to a first-come-first-serve policy.
For this experiment the VCP has been configured in the following way. The constraint

length of the Viterbi decoder is 5, the number of states is 16 and the rate is 1/2. In the VCP

configuration inspected here, the VCP communicates with the memory by getting 16 data

packages of 32x32 bit in order to perform the decoding. Both, EDMA and VCP are clocked

with a quarter of the CPU clock frequency (fCPU = 500 MHz). The results are transferred

back to the memory with a package size of 32x32 bit. Performing two parallel operations

(Viterbi decoding and copy operation), the two operators have to wait for their

corresponding memory transfers. The EDMA mechanism of the C6416 always completes

one memory block transfer before starting a new one. Hence, there is a dependency of the

Viterbi decoding duration on the EDMA frame length. This situation has been modelled and

the results have been compared to the measured values as depicted in Fig. 13.

0

50

100

150

200

250

0 1000 2000 3000 4000

Vi
te

rb
id

ec
od

in
g

tim
e

[μ
s]

EDMA-Frame length [64 Bit words]

DSPN model

measured values

measured values
(without parallel
copy operator)

DSPN model

measured values

measured values
(without parallel
copy operator)

Fig. 13. Comparison of measured values with DSPN (Viterbi vs. copy operator)

Performing only the Viterbi decoding, there is of course no dependency on the EDMA frame

length. If a copy operation is carried out, the Viterbi decoding time significantly increases. In

detail not the decoding process itself is concerned but the duration of data package transfers

between VCP and internal memory. Again the maximum error is less than 10 %.

Petri Net Based Modelling of Communication in Systems on Chip 57

3.2 DSPN based switch fabric communication model
The second DSPN modelling example deals with communication via a switch fabric based

structure. The modelled scenario is a resource sharing conflict. This scenario has been

evaluated on an APEX based FPGA development board (Altera, 2007).

A multi processor network has been implemented on this development board by

instantiating Nios soft core processors on the corresponding FPGA. The synthesizable Nios

embedded processor is a general-purpose load/store RISC CPU that can be combined with

a number of peripherals, custom instructions, and hardware acceleration units to create

custom system-on-a-programmable-chip solutions. The processor can be configured to

provide either 16 or 32 bit wide registers and data paths to match given application

requirements. Both data width versions use 16 bit wide instruction words. Version 3.2 of the

Nios core typically features about 1100 logic elements (LEs) in 16 bit mode and up to 1700

LEs in 32 bit mode including hardware accelerators like hardware multipliers.

More detailed descriptions can be found in (Altera, 2001). A processor network consisting of

a general communication structure that interfaces various peripherals and devices to

various Nios cores can be constructed. The Avalon (Avalon, 2007) communication structure

is used to connect devices to the Nios cores. Avalon is a dynamic sizing communication

structure based on a switch fabric that allows devices with different data widths to be

connected with a minimal amount of interfacing logic. The corresponding interfaces of the

Avalon communication structure are based on a proprietary specification provided by

Altera (Avalon, 2007). In order to realize a processor network on this platform the so-called

SOPC (system on a programmable chip) Builder (SOPC, 2007) has been applied. SOPC is a

tool for composing heterogeneous architectures including the communication structure out

of library components such as CPUs, memory interfaces, peripherals and user-defined

blocks of logic. The SOPC Builder generates a single system module that instantiates a list of

user-specified components and interfaces incl. an automatically generated interconnect

logic. It allows to modify the design components, to add custom instructions and

peripherals to the Nios embedded processor and to configure the connection network.

The analyzed system is composed of two Nios soft cores which compete for access to an

external shared memory (SRAM) interface. Each core is also connected to a private memory

region containing the program code and to a serial interface which is used to ensure

communication with the host PC. The proprietary communication structure used to

interconnect all components of a Nios based system is called Avalon which is based on a

flexible crossbar architecture. The block diagram of this resource sharing experiment is

depicted in Fig. 14. Whenever multiple masters can access a slave resource, SOPC Builder

automatically inserts the required arbitration logic. In each cycle when contention for a

particular slave occurs, access is granted to one of the competing masters according to a

Round Robin arbitration scheme. For each slave, a share is assigned to all competing

masters. This share represents the fraction of contention cycles in which access is granted to

this corresponding master. Masters incur no arbitration delay for uncontested or acquired

cycles. Any masters that were denied access to the slave automatically retry during the next

cycle, possibly leading to subsequent contention cycles.

Petri Net: Theory and Applications 58

Fig. 14. Block diagram of the resource sharing experiment using the Avalon communication
structure

In the modelled scenario the common slave resource for which contention occurs is a shared
external memory unit (shaded in gray in Fig. 14) containing data to be processed by the
CPUs. Within the scope of this fundamental resource sharing scenario several experiments
with different parameter setups have been performed to prove the validity of the DSPN
modelling approach. Adjustable parameters include:

the priority shares assigned to each processor,

the ratio of write and read accesses,

the mean delay between memory accesses.
These parameters have been used to model typical communication requirements of basic
operators like digital filters or block read and write operations running on these processor
cores. In addition, an experiment simulating a more generic, stochastic load pattern, with
exponentially distributed times between two attempts of a processor to access the memory
has been performed. Here, each memory access is randomly chosen to be either a read or a
write operation according to user-defined probabilities. The distinction between load and
store operations is important here because the memory interface can only sustain one write
access every two cycles. Whereas no such limitation exists for read accesses. The various
load profiles were implemented in C, compiled on the host PC and the resulting object code
has been transferred to the Nios cores via the serial interface for execution. In the case of the
generic load scenario, the random values for the stochastic load patterns were generated in a
MATLAB routine. The determined parameters have been used to generate C code sequences
corresponding to this load profile. The time between two attempts of a processor to access
the memory has been realized by inserting explicit NOPs (No Operation instruction) into the
code via inline assembly instructions. Performance measurements for all scenarios have
been achieved by using a custom cycle-counter instruction added to the instruction set of the
Nios cores. The insertion of NOPs does not lead to an accuracy loss related to pipeline stalls,
cache effects or other unintended effects. The discussed example is constructed in such a
way that these effects do not occur. In a first step, a basic DSPN model has been
implemented (see Fig. 15) in less than two hours. Implementation times of the DSPN models
are related to the effort a trained student (non-expert) has to spend to realize the
corresponding model. The training time for a student to become acquainted with DSPN
modelling lasts a couple of days. Distinction between read and write accesses was explicitly

Petri Net Based Modelling of Communication in Systems on Chip 59

neglected to achieve a minimum modelling complexity. The DSPN consists of four sub-
structures:

two parts represent the load generated by the Nios cores (CPU #1 and #2)

a basic cycle process subnet providing a clock signal (Clock-Generation)

the more complex arbitration subnet
Altogether, this basic model includes 19 places and 20 transitions. The immediate transitions
T1, T2 and T3 and the associated places P1, P2 and P3 (see Fig. 15) are an essential part of the
Round Robin arbitration mechanism implemented in this DSPN. The marked place P2
denotes that the memory is ready and memory access is possible. P1 and P3 belong to the
CPU load processes and indicate that the corresponding CPU (#1, #2) tries to access the
memory. If P1 and P2 or P3 and P2 are tagged the transition T1 or accordingly transition T3
will fire and remove the tokens from the connected places (P1, P2 or P2, P3). CPU #1 or
CPU #2 has been assigned the memory access in this cycle. A collision occurs if P1, P2 and
P3 are tagged with a token. Both CPUs try to access the memory in the same cycle (P1 and
P3 marked). Furthermore, the memory is ready to be accessed (P2 marked). A higher
priority has been assigned to transition T2 during the design process. This means that if the
conditions for all places are equal the transition with the highest priority will fire first.
Therefore, T2 will fire and remove the tokens from the places. Thus, the transitions T1, T2
and T3 and the places P1, P2 and P3 handle the occurrence of a collision.

Fig. 15. Basic DSPN for Avalon-Nios example

The modelling results discussed in the following have been acquired by application of the

iterative evaluation method. Though the modelling results applying this basic DSPN model

are quite accurate (relative error less than 10 % compared to the physically measured values,

see Fig. 18), it is possible to increase the accuracy even more by extending the modelling

Petri Net: Theory and Applications 60

effort for the arbitration subnet. For example it is possible to design a DSPN model of the

arbitration subnet which properly reflects the differences between read and write cycles.

Thus, the arbitration of write and read accesses has been modelled in different processes

resulting in different DSPN subnets. This results in a second and enhanced DSPN model

depicted in Fig. 16. The implementation of this enhanced model has taken about three times

the effort in terms of implementation time (approximately five hours) than the basic model

described before.

Fig. 16. Enhanced DSPN for Avalon-Nios example

The DSPN model now consists of 48 transitions and 45 places. Compared to the basic model
the maximum error has been further reduced (see Fig. 17 and Fig. 18). The enhanced model
also properly captures border cases caused e. g. by block read and write operations.
The throughput measured for a code sequence containing 200 memory access instructions
has been compared to the results of the basic and enhanced DSPN model. Fig. 18 shows the
relative error for the throughput (results of the DSPN model compared to measured results
of an FPGA based testbed) which is achieved by varying the mean number of computation
cycles between two attempts of a processor to access the memory. On average the relative
error of calculated memory throughput is reduced by 4-6 % with the transition from the
basic to the enhanced model. Using the enhanced DSPN model the maximum estimation
error is below 6 %. As mentioned before, the evaluation of DSPNs can be performed by
different methods (see Fig. 19). The effort in terms of computation time has been compared
for a couple of experiments. Generally, the time consumed when applying the simulation

Petri Net Based Modelling of Communication in Systems on Chip 61

method is about two orders of magnitude longer than the time consumed by the analysis
methods. The simulation parameters have been chosen in such a way that the simulation
results match the results of the analytic approaches. DSPNexpress provides an iterative
method (Picard's iteration method) and a direct solution method (general minimal residual
method). Fig. 19 illustrates a comparison of the required computational time for the analysis
and the simulation of the introduced basic and enhanced DSPN models. For the example of
the enhanced model the computation time of the DSPN analysis method only amounts to
0.3 sec. and the DSPN simulation time (107 memory accesses) amounts to 20 sec. on a Linux
based PC (2.4 GHz, 1 GByte of RAM). The difference between the iterative and direct
analysis method is hardly noticeable.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 0,2 0,4 0,6 0,8 1
mean computational time between two memory accesses

[clock cycles]

ef
fe

ct
iv

e
m

em
or

y
th

ro
ug

hp
ut

[a
cc

es
se

s
/ c

lo
ck

 c
yc

le
]

basic model

enhanced model

measured

0.350.35

0.3

0.25

0.2

0.15

0.1

0.05

0.2 0.4 0.6 0.8

Fig. 17. Effective memory throughput comparison

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0,00 0,20 0,40 0,60 0,80 1,00
mean computational time between two memory accesses

[clock cycle]

re
la

tiv
e

er
ro

r o
f c

al
cu

la
te

d
m

em
or

y
th

ro
ug

hp
ut

basic model

enhanced model

ca. 4-6% improvement

0 0.2 0.4 0.6 0.8 1

Fig. 18. Relative error of memory throughput for basic and enhanced DSPN model

Petri Net: Theory and Applications 62

0,1

1

10

100

iterative direct simulation
evaluation method

re
qu

ire
d

co
m

pu
ta

tio
na

l t
im

e
[s

ec
]

basic model

enhanced model

approx. 2 orders
of magnitude

0.1

0.21
0.28 0.29

0.21

19.82 19.39

Fig. 19. Required computational effort for the different evaluation methods

3.3 CPN based NoC model
The NoC model presented in this section consists of 25 network nodes arranged in a 5x5

square mesh as depicted in Fig 20. Each network node consists of a routing switch and a

client. Clients are any data sources connected to the NoC, for example embedded

processors. They are identified by a unique address containing their x and y coordinates.

The routing switches and the links connecting them form the actual communication

infrastructure facilitating communication between clients. The switching scheme chosen in

the model is line switching. Hence, communication between any two clients can be divided

into three stages:

establishing of a route from originating client (source) to the receiving one (destination),

data transmission and

releasing the route.

The communication protocol is described in more detail below. The implemented routing

algorithm is xy-routing. This is a minimal-path routing algorithm trying first to route

horizontally until the destination column is reached (matching of x-coordinates) and then

completes the route vertically (matching of y-coordinates). The arbitration scheme used is

first-come-first-serve.

For analyzing different traffic experiments the clients are configurable by

a list of possible destinations for communication attempts,

the duration of data bursts (measured in clock cycles) to be transmitted (Lburst) and

the average delay between the end of a transmission and the request for routing the

next one (Ldelay).

Petri Net Based Modelling of Communication in Systems on Chip 63

Fig. 20. NoC setup for experiments

The routing switches are not configurable. Performance is measured by latency and source
load. Latency in this case corresponds with the time needed for establishing a route and is
chosen as a performance measure because it is critical for applications that need fast data
transmission, for example real time applications. For applications generating a lot of data,
throughput is important. Therefore, the source load is selected as another performance
characteristic. The source load is defined as the relative time a data source is transmitting;
the requested source load is defined as

source_loadreq =
LdelayLburst

Lburst
 , (1)

 while the achieved source load takes into account the latency (Lat) caused by establishing a
route:

LatLdelayLburst

Lburst
loadsource ach_ . (2)

Since the requested load does not include latency which always occurs in a network, the
achieved source load is always smaller than the requested one.
The essential parts of the model are briefly explained in the following. The NoC model
consists of two main submodels, the routing switch model and the client model. Each
network node consists of a routing switch and an attached client. Messages sent through the
net are represented by tokens of the colourset word (Fig. 21). Each message consists of a
header (colourset control) defining how it is to be processed and the content that is used
according to the header specification. Possible headers are req (request route), rel (release
route), relb (acknowledge release route), kill (routing failure) and ack (acknowledge route),
content can be either a destination address (de) or empty.

Petri Net: Theory and Applications 64

Fig. 21. Essential coloursets for the CPN based NoC model

Since in this example line switching is used, communication between two clients is made up
of several stages as stated above. When a data source tries to send data, a req message is
generated that is then routed through the network according to the routing algorithm. The
content of a req message contains the destination address of the route. In each network node
the req message is processed by the routing switch which reserves the appropriate
connection of two of its ports for the requested route. This is done by comparing the local
and destination addresses and then adding a member to the list of current routes stored in a
token of the colourset routelist. Upon arrival of the req signal at the destination the client
generates an ack message to travel back along the route. Reception of an ack at the source
triggers data transmission. Data is not represented by any tokens because network
performance does not depend on the actual data sent across the NoC but on the time the
route is occupied. After completing data transmission the source client sends a rel signal
which is returned by the destination as relb. Processing of a relb message initiates release of
the partial routes stored in the routing switches. When routing fails because an output port
in any node cannot be reserved since it is already occupied by another route, a kill signal is
generated and sent backwards along the route. If employing a static routing algorithm this
signal is handled like relb. If an adaptive algorithm is used processing of a kill message can
lead to the attempt to select another route. When the source client receives a kill signal it will
issue a new routing request (req) after a configurable time.
The client model is comprised of two submodels, source and sink, of which only the source
model will be discussed here in detail as the functionality of the sink model is elementary.
As the data content is not important for network performance this basic model is sufficient
to model a wide range of possible clients that can be attached to a NoC.
The source submodel shown in Fig 22. includes transitions for handling incoming and
outgoing messages. The place out is the interface of the data source to the network, similar to
the place link in the introductory example (
Fig. 8). The current state of the source is stored in the status place. The source sequentially
passes through the states idle, wait and send. These states are defined as:

idle: There is currently no data to be sent.

wait: A route was requested, the source is waiting for it to be established.

send: A route was established, the source is transmitting data.
Switching from idle to wait occurs when the transition request fires. This transition generates
tokens in the places wait_for_route and out. The token in wait_for_route is later used to
measure latency, the token (req, addr) in the place out signals the network, that a route to the
client with address addr is requested. The timestamp of the token generated in out is the
current global clock value increased by a random number between one and Lpause due to
the processing delay associated with the request transition. The network then replies by
either signalling successful routing (ack) or an aborted routing attempt (kill) by generating a
token in the place out. If a kill token is generated the transition killreq becomes enabled. The
timestamp is increased by Tkill to ensure that there is a delay before the new attempt. If an
ack token is in the place out, the transition ackdata fires. The source state is thereby set to send.

Petri Net Based Modelling of Communication in Systems on Chip 65

Firing of ackdata removes the token from wait_for_route – the route was successfully
established – and generates a token into the place sending. This token receives a time stamp
according to the configured burst length (Tburst). The source stays in the send state for Lburst
clock cycles before the transition release fires and sets the status back to idle. The token (rel,
emp) generated in the place out by this transition signals the network to release the route
originating from this source. Successful release of the route is then acknowledged by
generation of a relb token in the place out. This token enables the transition release_back by
which it is then removed.

Fig. 22. CPN submodel of a data source and required data structure

The place config is used to configure the source. Variables that can be configured are:

adlist: A list of destination addresses that the source can request routes to. If an address
is contained in this list multiple times the probability that a route to the corresponding
client is requested increases accordingly.

Lburst: The length of a data burst, measured in clock cycles.

Lpause: The maximum delay between the end of a transmission and the subsequent
routing request.

Petri Net: Theory and Applications 66

Performance measures obtained in this submodel are the number of routing requests sent,
source load and latency. The number of routing requests sent is measured by counting the
times the transition request fires. Source load is measured by the average occupation of the
place sending. Latency in this case corresponds to the time used for route establishment. It is
measured by computing the total time spent for route establishment (product of the
inspected time period and the average occupation of the place wait_for_route). This value is
then divided by the number of routing requests sent.
The sink submodel is comprised of transitions to respond to incoming req and rel messages
with the appropriate signals of its own, these being ack and relb, without gaining any
performance measures.
The routing switch model (Fig. 23) consists of four submodels, req, forward, ack and kill as
well as the places addr, routes and the interface places inWest to inClient and outWest to
outClient. The addr place contains the address of the node in the network while the current
switching table containing the connections of input and output ports is stored in routes. The
places inWest to inSouth and outWest to outSouth are interfaces to neighbouring routing
switches, the places inClient and outClient are interfaces to the attached client (inClient is
mapped to the place out of the source model shown in Fig. 22). The req submodel itself
contains two further submodels, router and arbiter, and is used to process routing requests.
The forward and ack submodels transmit tokens according to the switching table the former
processing rel the latter ack messages. The kill submodel resembles the ack model but also
includes deletion of routes from the switching table for handling relb and kill signals. The
router and arbiter submodels contained in the req model are used to separate the actual
routing from the arbitration.

Fig. 23. CPN model of a routing switch for mesh networks

The places inWest and interest in the router model depicted in Fig. 24 are interfaces, inW is
mapped to the equivalent place in the routing switch model while interW is the connection
to the arbiter model. The section of the router shown in Fig. 24 is the part responsible for the

Petri Net Based Modelling of Communication in Systems on Chip 67

western port of the routing switch, the sections for the other ports resemble this section and
only differ in the names of places and transitions. The place addr contains the address of the
network node which the routing switch belongs to. In the router the destination address
contained in an incoming req token (x1, y1) is compared to the address of the current
network node (x0, y0) before generating a request to the arbiter according to the routing
algorithm. In case of the router shown in Fig. 24 this is a static xy-routing scheme. The
request generated by the router is used by the arbiter to make the appropriate entry in the
switching table (routes), resource conflicts are resolved in a first come first serve manner. If
an output port is occupied, a kill signal is generated by the arbiter. The single performance
characteristic gained in the routing switch is its load, which is monitored by occupation of
the place routes.

Fig. 24. CPN submodels req and router

Petri Net: Theory and Applications 68

In the context of network performance analysis three different experiments have been
conducted with the model. The results have afterwards been compared to those obtained with
an FPGA based NoC emulator (Neuenhahn, 2006). The experiments are defined as follows:

Experiment 1: Each client is configured to send data to all other clients with equal
probability. Requested source load is the same at all clients and set to values from 10 %
to 80 % with steps of 10 %.

Experiment 2: Same as experiment 1, but static xy-routing is exchanged for an adaptive
variant. This variant tries to route vertically, if a resource conflict prohibits horizontal
routing. Source load is set to the same values as in Experiment 1.

Experiment 3: All clients are configured to send data to the nodes (1, 0), (3, 0) and (2, 2)
with a probability of 14 %. Here, a testcase is modelled, where some I/O interfaces are
accessed more often than other clients. Probability to send to another node is 3 %. The
requested source load is 50 % at all clients.

The size of the complete model is 725 places and 1050 transitions for experiments 1 and 3
and 800 places and 1075 transitions in case of experiment 2 because the adaptive router is
more complex than the static one. Due to the complexity contained in coloursets and
transfer functions these numbers are not easily comparable to those of DSPN models.
Traffic is generated in form of data burst with a duration of Lburst = 100 clock cycles, source
load is set by adjusting the delay between transmissions (Lpause).
Source load in the first two experiments is set to values from 10 % to 80 % with steps of
10 %. All simulations are stopped and repeated after a total of 10,000 transmissions; all
results presented below are averaged over 50 repetitions. Model components are the same
for all experiments with exception of the adaptive router for the second one.
All simulations were conducted on a computer with a dual Intel Pentium processor running
at 3.0 GHz, 1 GB RAM and Microsoft Windows XP as operating system.
Fig. 25 shows a comparison between the first two experimental setups (experiment 1,
experiment 2) with static and adaptive versions of the xy-routing algorithm. It is obvious
that the achieved source load is close to the requested one for small loads as there are only
few resource conflicts. With higher load and thus shorter pauses between individual
transmissions the number of conflicts increases. This leads to a decline in network
performance. The use of adaptive xy-routing slightly increases the achieved load because

Fig. 25. Average achieved load using static and adaptive xy-routing (5x5 mesh)

Petri Net Based Modelling of Communication in Systems on Chip 69

some resource conflicts can be resolved without releasing a partial route and reattempting
from its source. An adaptive variant that would also include rerouting attempts if a network
node receives a kill signal would further increase performance at the cost of more complex
routing switches.
By analyzing the load of the routing switches it is furthermore possible to locate hotspots
that are generated by certain traffic patterns. An example of such a pattern is the one used in
experiment 3. The results obtained from simulating experiment 1 and experiment 3 are
shown in Fig. 26. In experiment 1 the load distribution among the routing switch shows a
flat profile with its maximum in the middle of the NoC (address 2, 2). This hotspot is caused
by the fact, that the majority of possible routes contains the central node because the NoC is
symmetric to its centre. As all possible pairs of source and destination of routes are equally
probable the load of the routing switches is determined only by the number of possible
routes including the corresponding node. The modification of the traffic pattern in
experiment 3 results in the forming of three distinct hotspots easily identified as peaks in the
shown load diagram. Besides high switch loads at those network nodes that are accessed
with a higher probability (addresses 2, 2; 1, 0; 3, 0) hotspots also form at the addresses (1, 1)
and (3, 1) because most routes ending in (1, 0) and (3, 0) run through these nodes.

Fig. 26. Switch load for uniform (a, experiment 1) and irregular traffic distribution leading to
hotspots (b, experiment 3)

A comparison of these results with an FPGA based emulator (Neuenhahn, 2006) shows that
the error of the results obtained with CPN modelling is approximately 2 % for both
performance measures. As an example, Fig. 27 shows the relative deviation of the CPN
modelling results from those of the emulation for experiment 1. The results shown in Fig. 27
are obtained with a requested load of 20 %. For any single load setting the error is below 5 %
within less than five minutes of simulation. This corresponds to approximately eight
simulation runs that are needed to gain acceptably accurate result. Complete syntax checking
takes approximately 15 minutes and is only needed before the first simulation run. Since
syntax checking in CPNtools is incremental this time is reduced to one minute if only the load
setting is changed between simulations.
Since the intended use for CPN modelling, like it is presented here, is analysis of NoC
performance in an early stage of the design flow, the modelling effort is important to evaluate
the usefulness of this method. This effort can be divided into two separate parts, the initial
modelling of the NoC components and the combination of these component models to form a

Petri Net: Theory and Applications 70

complete NoC model. An overview of the time needs for CPN based modelling of a NoC is
given in Table 2. Like the times needed for DSPN modelling these are related to the effort an
experienced student has to spend. The time needed for modelling of the components varies
from five minutes needed for the data sink model which only contains a single place and two
transitions to six hours for more complex components like the source model or the router
model.

Fig. 27. Error of load and latency compared to emulation (requested load 20 %, 5x5 mesh)

Combining these components to the NoC model used in the experiments described in this
section is done in approximately one hour. Exchanging single components, for example the
router model when switching from experiment 1 to experiment 2, takes one minute but
initiates a new syntax check that lasts for five minutes. Altering parameters such as the
requested load setting is a matter of seconds but also requires a new partial syntax check of
approximately two minutes.

modelling step effort
modelling components 5 to 300 minutes

assembly of NoC model 60 minutes

complete syntax check 15 minutes

partial syntax check < 5 minutes

simulation 5 minutes
Table 2. Time needs for CPN based modelling of a NoC

The results obtained and the precision achieved show that CPN based modelling of NoCs is an
adequate approach for use in design space exploration of communication architectures. After
initial modelling of NoC components only little time is needed to construct and modify a NoC
model. The error of the results obtained by simulation of this model is small after a reasonably
short simulation time. Furthermore, due to the modelling possibilities of CPNs complex
components can be modelled with only a few places and transitions thus enabling the user to
handle models of large NoCs with relative ease. These properties make CPN based modelling
an attractive tool for pruning the design space by early elimination of NoC variants that do not
provide the required performance with acceptable costs.

Petri Net Based Modelling of Communication in Systems on Chip 71

4. Conclusion and outlook
It is a key task of modern System-on-Chip (SoC) and Network-on-Chip (NoC) design to
efficiently explore this design space regarding aspects like performance, flexibility and power
consumption presumably in an early stage of the design flow in order to reduce design time
and design costs.
In this chapter several examples for modelling of on-chip communication using Petri Net
based modelling techniques have been presented. These examples include modelling of
internal processor communication and modelling of inter-processor communication using a
crossbar switch fabric. For these examples deterministic and stochastic Petri Nets have been
applied as modelling technique. More complex NoC communication has been modelled
applying Coloured Petri Nets. The results obtained with all of these models were compared to
those calculated on an FPGA based emulator. In all presented experiments the performance
measures derived using these models showed a good precision compared to the results
acquired using the FPGA based emulator. Furthermore, the Petri Net based results could be
derived in attractively short modelling times with only moderate effort.
Therefore, Petri Net based modelling of on-chip communication appears to be a very attractive
approach to explore the design space of communication architectures in an early stage of the
design process. DSPN based and CPN based modelling both provide specific advantages.
DSPN models are suited for systems with moderate complexity such as communication
systems with a small number of clients or bus based communication. The ease of modelling
combined with the possibility of an analytical solution of the equations underlying the DSPN
model provides a way to quickly obtain results. For more complex systems including a lot of
data and complex functionalities, for example the addressing scheme and the routing
algorithm in a NoC, CPN models are more adequate. DSPN based modelling of such systems
is not as efficient since DSPNs do not provide a means of modelling data structures. As CPNs
include data structures and allow to model complex behaviour in form of coloursets and
transfer functions, CPN based modelling is well suited to analyze complex on-chip
communication systems.
Current topics in the field of NoC communication modelling to be addressed with Petri Net
based methods are locating hotspots, analyzing quality-of-service aspects (data integrity,
guaranteed service, etc.) and complex adaptive routing algorithms (incl. the checking of
absence of deadlocks).

5. References
Ajmone Marslan, M.; Chiola, G. (1987). On Petri Nets with Deterministic and Exponentially

Distributed Firing Times, in G. Rozenberg (Ed.) Advances in Petri Nets 1986, Lecture
Notes in Computer Science, Vol. 266, Springer, pp. 146-161

Altera (2001). Nios Embedded Processor Software Development Reference Manual.
Altera (2007). http://www.altera.com
Avalon (2007). http://www.altera.com/literature/manual/mnl_avalon_spec.pdf Bus

specification manual.
Benini, L. & de Micheli, G. (2002). Networks on Chips: A New SoC Paradigm, Computer,

Vol. 35, Iss. 1, pp. 70-78, January 2002, ISSN 0018-9162
Bjerregaard, T. & Mahadevan, S. (2006). A Survey of Research and Practices of Network-on-

Chip, ACM Computing Surveys, Vol. 38, article 1, March 2006, ISSN 0360-0300
Blume, H.; Feldkämper, H.; Noll, T. G. (2005). Model-based Exploration of the Design Space

for Heterogeneous Systems-on-Chip, Journal of VLSI-Signal Processing, Vol. 40, Nr.
1, May 2005, pp. 19-34

Petri Net: Theory and Applications 72

Blume, H.; von Sydow, T.; Becker, D. Noll, T. G. (2007). Application of Deterministic and
Stochastic Petri Nets for Performance Modelling of NoC Architectures, Journal of
Systems Architecture, Vol. 53, Issue 8, 2007, pp. 466-476

Blume, H.; von Sydow, T.; Noll, T. G. (2006). A Case Study for the Application of
Deterministic and Stochastic Petri Nets in the SoC Communication Domain, Journal
of VLSI Signal Processing 2006, Vol. 43, Nr. 2-3, June 2006, pp. 223-233

Ciardo, G.; Cherkasova, L.; Kotov, V.; Rokicki, T. (1995). Modelling a scalable high-speed
interconnect with stochastic Petri Nets, in: Proceedings of the Sixth International
Workshop on Petri Nets and Performance Models PNPM’95 October 03–06, Durham,
North Carolina, USA, pp. 83–94.

DSPNexpress (2003). http://www.dspnexpress.de
Duato, J.; Yalamanchili, S. & Ni, L. (2003). Interconnection Networks – An Engineering

Approach, Morgan Kaufmann, ISBN 0818678003 , San Francisco
Jensen, K. (1980). Net Models in System Development, PhD thesis, Aarhus University
Kleinrock, L. (1975). Queueing Systems – Vol. 1: Theory, John Wiley and sons
Kogel, T.; Doerper, M. et al. (2003). A modular simulation framework for architectural

exploration of On-Chip interconnection networks, CODES + ISSS, October 2003.
Lahiri, K.; Raghunathan, A.; Dey, S. (2001). System-level performance analysis for designing

On-Chip communication architectures, IEEE Transactions on CAD of Integrated
Circuits and Systems, June 2001.

Lindemann, C. (1998). Performance Modelling with Deterministic and Stochastic Petri Nets, John
Wiley and sons, ISBN 0471976466, Berlin

Madsen, J.; Mahadevan, S.; Virk, K. (2004). Network-centric systemlevel model for
multiprocessor SoC simulation, in: J. Nurmi et al. (Eds.), Interconnect Centric Design
for Advanced SoC and NoC, Kluwer Academic Publishers

Mickle, M. H. (1998). Transient and steady-state performance modelling of parallel
processors, Applied Mathematical Modelling 22 (7) (1998) 533–543

Moore, G. (1965). Cramming more components onto integrated circuits, Electronics,
Volume 38, Number 8, April 19, 1965

Neuenhahn, M.; Blume, H.; Noll, T. G. (2006). Quantitative analysis of network topologies
for NoC-architectures on an FPGA-based emulator, .Proceedings of the URSI
Advances in Radio Science - Kleinheubacher Berichte, Miltenberg, September 2006

Petri Nets World (2007). http://www.informatik.uni-hamburg.de/TGI/PetriNets/
Plosila, J.; Seceleanu, T.; Sere, K. (2004). Formal communication modelling and refinement,

in: J. Nurmi, H. Tenhunen, J. Isoaho, A. Jantsch (Eds.), Interconnect Centric Design for
Advanced SoC and NoC, Kluwer Academic Publishers

Ratzer, A. V.; Wells, L.; Lassen, H. M.; Laursen, M.; Qvortrup, J. F.; Stissing, M. S.;
Westergaard, M.; Christensen, S. & Jensen, K. (2006). CPN Tools for Editing,
Simulating and Analysing Coloured Petri Nets, Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets (ICATPN) 2003, pp. 450-462, ISSN
0302-9743, Eindhoven, June 2003, Springer Verlag, Berlin

Sonntag, S.; Gries, M.; Sauer, C. (2005). SystemQ: A Queuing-Based Approach to
Architecture Performance Evaluation with SystemC, Proceedings of the SAMOS V
Workshop, Samos, Greece, July 18-20 2005, LNCS 3553, ISBN 354026969, pp. 434-444

SOPC (2007). http://www.altera.com/products/software/products/sopc/sop-index.html
Texas Instruments (2007). http://www.ti.com
Zaitsev, D. A. (2004). An Evaluation of Network Response Time using a Coloured Petri Net

Model of Switched LAN In: K. Jensen (ed.): Proceedings of the Fifth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, October 2004,
Department of Computer Science, University of Aarhus, PB-570, 157-166.

4

An Inter-Working Petri Net Model between
SIMPLE and IMPS for XDM Service

Jianxin Liao1, Yuting Zhang1, 2 and Xiaomin Zhu1

1State Key Lab of Networking and Switching Technology, Beijing University of Posts and
Telecommunications

2China Mobile Research Institute
China

1. Introduction
The XDM (XML Document Management) (Open Mobile Alliance, 2006a ; Open Mobile
Alliance, 2006c; Open Mobile Alliance, 2006h ; Open Mobile Alliance, 2006l) service is more
and more attractive in the age of regarding the user as the communication center. XDM
which was ever named GM (Group Management) comes out with the Instant Messaging
(IM) service, and manages the personal information, such as contact list, which is the
necessary information that IM service needs (Rosenberg, 2005). With the development of
XDM service, the information which the XDM server stores will be richer and richer, for
example, the personal profile and group information are added to the XDM service. Then
the XDM service turns into one of the supporting services from a simple service which just
provides the contact for the user. As one of the supporting services, the XDM provides the
personal information for the other services which need them, for example, providing the
user’s personal information for the IM service or Presence service. At present, there are
many different appellations of XDM in different standards. Many research institutes and
companies have presented their implementations for the XDM service, but the
implementations are different and incompatible, so it is hard to inter-work between them.
However the inter-working for the services based on XDM service is desired intensively,
such as IM, Presence service. There are three main international standards for the XDM
service and its relative services: SIMPLE (Session Initiation Protocol for Instant Message and
Presence Leveraging Extensions) {1}, IMPS (Instant Messaging and Presence Services) {2}
and XMPP (Extensible Messaging and Presence Protocol) (P. Saint-Andre, 2004a ; P. Saint-
Andre, 2004b). IMPS has been deployed in many systems for its better maturity, but SIMPLE
is more suitable for being deployed in IMS (Internet Protocol Multimedia Subsystem)
network, so inter-working between them is becoming a research hotspot in the value-added
service field, but recently the research on the topic is just in the initial stage. OMA (Open
Mobile Alliance) just proposed a simple Architectural Model (Open Mobile Alliance, 2005a;
Open Mobile Alliance, 2005b) for the inter-working between SIMPLE and IMPS, but the
architecture can not perform the inter-working for the XDM service. Based on the research
on the difference between SIMPLE and IMPS and the OMA’s inter-working Architectural
Model, we (with the State Key Lab of Networking and Switching Technology of Beijing
University of Posts and Telecommunications, and Research Institute of China Mobile) have
proposed a bi-directional protocol mapping for use to enable the exchange of XDM

Petri Net: Theory and Applications 74

information and an Enhanced Architectural Model to perform the inter-working functions
which can not be completed by the current OMA Architectural Model. On the other hand,
there is no any other research institute studying the XDM inter-working with the Protocol
Conversion Methodology (Green, 1988; Zhu, 2006b; Zhu, 2007). In this chapter, according to
the method proposed by the Protocol Conversion Methodology, the XDM inter-working
model based on Petri Nets {3} is set up to verify the mapping and the Enhanced
Architectural Model by a new coupling criteria of Petri net model. After the strict
mathematical analysis and verification for the model, which prove that the model meets all
properties of a correct Petri net model, the mapping and the Enhanced Architectural Model
are proved to be reasonable and viable, and the probable exceptions in the inter-working
can be found and excluded. During the modeling experiences of the inter-working with
Petri Nets, some methods for solving the conflict of a Petri Net are proposed, which enriches
the application of Petri Nets for the protocol conversion. As the concept of XDM is almost
same among different standards, the inter-working Petri net model can provide an
applicable reference for the inter-working between other standards.

2. SIMPLE and IMPS
2.1 SIMPLE
IETF (the Internet Engineering Task Force) first set up the basic models (Day, 2000a; Day
2000b) for Presence and Instant Messaging, then a working group called SIMPLE was
founded to focus on the application of the SIP (Session Initiation Protocol) (Rosenberg, 2002)
to the suite of services collectively known as Instant Messaging and Presence (IMP) {1}.
3GPP and 3GPP2 adopt SIMPLE as their basic standard and specify the practical
implementations of SIMPE specifications for the Presence, Group and IM service in IMS and
MMD (MultiMedia Domain) respectively (3GPP, 2002-2005f; 3GPP2, 2002-2006). With the
expanding of the influence of SIMPLE standards, OMA also adopts it as its basic standard
and has set up workgroups to create application level specifications for this standard.
SIMPLE was divided into three services in OMA: Presence service, XDM (XML Document
Management) service and IM service, and these three services would be in progress
independently.

2.2 IMPS
IMPS, which is also based on the basic models set up by IETF, was designed for exchanging
instant messages and Presence Information not only between mobile devices but also
between mobile and fixed devices, which includes four primary features {2} (Open Mobile
Alliance , 2007a-2007m) : Presence, Instant Messaging, Groups and Shared Content.

2.3 XDM service
In SIMPLE, XDM service provides the Personal Information (Shared Profile), Shared List
and Shared Group for the users and the other services (Open Mobile Alliance, 2006a-2006l).
There is almost the same information in IMPS. The Personal Information belongs to the
common features in IMPS, which includes two parts: Private Profile and Public Profile. The
Contact List (i.e. Shared List) belongs to the Presence features in IMPS. Group is a set of
users, which is the same feature in SIMPLE and IMPS, and the participant can see the other
participants in the same Group. The Group participant can have a group conversation
(Instant Message conversation or voice conversation) through the Group information.
Besides the conversation between the participants, the communication request initiated by

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 75

one of the participants can be received by the other participants. Why there is a “Shared” in
front of the “List” and “Group” in SIMPLE is just because the List and Group in SIMPLE can
be referenced by the other service, but the List and Group in IMPS can’t, which are only
used for Instant Messaging.
As there is almost the same information within SIMPLE and IMPS, it is possible for them to
inter-work, a bi-directional protocol mapping for use to enable the exchange of XDM
information is proposed to perform the inter-working functions (Zhang, 2007) (also see the
mapping described in general in Section 3). Here we also use the XDM service to describe
the corresponding service in IMPS.

2.4 Inter-working between SIMPLE and IMPS
At present, only OMA had made some contributions which just focused on a simple
Architectural Model on the inter-working subject (Open Mobile Alliance, 2005a; Open
Mobile Alliance, 2005b). State Key Laboratory of Networking and Switching Technology of
Beijing University of Posts and Telecommunications and Research Institute of China Mobile
have paid much attention to the inter-working issues and spent a lot of care on researching
them. On the study of OMA’s inter-working Architectural Model and the gaps between
SIMPLE and IMPS standards, we found the OMA’s Architectural Model can only realize the
inter-working of Presence and Instant Messaging, and the inter-working for the other
important service named XDM service can not be completed by the current OMA
Architectural Model. Because the XDM service is going to be more and more important as it
has become one of the basic supporting service, if the inter-working for XDM service has
been realized, the XDM service and the services supported by XDM service would be more
attractive to the user. We proposed an Enhanced Architectural Model for the inter-working
(Zhang, 2007), as shown in Figure 1.

Fig. 1. The Enhanced IWF Architectural Model

In this Model, we set up a new reference point IWF-4 to support the communication
between the Shared XDMS and IWF, set up a new reference point IWF-5 to support the
searching inter-working between IWF and Search Proxy which has been defined to search
XML documents stored in any XDM Servers in OMA SIMPLE XDM 2.0. The IWF-4 reference
point based on XCAP (Extensible Markup Language Configuration Access Protocol)

Petri Net: Theory and Applications 76

(Rosenberg, 2006) performs the inter-working functions for the Group and Shared Profile
features:
1. Retrieve the Public Profile and Group information from the Shared XDMS to the IWF

Server;
2. Retrieve the Shared Profile and Shared Group information from the IWF Server to the

Shared XDMS.
3. Add/Remove Group member from the Shared XDMS to the IWF Server;
4. Add/Remove Group member from the IWF Server to the Shared XDMS;
5. Leave/Join a Group from the Shared XDMS to the IWF Server;
6. Leave/Join a Group from the IWF Server to the Shared XDMS.
The IWF-5 reference point based on XCAP performs the inter-working functions for
searching:
1. Search for users/groups from the Search Proxy to the IWF Server;
2. Search for users/groups from the IWF Server to the Search Proxy.
Besides, the functions of the IWF-1 reference point should be enhanced:
1. Subscription of changes in state of Group from the Shared XDMS to the IWF;
2. Notification of changes in state of Group from the IWF to the Shared XDMS.
The functions of the IWF-3 reference point should also be enhanced:
1. Retrieve the Public Profile and Group information from the IWF Server to the IMPS

Server;
2. Retrieve the Shared Profile and Shared Group information from the IMPS Server to the

IWF Server;
3. Subscription of changes in properties of group in the IMPS Server;
4. Notification of changes in group properties;
5. Add/Remove Group member from the IMPS Server to the IWF Server;
6. Add/Remove Group member from the IWF Server to the IMPS Server;
7. Leave/Join a Group from the IMPS Server to the IWF Server;
8. Leave/Join a Group from the IWF Server to the IMPS Server;
9. Search for users/groups from the IWF Server to the IMPS Server;
10. Search for users/groups from the IMPS Server to the IWF Server.
The functions of the IWF should be enhanced too:
1. Protocol conversions between XCAP and SSP;
2. Information Mappings and information format conversions between XDM information

and IMPS corresponding information, such as Group information, Public Profile;
3. Operation mappings between XDM service and IMPS corresponding service in the new

references.
After the IWF-4 reference point is added, the IMPS users can use the SIMPLE Group for
communication and can retrieve the information of the Group participant who is the
SIMPLE user whenever they want, as long as the information has been authorized by the
SIMPLE user. Also, the SIMPLE users can do the same thing. After the IWF-5 reference point
is added, the users can search for the users/groups not only in their service system, but also
outside of their service system.

3. Petri net modeling
In order to verify the mapping and the Enhanced Architectural Model, and exclude the
probable exceptions in the inter-working, we should set up some means to verify and

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 77

analyze it.
The inter-working between SIMPLE and IMPS is mainly involved in the conversion between

the protocols, and how to realize the inter-working is involved in the Protocol Conversion

Methodology. As the Petri Nets, which is based on a set of strict mathematical theories, is

very useful for the verification and analysis of the inter-working model (Zhu, 2007), this

chapter adopts Petri Nets theory to set up inter-working model to analyze and verify the

Enhanced Architectural Model and the related inter-working mapping.

We adopt the protocol conversion methodology of the Petri net model which is proposed by

(Green, 1988; Zhu, 2006b) to build the Petri net model for XDM Service in the following

section.

3.1 Atomic protocol functions of different reference points
The inter-working of the XDM service is mainly involved in the reference points IWF-1,
IWF-3, IWF-4 and IWF-5. As described in (Zhang, 2007), IWF-1 includes the following SIP
methods and their corresponding atomic protocol functions, as shown in Table 1.

Atomic Protocol Functions SIP Request Methods

Subscribe Group Change SUBSCRIBE expires>0

Notify Group Change NOTIFY

Unsubscribe Group Change SUBSCRIBE expires=0

Table 1. The atomic protocol functions in IWF-1 for XDM service

The methods and their atomic protocol functions in IWF-3 are shown in Table 2.

Atomic Protocol Functions SSP Methods

Retrieve user’s profile GetPublicProfileRequest GetPublicProfileResponse

Retrieve the Group Information GetGroupPropsRequest GetGroupPropsResponse

Retrieve the joined member list of
a group

GetJoinedMemberRequest GetJoinedMemberResponse

Retrieve the member list of a groupGetGroupMemberRequest GetGroupMemberResponse

Join Group JoinGroupRequest JoinGroupResponse

Leave Group LeaveGroupRequest LeaveGroupIndication

Server Initiated Leave Group LeaveGroupIndication Status

Add Group Member AddGroupMemberRequest Status

Remove Group Member RemoveGroupMemberRequest Status

Subscribe Group Change SubscribeGroupChangeRequest Status

Notify Group Change GroupChangeNotice Status

Unsubscribe Group Change UnsubscribeGroupChangeRequest Status

Search for Users or Groups SearchRequest SearchResponse

Table 2. The atomic protocol functions in IWF-3 for XDM service

Petri Net: Theory and Applications 78

The methods and their atomic protocol functions in IWF-4 are shown in Table 3.

Atomic Protocol Functions XCAP Request Methods

Retrieve user’s profile XCAP GET

Retrieve the Group Information XCAP GET

Retrieve the member list of a group XCAP GET

Join Group XCAP PUT

Leave Group XCAP DELETE

Add Group Member XCAP PUT

Remove Group Member XCAP DELETE

Table 3. The atomic protocol functions in IWF-4 for XDM service

Although Table 3 has many request methods of XCAP GET, XCAP PUT and XCAP

DELETE, the URI (Uniform Resource Identifier) of every XCAP request method is different,

so the request methods listed in the table indicates different concrete requests.

The methods and their atomic protocol functions in IWF-5 are shown in Table 4.

Atomic Protocol Functions XCAP Request Methods

Search for Users or Groups XCAP GET

Table 4. The atomic protocol functions in IWF-5 for XDM service
Although the methods of XDM service involved in different reference points only include
the methods listed from Table 1 to Table 4, in the process of real service execution, the other
XDM service methods may invoke some methods described above, for example, the change
of the attributes of Group Information will cause the notification of the Group Information
in SIMPLE, so will it in IMPS.

3.2 Common subset of atomic protocol functions
The corresponding relation of above atomic protocol functions: the atomic protocol

functions in Table 1, Table 3 and Table 4 are corresponding to the atomic protocol functions

in Table 2 respectively. We can see that there are some atomic protocol functions in Table 2

which can not be mapped to the other atomic protocol functions in the other tables. That is

to say, some atomic protocol functions in IWF-3 can not be corresponding to the atomic

protocol functions in the other reference points, i.e. “Retrieve the joined member list of a

group” and “Server Initiated Leave Group” can not find their corresponding atomic

protocol functions in Table 3. Except the two atomic protocol functions, the other atomic

protocol functions can find their corresponding atomic protocol functions very well.

3.3 Decide whether the common subset is satisfied with the inter-working
requirement
From the common subset of the atomic protocol functions, it is basically satisfied with the
inter-working requirement, but not completely satisfied, so it is soft mismatch (Green, 1988)
in the protocol conversion, and we should carry out the protocol complementing for the
requirement.

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 79

3.4 Protocol complementing
As the common subset is not completely satisfied with the inter-working requirement, we
should complement some atomic protocol functions in IWF-4, as shown in Table 5. The
XCAP request methods added are based on the existed XCAP request methods. These
XCAP request methods have different request URIs.

Atomic Protocol Functions XCAP Request Methods

Retrieve the joined member list of a group XCAP GET

Server Initiated Leave Group XCAP DELETE

Table 5. The complemented atomic protocol functions in IWF-4 for XDM service

3.5 The common subset of atomic protocol functions after protocol complementing
After the protocol complementing, we get the whole common subset of atomic protocol
functions which the service implementation needs. Table 6 shows mappings of atomic
protocol functions between the IWF-1 and IWF-3.

Atomic protocol functions on IWF-1 Atomic protocol functions on IWF-3

Subscribe Group Change Subscribe Group Change

Notify Group Change Notify Group Change

Unsubscribe Group Change Unsubscribe Group Change

Table 6. Semantic Mapping Relationship of Atomic Protocol Functions between IWF-1 and
IWF-3

The mapping relationship of atomic protocol functions between IWF-4 and IWF-3 is shown
in Table 7.

Atomic protocol functions on IWF-4 Atomic protocol functions on IWF-3

Retrieve user’s profile Retrieve user’s profile

Retrieve the Group Information Retrieve the Group Information

Retrieve the joined member list of a group Retrieve the joined member list of a group

Retrieve the member list of a group Retrieve the member list of a group

Join Group Join Group

Leave Group Leave Group

Server Initiated Leave Group Server Initiated Leave Group

Add Group Member Add Group Member

Remove Group Member Remove Group Member

Table 7. Semantic Mapping Relationship of Atomic Protocol Functions between IWF-4 and
IWF-3

The mapping relationship of atomic protocol functions between IWF-5 and IWF-3 is shown
in Table 8.

Atomic protocol functions on IWF-5 Atomic protocol functions on IWF-3

Search for Users or Groups Search for Users or Groups

Table 8. Semantic Mapping Relationship of Atomic Protocol Functions between IWF-5 and
IWF-3

It should be based on the mapping relationship of XDM information and corresponding

Petri Net: Theory and Applications 80

methods described in (Zhang, 2007) to realize the conversion of the XDM information and
methods, when we implement the inter-working for the information and methods in the
common subset.

3.6 Confirmation of the conversion way
Because it involves the SIP, XCAP and SSP protocols in the process of the protocol
conversion in the IWF, and it needn’t carry out the conversions between multiple protocols,
we decide to convert the protocols directly. Based on the description above, now we can set
up a Petri net model to verify the mapping and the Enhanced Architectural Model with
strict mathematical analysis and verification in order to find and exclude the probable
exceptions in the inter-working.

3.7 Petri net model
Only the atomic protocol functions listed in Table 6 are totally related. Some atomic protocol
functions listed in Table 7 often indicate the separate service methods, and always have
nothing to do with the other atomic protocol functions listed in the same table, for example,
“Retrieve user’s profile” has distant relationship to the “Retrieve the Group Information”,
“Retrieve the Group Information” has distant relationship to the “Retrieve the member list
of a group”. Someone joining a Group or adding a group member is the precondition for the
atomic protocol functions listed in Table 6 to be effective, and it can also make the group to
be changed. In the modeling procedure described in this section, we first model the atomic
protocol functions listed in Table 6, then model the representative atomic protocol functions
listed in Table 7 and Table 8, at last we couple the related Petri net models for the different
reference points to an integrated Petri net model by a new coupling criteria.
Comparing multiple computer-aided Petri nets tools, we decide to adopt Visual Object
Net++ {4} to construct the Petri net model for the XDM service.

3.7.1 Subscribing group change
According to the service flow and the mapping described in (Zhang, 2007), we construct the
MSC (Message Sequence Chart) of Subscribing Group Change, then we educe the
corresponding Petri net model, as shown in Figure 2.
Figure 2 is composed of two Sub-Figures and several places and transitions that couple the
two Sub-Figures. The symbol “+” before every transition means that the corresponding
transition has received a message from the related arc, while the symbol “-” means that the
corresponding transition has sent out a message.
Sub-Figure 2(a) shows the Petri net model for Subscribing Group Change in IWF-1. The
transitions and their possible occurring sequences, which are within three round-corner
rectangles in Sub-Figure 2(a) represent the following atomic protocol functions: Subscribe
Group Change, Notify Group Change and Unsubscribe Group Change. The six places (P6,
P7, P8, P10, P11, P12) in Sub-Figure 2(a) represent the state elements in external channel
between Shared XDMS and IWF. Sub-Figure 2(b) shows the Petri net model for Subscribing
Group Change in IWF-3. The transitions and their possible occurring sequences, which are
within three round-corner rectangles in Sub-Figure 2(b) represent the following atomic
protocol functions: Subscribe Group Change, Notify Group Change and Unsubscribe Group
Change. The six places (P29, P30, P31, P32, P33, P34) in Sub-Figure 2(b) represent the state
elements in external channel between IWF and IMPS server.
According to Table 6 and the coupling criteria proposed in (Zhu, 2007), we couple the Petri
net model in Sub-Figure 2(a) and the Petri net model in Sub-Figure 2(b) into an integrated

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 81

Petri net model for Subscribing Group Change, as shown in Figure 2. The six places (P18,
P19, P20, P21, P22, P23) represent the state elements in internal channel in IWF.

Fig. 2. The Petri net model of Subscribing Group Change

This model describes the case of Subscribing Group State on the condition that the
subscribing request is initiated from IMPS server. The case which indicates the subscribing
request initiated from Shared XDMS is not in the same session with the case showed in
Figure 2, and the groups which the two cases represent are different, so the Petri net model
which describes the case on the condition that the subscribing request is initiated from
Shared XDMS should be set up in another model. In the construction process, the
corresponding places, transitions and related arcs should be constructed in a reverse
direction from the model described in Figure 2, according to real condition of the service
implementation, not simply constructed directly from the above model in the reverse
direction. The two models are symmetrical in some degree.
Because the model shown in Figure 2 has unexpected conflicts and deadlocks (see the
analysis of the model in the Section 4), it represents that the existing mapping may have

Petri Net: Theory and Applications 82

some exceptions or unconsidered issues. In order to make the conflicts and deadlocks free,
we construct the modified Petri net models, as shown in Sub-Figure 4(b) and Sub-Figure
4(e).
Based on the model shown in Figure 2, we add a series of places and transitions to build the
model shown in Sub-Figure 4(b) and Sub-Figure 4(e), for example, add P9 in the external
channel between Shared XDMS and IWF, add T11 and T12 in the IWF. Some places and
transitions added represent the new mappings, such as T5, P9 and T12 represent a new
mapping, i.e. the 487 Response of SIP sent from IWF to Shared XDMS, while some represent
the new state, such as P39 represents the state in which the system only receives the
notification of group state change (i.e. it doesn’t receive the notification of unsubscribing
group change).

3.7.2 Join group
Join Group is one of the representative atomic protocol functions listed in Table 7, and its
completion is the precondition of the cases listed in Table 6. The implementation of Add
Group Member is similar to that of Join Group. Leave Group, Server Initiated Leave Group
and Remove Group Member are almost the reverse operation of Join Group (or Add Group
Member). Except those atomic protocol functions, the other atomic protocol functions are all
independent. The cases described by the atomic protocol functions listed in Table 8 are also
independent, so this section takes an example of Join Group to construct the corresponding
Petri net model, as shown in Figure 3.

Fig. 3. The Petri net model of Join Group

Figure 3 is composed of two Sub-Figures and several places and transitions that couple the
two Sub-Figures. Sub-Figure 3(a) shows the Petri net model for Join Group in IWF-4. The
transitions and their possible occurring sequences, which are within the round-corner
rectangle in Sub-Figure 3(a) represent the atomic protocol function: Join Group. The two
places (P43, P44) in Sub-Figure 3(a) represent the state elements in external channel between
Shared XDMS and IWF. Sub-Figure 3(b) shows the Petri net model for Join Group in IWF-3.
The transitions and their possible occurring sequences, which are within the round-corner
rectangle in Sub-Figure 3(b) represent the atomic protocol function: Join Group. The two
places (P51, P52) in Sub-Figure 3(b) represent the state elements in external channel between
IWF and IMPS server.

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 83

According to Table 7 and the coupling criteria proposed in (Zhu, 2007), we couple the Petri
net model in Sub-Figure 3(a) and the Petri net model in Sub-Figure 3(b) into an integrated
Petri net model for Join Group, as shown in Figure 3. The two places (P47, P48) represent the
state elements in internal channel in IWF.
This model describes the case of Join Group on the condition that the joining request is
initiated from IMPS server, just like the analysis described in Section 3.7.1, the Petri net
model which describes the case on the condition that the joining request is initiated from
Shared XDMS should be set up in another model.

3.7.3 The coupled model and the coupling criteria
The message flows between IWF-1 and IWF-3 need cooperation with the message flows
between IWF-4 and IWF-3, so the Petri net models described above should be further
coupled together. This chapter takes an example of coupling the Join Group, Subscribing
Group Change and Leave Group into an integrated Petri net model to show how an
integrated case of XDM service is completed. Other small cases represented by other atomic
protocol functions can replace one of the small cases represented by Join Group, Subscribing
Group Change or Leave Group in order to model other integrated case. For example, the
case of Add Group Member can replace the case of Join Group, the case of Retrieve the
Member List of a Group can replace the case of Subscribe Group Change, the difference
between Retrieve the Member List of a Group and Subscribe Group Change is that the two
atomic protocol functions are involved in different relationships between different reference
points, so in order to simplify the coupled model, the service state will enter the case of
Subscribe Group Change directly after the user has joined the group in the coupled model.
When a user unsubscribe the change of a group, the user may leave the group, or be
removed by the group manager, in this chapter, we only consider the case of user leaving
group for the convenient modeling. The coupled model is shown in Figure 4. Compared to
Figure 2 and Figure 3, the same part in Figure 4 is indicated as suspension points. The Petri
net model of Leave Group is almost like the Petri net model of Join Group, so we don’t
describe the Petri net model separately, but describe it in the coupled model, as shown in
the last part of Figure 4.
The coupling criteria proposed in (Zhu, 2007), is referenced by us when we commence
coupling. In the criteria, the coupling of service parallel execution is realized by adding new
places and changing the direction of directed arc from the places. We don’t adopt the criteria
completely, but create a new criteria:

Adding new places and transitions, changing the direction of directed arc at the same
time, such as P55, T40, P70, T49;
Besides the above rule, the value of the token in the places connected with the coupling
transitions in the original model should be set to zero, and the direction of the
corresponding directed arc should be changed, in order to ensure the service is
executed naturally, such that the values of the tokens in P35 and P68 are set to zero, the
direction of T39 pointing to P53 is changed to point to P55.

The coupling of service serial execution is realized by the new criteria. In the criteria, the
added places, transitions and the directed arcs connected with these places and transitions
are the coupling points. These coupling points are those parts in which the messages in
different reference points should be cooperated, which has special state and different events,
so the coupling points should be paid more attention to when we implement the system.
The Petri net model coupled by the new criteria meets all properties of a correct Petri net
model, please see the analysis of the model in the Section 4.

Petri Net: Theory and Applications 84

Fig. 4. The coupled Petri net model for XDM service

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 85

4. Analysis of the model
We analyze the properties of the Petri net model by combined analysis method of
simulation analysis, reachability analysis, invariant analysis. The simulation analysis is
completed by Visual Object NET++ and PIPE2 (Platform Independent Petri Net Editor 2) {5},
and the invariant analysis is completed by PIPE2. A correct Petri net model for protocol
conversion should have the following attributes: Boundedness, Conflict freeness, Contact
freeness, Deadlock freeness, Livelock freeness, Resetability, S-invariant (Zhu, 2007).
The coupled Petri net model has remained the properties of each original model, so we only
analyze the properties of the coupled Petri net model from which the properties of each
original model can be known, for reducing the length of this chapter.
We make the simulation analysis by Visual Object Net++ and PIPE2 for Figure 4. From the
analysis of structural properties of the model, the model is not a pure net, not a simple net
either. But from the analysis of state space of the model, the model is safe, i.e. 1-
Boundedness, live, Contact freeness, Deadlock freeness and Livelock freeness.
There are four possible conflict groups: {T26, T30} with the reachable marking M1

(P4=P16=P27=P31=P37=1, the token values of the rest places are 0), {T18, T22} with the
reachable marking M2 (P4=P16=P20=P26=P33=P40=1, the token values of the rest places are
0), {T10, T14} with the reachable marking M3 (P4=P8=P15=P22=P28=P40=1, the token values
of the rest places are 0), {T3, T6} with the reachable marking M4 (P3=P11=P17=P28=P40=1,
the token values of the rest places are 0). This model is coupled with the modified Petri net
model from the original model shown in Figure 2, after resolving the problems found from
the original model. In the original model, there are four conflict groups described above, but
in any of the markings of M2 and M3, the happening of any of the transitions in the conflict
group will cause the deadlock of the system, also, in the marking of M1, the happening of
T30 will cause the deadlock of the system, in the marking of M4, the happening of T3 will
cause the deadlock of the system. In fact, it indicates that there are some exceptions in the
original mapping, for example, in the marking M4, when Shared XDMS has just sent the
NOTIFY, i.e. T3 has just happened, but at the same time, IWF has just received the
UnsubscribeGroupChangeRequest from IMPS server and sent out SIP SUBSCRIBE
converted from the request for unsubscribing, i.e. T14 has also happened, it means that IWF
has stopped process the SIP NOTIFY when IWF has just received NOTIFY, because it has
received the unsubscribing request from IMPS server, and at this time, it is not good for IWF
to convert NOTIFY to GroupChangeNotice which will be sent to IMPS server in the next
step, or throw away NOTIFY (if NOTIFY is thrown away, it betrays the principle of SIP), so
the system is “dead”. In order to resolve the problem, we extend the message flow in the
mapping. When IWF has received NOTIFY and unsubscribing request, IWF sends the 487
Response (Request Terminated) to Shared XDMS, so we add T5, T12 and P9 to mark this
response. In order to distinguish the NOTIFY received normally from the NOTIFY received
abnormally (i.e. IWF has received the unsubscribing request and sent it out when IWF has
received NOTIFY), T11 is added to represent receiving NOTIFY abnormally. After the
addition has been done, the deadlock brought from M4 will never happen, and the conflict
brought from M4 will become the “untrue” conflict. When T3 has happened, it is sure for T6
to have a chance to happen after some transitions have happened in the Petri net model, so
we deem the conflicts are not the actual conflicts. It meets the principles of a correct Petri net
model, for the Petri net model can well guide the development of a real system and well
simulate the possible exceptions in the real environment after the Petri net model has been
modified by the above way, which is consistent with the real application environment (it is
possible for the request to be delayed for some reasons). It shows the strong capability of

Petri Net: Theory and Applications 86

strict mathematical analysis of Petri net in another way, which can expose the possible
problems before system implementation by the properties of deadlock, conflict and so on,
and can help us to resolve these possible problems and decrease the errors in system
implementation, as the resolving way of Petri net. If we want to resolve these conflicts
further, we can treat T6 and T3 as immediate transition and timed transition, or give every
transition a different execution probability, which are not shown in this chapter for model
simplicity reason. There are similar problems in the marking of M1, M2 and M3, but in these
cases, we don’t add a message mapping indicating the exception, but use the Status of SSP,
because the different status codes of Status can be used to represent different exceptions,
such as T28 and T29 are all pointing to P32. The different status codes of Status are all
mapped to SIP 200 OK, which is made in order to simplify the model, otherwise the model
will be very complex. In fact, when NOTIFY is sent to IMPS server through IWF, the
NOTIFY has been transmitted successfully from Shared XDMS point of view. In resolving
the conflicts in the marking M1, besides using the methods used to resolve the conflicts in
the other markings, we add P39 to distinguish the difference of the tokens arrived at P38
and P39, in order to restrict the happening of different transitions, i.e. restrict the happening
of T28 and T29, which is also a good way to resolving the conflict.
We make the invariant analysis for the model shown in Figure 4 by PIPE2. The five
nonnegative T-Invariants exported from PIPE2 are shown by matrix J, the two nonnegative
S-Invariants exported from PIPE2 are shown by matrix I, as shown in Figure 5.
From the nonnegative T-Invariants shown in Figure 5, the Petri net model is covered by
nonnegative T-Invariants, so it is bounded, live and resetable.
The equation of S-Invariants got from the two nonnegative S-Invariants are:

 M(P1) + M(P2) + M(P3) + M(P4) + M(P5)=1 (1)

 M(P1) + M(P2) + M(P3) + M(P5) + M(P8) + M(P9) + M(P10) + M(P16)=1 (2)

The equation (1) describes the states of the places in IWF-1 within Shared XDMS, which is
consistent with the assumed execution result of the mapping for Shared XDMS and meets
the requirement of protocol conversion for S-Invariants. The equation (2) describes the inter-
working part in IWF-1 between Shared XDMS and IWF, which is also consistent with the
assumption and indicates that in the process of the inter-working there has sequence for
Shared XDMS, the external channel and IWF to process NOTIFY and unsubscribing request
after NOTIFY has been sent out, i.e. it ensures that the received NOTIFY can be processed
after the unsubscribing request has been received, so as to ensure the service security of
Shared XDMS and IWF in the inter-working. Because the S-Invariants above are just the
bases of the S-Invariants, the other S-Invariants can be constructed by the linear
combinations of the above S-Invariants. We make the test for the other S-Invariants, and the
result of test indicates that two place sets for processing SIP and SSP protocols in IWF are
corresponding to two S-Invariants, four place sets for processing XCAP and SSP protocols in
IWF are corresponding to four S-Invariants, the place sets for processing the
communications between Shared XDMS and IWF are corresponding to two S-Invariants, the
place set for processing the communications between IMPS server and IWF is corresponding
to one S-Invariants.
As shown in the above analysis, the Petri net model meets all properties of a correct Petri net
model, it is reasonable and viable for the mapping proposed for the XDM service. The
execution of the coupled Petri net model can prove that the model can find out and resolve
the possible exception, the added IWF-4 and IWF-5 can completely work well with the

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 87

existed reference points (IWF-1, IWF-2 and IWF-3), so it is reasonable and viable for the
Enhanced Architectural Model proposed in (Zhang, 2007).

Fig. 5. The nonnegative T-Invariants and nonnegative S-Invariants in the coupled Petri net
model

Petri Net: Theory and Applications 88

5. Resolving of conflict
In the process of the Petri net modeling, we don’t use the methods proposed in (Zhu, 2007)
for resolving the conflicts, but resolve the conflicts according to the real service execution.
There are two concrete methods in this chapter: adding service mapping, adding place (i.e.
adding the state of service execution) to restrict the happening of the transitions, such as
P39. Besides the two methods, there are some other methods to resolve the conflicts, such as
the methods proposed in (Lin, 2005): importing priority, giving different predications of
implementation condition, giving different implementation time of the transition, giving
different implementation possibility of a transition, and so on; the methods proposed in
(Zhu, 2006a; Zhu, 2007): adding complementary place and side place, importing inhibitor
arc and static testing arc, and so on.

6. Conclusions
In this chapter, with the procedure of Protocol Conversion Methodology, a Petri net model
is constructed to verify the mapping and the Enhanced Architectural Model proposed in
(Zhang, 2007), find and exclude the possible exceptions in the inter-working. After the strict
mathematical analysis and verification for the model, which prove that the model meets all
properties of a correct Petri net model, the mapping and the Enhanced Architectural Model
are proved to be reasonable and viable, and the probable exceptions in the inter-working
can be found and excluded. During the modeling experiences of the inter-working with
Petri Nets, a new coupling criteria for Petri net and some new methods for solving the
conflict of a Petri Net are proposed, and the methodology is summarized, which enriches
the application of Petri Nets for the Protocol Conversion Methodology.
There are many standards or solutions for XDM, as the concept of XDM is almost same
among different standards or solutions, the inter-working model proposed in this chapter
has highly universal value and can provide an applicable reference for the inter-working
between other standards, such as the inter-working between SIMPLE and XMPP.

7. Acknowledgement
This work was jointly supported by: (1) National Science Fund for Distinguished Young
Scholars (No. 60525110); (2) National 973 Program (No. 2007CB307100, 2007CB307103); (3)
Program for New Century Excellent Talents in University (No. NCET-04-0111); (4)
Development Fund Project for Electronic and Information Industry (Mobile Service and
Application System Based on 3G); (5) National Specific Project for Hi-tech Industrialization
and Information Equipments (Mobile Intelligent Network Supporting Value-added Data
Services).

8. References
3GPP.(2002). TS 22.250, IP Multimedia Subsystem (IMS) group management, Stage 1(Release

6)
3GPP.(2004). TS 24.841, Presence service based on Session Initiation Protocol (SIP);

Functional models, information flows and protocol details, Stage 3 (Release 6)
3GPP.(2005a). TS 22.340, IP Multimedia System (IMS) messaging, Stage 1 (Release 7)
3GPP.(2005b). TS 22.940, IP Multimedia System (IMS) messaging, Stage 1 (Release 7)
3GPP.(2005c). TS 24.247, Messaging service using the IP Multimedia (IM) Core Network

An Inter-Working Petri Net Model between SIMPLE and IMPS for XDM Service 89

(CN) subsystem, Stage 3 (Release 6)
3GPP.(2005d). TS 22.141, Presence Service, Stage 1(Release 7)
3GPP.(2005e). TS 23.141, Presence Service; Architecture and functional description, Stage

1(Release 7)
3GPP.(2005f). TS 24.141, Presence service using the IP Multimedia (IM) Core Network (CN)

subsystem, Stage 3 (Release 7)
3GPP2.(2002). S.R0062-0, Presence for Wireless Systems Stage 1 Requirements, V1.0, 2002
3GPP2.(2004). X.S0027-001-0, Presence Service; Architecture and functional description,

V1.0, 2004
3GPP2.(2005a). X.P0027-004-0, Network Presence, V1.0, 2005
3GPP2.(2005b). X.S0027-003-0, Presence Service using IP Multimedia Core Network

Subsystem; Stage 3, V1.0, 2005
3GPP2.(2006). X.P0013-016, Messaging service using the IP Multimedia (IM) Subsystem

(IMS); V0.7, 2006
Day, M. ; Rosenberg, J. ; & H. Sugano.(2000a). A Model for Presence and Instant Messaging,

RFC 2778, February 2000
Day, M. ; Aggarwal, S. ; Mohr, G. & Vincent J.(2000b). Instant Messaging / Presence

Protocol Requirements, RFC 2779, February 2000
Green Jr P E.(1988). Protocol conversion. Network Interconnection and Protocol Conversion,

IEEE Press, 1988, pp2-13. New York
Lin Chang.(2005). Stochastic Petri Net and System Performance Evaluation.(the Second Edition),

Tsinghua University Press, ISBN 7-302-10651-7, Beijing
Open Mobile Alliance.(2005a). IMPS-SIP/SIMPLE Interworking Function Architecture,

Draft Version 0.2, 2005-05-20
Open Mobile Alliance(2005b). IMPS SIP/SIMPLE Interworking Function Requirements,

Draft Version 1.0, 30 August 2005
Open Mobile Alliance.(2006a). XML Document Management Requirements, V1.0, 12 Jun

2006
Open Mobile Alliance.(2006b). XML Document Management Architecture, V1.0, 12 Jun 2006
Open Mobile Alliance.(2006c). Enabler Release Definition for XML Document Management,

V1.0.1, 28 Nov 2006
Open Mobile Alliance.(2006d). XML Document Management (XDM) Specification, V1.0.1, 28

Nov 2006
Open Mobile Alliance.(2006e). Shared XDM Specification, V1.0.1, 28 Nov 2006
Open Mobile Alliance.(2006f). Shared Group XDM Specification, Draft V 2.0, 18 Dec 2006
Open Mobile Alliance.(2006g). Shared List XDM Specification, Draft V 2.0, 18 Dec 2006
Open Mobile Alliance.(2006h). OMA XML Document Management Requirements, Draft V

2.0, 19 Dec 2006
Open Mobile Alliance.(2006i). XML Document Management Architecture, Draft V 2.0, 19

Dec 2006
Open Mobile Alliance.(2006j). XML Document Management (XDM) Specification, Draft V

2.0, 19 Dec 2006
Open Mobile Alliance.(2006k). Shared Profile XDM Specification, Draft V 2.0, 19 Dec 2006
Open Mobile Alliance.(2006l). Enabler Release Definition for XML Document Management,

Draft V 2.0, 20 Dec 2006
Open Mobile Alliance.(2007a). IMPS Architecture, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007b). OMA IMPS Delta Requirements, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007c). Presence Attributes, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007d). Client-Server Protocol Session and Transactions, V 1.3, 23 Jan

Petri Net: Theory and Applications 90

2007
Open Mobile Alliance.(2007e). Server-Server Protocol Semantics, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007f). Enabler Release Definition for IMPS, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007g). Client-Server Protocol Data Types, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007h). Client-Server Protocol Plain Text Syntax, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007i). Client-Server Protocol Transport Bindings, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007j). Client-Server Protocol XML Syntax, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007k). Presence Attributes XML Syntax, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007l). Server-Server Protocol Transport Binding, V 1.3, 23 Jan 2007
Open Mobile Alliance.(2007m). Server-Server Protocol XML Syntax, V 1.3, 23 Jan 2007
P. Saint-Andre, Ed.(2004a). Extensible Messaging and Presence Protocol (XMPP): Core. RFC

3920, October 2004
P. Saint-Andre, Ed.(2004b). Extensible Messaging and Presence Protocol (XMPP):Instant

Messaging and Presence. RFC 3921, October 2004
Rosenberg, J. ; Schulzrinne, H. ; Camarillo, H. ; Johnston, A. ; Peterson,J. ; Sparks, R. ;

Handley, M. & E. Schooler.(2002). SIP: Session Initiation Protocol, RFC 3261, June
2002

Rosenberg, J.(2005). Extensible Markup Language (XML) Formats for Representing Resource
Lists, draft-ietf-simple-xcap-list-usage-05, 2005.2

Rosenberg, J.(2006). The Extensible Markup Language (XML) Configuration Access
Protocol, draft-ietf-simple-xcap-12(work in progress), October 2006

Zhang Yuting ; Liao Jianxin ; Zhu Xiaomin ; Wu Wei & Ma Jun.(2007). Inter-working
between SIMPLE and IMPS. Computer Standards & Interfaces, Vol. 29, No. 5, (July
2007) page numbers (584-600), ISSN:0920-5489

Zhu Xiaomin; Liao Jianxin ; Wang Peng & Wang Jianbin.(2006a). Modelling Click-to-Dial
Service with Petri Nets. Journal of Electronics & Information Technology, Vol. 28, No. 3,
(March 2006) page number (552-556), ISSN:1009-5896

Zhu Xiaomin; Liao Jianxin & Chen Junliang.(2006b). Improved Protocol Conversion
Methodology and Its Application. International Journal of Computers and Applications,
Vol. 28, No. 3, (September 2006) page numbers(210-221), ISSN:1206-212X

Zhu Xiaomin; Liao Jianxin & Chen Junliang.(2007). Petri Net Model of Protocol Conversion
for CTF service: Its Universal Coupling Criteria and Property Analysis. International
Journal of Communication Systems, Vol. 20, No. 5, (May 2007) page numbers (533-
551), ISSN:1074-5351

9. Links
1. SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE) IETF Working

Group
 http://www.ietf.org/html.charters/simple-charter.html
2. WV white paper
 http://www.openmobilealliance.org/tech/affiliates/wv/wvindex.html
3. Petri Nets World

http://www.informatik.uni-hamburg.de/TGI/PetriNets/, March 2006
4. Visual Object Net++ Homepage[DB/OL]

http://www.systemtechnik.tu-ilmenau.de/~drath/visual_E.htm, Jun. 2003
5. Platform Independent Petri Net Editor 2 Homepage

http://pipe2.sourceforge.net/, May 2003

5

Modelling Systems by Hybrid Petri Nets:
an Application to Supply Chains

Mariagrazia Dotoli1, Maria Pia Fanti1, Alessandro Giua2 and Carla Seatzu2

1Dip. di Elettrotecnica ed Elettronica, Politecnico di Bari,
2Dip. di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari

Italy

1. Introduction
Petri Nets (PNs) are a discrete event model firstly proposed by C. A. Petri in his Ph.D. thesis
in the early 1960s (Petri, 1962). The main feature of a (discrete) PN is that its state is a vector
of non-negative integers. This is a major advantage with respect to other formalisms such as
automata, where the state space is a symbolic unstructured set, and has been exploited to
develop many analysis techniques that do not require to enumerate the state space
(structural analysis) (Silva et al., 1996). Another key feature of PNs is their capacity to
graphically represent and visualize primitives such as parallelism, concurrency,
synchronization, mutual exclusion, etc.
In the related literature various PN extensions have been proposed. In this paper we focus
on Continuous and Hybrid PNs.
Continuous Petri Nets (CPNs) originate from the “fluidification” of discrete PNs (David &
Alla, 1987). In simple words, the content of places is relaxed to be a real non-negative
number rather than an integer non-negative number, and appropriate rules for transitions
firings are given. This highly reduces the computational complexity of the analysis and
optimization of realistic scale problems, and has been successfully applied to manufacturing
systems. The main advantages of fluidification can be summarized in the following four
items.

The computational complexity of the analysis and control of complex systems may be
significantly reduced.

Fluid approximations provide an aggregate formulation to deal with complex systems,
thus reducing the dimension of the state space. The resulting simple structures allow
explicit computation and performance optimization.

The design parameters in fluid models are continuous; hence, it is possible to use
gradient information to speed up optimization and to perform sensitivity analysis.

Finally, in many cases it has also been shown that fluid approximations do not
introduce significant errors when carrying out performance analysis via simulation.

In general, different fluid approximations are necessary to describe the same system,
depending on its discrete state, e.g., in the manufacturing domain, machines working or
down, buffers full or empty, and so on. Thus, the resulting model can be better described as
a hybrid model, where a different continuous dynamics is associated to each discrete state.
Hybrid Petri Nets (HPNs) keep all those good features that make discrete PNs a valuable

Petri Net: Theory and Applications 92

discrete-event model: they do not require the exhaustive enumeration of the state space and
can finitely describe systems with an infinite state space; they allow modular representation
where the structure of each module is kept in the composed model; the discrete state is
represented by a vector and not by a symbolic label, thus linear algebraic techniques may be
used for their analysis. Different HPN models have been proposed in the literature, but
there is so far no widely accepted classification of such models.
In Section 2 we provide a brief survey of the most important HPN models presented in the
related literature. The main theoretical results and the main application areas within each
framework are also mentioned. We recently provided a more detailed survey in (Dotoli et
al., 2007).
In Section 3 we focus our attention on a particular model of HPNs, called First-Order Hybrid
Petri Nets (FOHPNs) because its continuous dynamics are piece-wise constant. FOHPNs
were originally proposed in (Balduzzi et al., 2000) and have been efficiently used in many
application domains, such as manufacturing systems (Balduzzi et al., 2001; Giua et al., 2005)
and inventory control (Furcas et al., 2001). Interesting optimization problems have also been
studied considering real applications, such as a bottling plant (Giua et al., 2005) and a cheese
factory (Furcas et al. 2001).
Finally, in Section 4 we show how FOHPNs can be efficiently used for modelling and
controlling large and complex systems such as Supply Chains (SCs). SCs are complex
emerging distributed manufacturing systems whose analysis, design and management is
currently an active area of research (Viswanadham & Gaonkar, 2003; Viswanadham &
Raghavan, 2000; Dotoli et al., 2005; Dotoli et al., 2006). More precisely, a SC is defined as a
collection of independent companies possessing complementary skills and integrated with
transportation and storage systems, information and financial flows, with all entities
collaborating to meet the market demand. Appropriate modelling and analysis of such
highly complex systems are crucial for performance evaluation and to compare competing
SCs. However, in the related literature few contributions deal with the problem of
modelling and analyzing the SC operational behaviour. Viswanadham and Raghavan (2000)
model SCs as discrete event dynamical systems, in which the evolution depends on the
interaction of discrete events such as the arrival of the components at the facilities, the
departure of the transport, the start of the operations at the manufacturers and the
assemblers. In (Desrochers et al., 2005) a two-product SC is modelled by complex-valued
token PNs and the performance measures are determined by simulation. However, the limit
of such formalisms is the modelling of products or batches of parts by means of discrete
quantities (i.e., tokens). This assumption is not realistic in large SCs with a huge amount of
material flow. Hence, this paper uses FOHPNs to model and manage SCs. Using a modular
approach based on the idea of bottom-up methodology (Zhou & Venkatesh, 1998), this work
develops a modular FOHPN model of SCs where the input buffers are managed by the well
known fixed order quantity policy. In particular, transporters and manufacturers are
described by continuous transitions, buffers are continuous places, and products are
represented by continuous flows (fluids) routing from manufacturers, buffers and
transporters.

2. Hybrid Petri nets
The first fluid PN model is the so called “Continuous and Hybrid Petri Net” model
introduced by R. David and H. Alla in their seminal paper (David & Alla, 1987). Based on

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 93

this first formalism, and motivated by particular applications, a family of extended hybrid
models has then been proposed in the literature. In this section we briefly recall some of
them, namely Fluid Stochastic Petri Nets, Batch Nets, DAE-Petri Nets, Hybrid Flow Nets,
Differential Petri Nets and High-Level Hybrid Nets. For a more detailed survey on Hybrid
Petri Nets (HPNs) we address the reader to (Dotoli et al., 2007) and to (David & Alla, 2005).

2.1 Continuous and hybrid Petri nets
All the works collected under this heading are based on or directly inspired to the model
presented by R. David and H. Alla in the late eighties (David & Alla, 1987). These authors
have obtained a continuous model by fluidification, i.e., by relaxing the condition that the
marking be an integer vector. Hybrid Petri nets are then made of a “continuous part”
(continuous places and transitions) and a “discrete part” (discrete places and transitions).
The continuous part can model systems with continuous flows and the discrete part models
the logic behavior.
Several contributions in this framework have been presented in the last decade, as well as
some interesting extensions with respect to the original model.
As an example, the problem of determining an optimal stationary mode of operation for a
system described by a timed CPN has been studied in (Gaujal & Giua, 2004). Some
characterizations of equilibrium points in steady-state are given in (Mahulea et al., 2007),
where an optimal steady-state control is also studied. An interesting comparison on two
different techniques to compute the steady-state of continuous nets was made in
(Demongodin & Giua, 2002): a method based on linear programming and a method based
on graph theory are considered.
Other interesting papers have been devoted to the problem of production frequencies
estimation for systems that are modeled by CPNs (Lefebvre, 2000), to the design of
observers (Júlvez et al., 2004), to the reachability analysis (Júlvez et al., 2003), to the stability
analysis (Amer-Yahia & Zerhouni, 2001), and to the deadlock-freeness analysis (Júlvez et al.,
2002).
The problem of deriving an optimal control law for CPNs under the assumption of finite
servers semantics has been studied in (Bemporad et al., 2004). In (Mahulea et al., 2006a) the
authors considered timed CPNs under infinite servers semantics that usually provide a much
better approximation of the discrete system than finite servers semantics (Mahulea et al.,
2006b). They deal with the problem of controlling CPNs in order to reach a final (steady
state) configuration while minimizing a quadratic performance index.
CPNs have been mainly applied in the manufacturing domain (for an exhaustive list of
references see (Dotoli et al., 2007)), even if some other interesting applications have been
presented, like (Amer-Yahia et al., 1997) dealing with biological systems, and (Júlvez & Boel,
2005) dealing with transportation systems.
FOHPNs follow the formalism described in (Alla & David, 1998) with the addition of
algebraic analysis techniques, and have been firstly presented in (Balduzzi et al., 2000).
FOHPNs consist of continuous places holding fluid, discrete places containing a non-
negative integer number of tokens, and transitions, either discrete or continuous. As in all
hybrid models, in FOHPNs the authors distinguish two behavioral levels: time-driven and
event-driven. The continuous time-driven evolution of the net is described by first-order
fluid models, i.e., models in which the continuous flows have constant rates and the fluid
content of each continuous place varies linearly with time. A discrete-event model describes

Petri Net: Theory and Applications 94

the behaviour of the net that, upon the occurrence of macro-events, evolves through a
sequence of macro-states. The authors set up a linear algebraic formalism to study the first-
order continuous behavior of this model and show how its control can be framed as a
conflict resolution policy that aims at optimizing a given objective function. The use of linear
algebra leads to sensitivity analysis that allows one to study how changes in the structure of
the model influence the optimal behavior. This model is extensively presented in the rest of
this paper.

2.2 Other models
The Fluid Stochastic Petri Net (FSPN) model has been firstly presented by K.S. Trivedi and
V.G. Kulkarni in the early nineties (Trivedi & Kulkarni, 1993). Here the authors extend the
stochastic Petri nets framework (Ajmone Marsan et al., 1995) to FSPNs by introducing places
with continuous tokens and arcs with fluid flow so as to handle stochastic fluid flow
systems. No continuous transitions are present in this model, and the set of transitions is
partitioned into timed transitions and immediate transitions, where timed transitions have
an exponentially distributed firing time. They define hybrid nets in such a way that the
discrete and continuous portions may affect each other.
Batch Petri Nets (BPNs) represent a formalism derived in (Demongodin et al., 1998) as a
modeling tool for the particular class of batch processes. It intends to model variable delays
on continuous flows by adding to a hybrid Petri net special nodes called batch nodes. Batch
nodes combine both a discrete event and a linear continuous dynamic behaviour in a single
structure. Evolution rules are determined in order to carry out the simulation of systems
based on accumulation phenomena, thus the resulting formalism is well suited to model
high throughput production lines.
Differential Algebraic Equations-Petri Nets (DAE-PNs) are based on the model presented in
(Andreu et al., 1996; Champagnat et al., 1998; Valentin-Roubinet, 1998). This approach does
not try to represent in a unified way the continuous and discrete aspects, as it is the case in
HPNs. On the contrary, the model focuses on the interaction between a discrete Petri net
model that captures the discrete behaviour of a batch system, and a continuous model,
which is a set of differential algebraic equations. DAE-PNs can be seen as an extension of
hybrid automata (Alur et al., 1993; Puri & Varaiya, 1996). This approach is well suited for
modelling batch processes where it is necessary to concurrently deal with continuous and
discrete models. It has also been tested in the food industry for the validation of scheduling
policies and has been developed for supervisory control and reactive scheduling.
Hybrid Flow Nets (HFNs) have been proposed in (Flaus, 1997; Flaus & Alla, 1997). This
approach is based on the analysis of a system as a set of continuous and discrete flows. The
notion of HFNs can then be seen as an extension of PNs for hybrid systems. This modeling
tool is made of a continuous flow net interacting with a PN according to a control
interaction. The overall philosophy of PNs is preserved again. The discrete part is a PN
while the continuous part is called continuous flow net, whose dynamic evolution has to be
defined so as to be similar to the one of PNs, with a continuous enabling rule and a
continuous firing rule. HFNs are well suited for the modeling and control of industrial
transformation processes, for which the dynamics behavior has a hybrid nature.
Differential Petri Nets (DPNs) have been firstly presented in (Demongodin & Koussoulas,
1998). The main feature of this class of PNs is that it allows us to model continuous-time
dynamic processes represented by a finite number of linear first-order differential state

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 95

equations. The DPN is defined through the introduction of a new kind of place and transition,
namely, the differential place and the differential transition. The marking of the differential place
represents a state variable of the continuous system that is modeled. A firing speed,
representing either a variable proportional to a state variable or an independent variable, is
associated to every differential transition. A differential transition is always enabled, thus to
discretize the continuous system; a firing frequency, representing the integration step that
would be used when carrying out an integration of the differential equation, is associated to
any differential transition. Evolution rules have been developed to specify the simulation of
hybrid systems composed by a continuous part cooperating with a discrete event part, i.e., the
typical paradigm of a supervisory control system.
Finally, under the heading High-Level Hybrid Petri Nets (HLHPNs) we collect different
models presented by several authors (Chen & Hanisch, 1998; Genrich & Schuart, 1998; Giua
& Usai, 1998). All these models, however, are based on high-level nets, i.e., nets
characterized by the use of structured individual tokens. HLHPNs are a useful model that
provides a simple graphical representation of hybrid systems and takes advantage of the
modular structure of PNs in giving a compact description of systems composed of
interacting subsystems, both time-continuous and discrete-event. The use of colors in the
continuous places allows one to model continuous variables that may take negative values.

3. First-order hybrid Petri nets
In this section we provide a detailed presentation of the FOHPN model (Balduzzi et al.,
2000). For a more comprehensive introduction to place/transition PNs see (Murata, 1989).

3.1 Net structure
A FOHPN is a structure

N = (P,T,Pre,Post, D, C).

The set of places P = Pd Pc is partitioned into a set of discrete places Pd (represented as
circles) and a set of continuous places Pc (represented as double circles). The cardinality of
P, Pd and Pc is denoted n, nd and nc, respectively. We assume that the place labeling is
such that: Pc ={ pi | i=1, ... , nc }, Pd ={ pi | i= nc+1, ... , n}.
The set of transitions T = Td Tc is partitioned into a set of discrete transitions Td and a set

of continuous transitions Tc (represented as double boxes). The set Td = TI TD TE is
further partitioned into a set of immediate transitions TI (represented as bars), a set of
deterministic timed transitions TD (represented as black boxes), and a set of exponentially
distributed timed transitions TE (represented as white boxes). The cardinality of T, Td and Tc

is denoted q, qd and qc, respectively. We also denote with qt the cardinality of the set of

timed transitions Tt = TD TE. We assume that the transition labeling is such that: Tc = {tj

| j=1, ... , qc }, Tt = {tj | j= qc+1, ... , qc+qt}, TI = {tj | j= qc+qt+1, ... , q}.
The pre- and post-incidence functions that specify the arcs are (here R0+ = R+ {0}):

0, : c

d

P T R
Pre Post

P T N

Petri Net: Theory and Applications 96

We require (well-formed nets) that for all t Tc and for all p Pd, Pre(p,t) = Post(p,t). This
ensures that the firing of continuous transitions does not change the marking of discrete
places.

The function D : Tt R+ specifies the timing associated to timed discrete transitions. We

associate to a deterministic timed transition tj TD its (constant) firing delay j = D(tj). We

associate to an exponentially distributed timed transition tj TE its average firing rate j =
D(tj): the random delay is distributed according to the probability density function fj () = j

exp(- j) and the average firing delay is 1/ j.

The function C : Tc R0+ × R + specifies the firing speeds associated to continuous transitions

(here R + = R+ {+ }). For any continuous transition tj Tc we let C(tj) = (Vj’, Vj), with Vj’
Vj. Here Vj’ represents the minimum firing speed (mfs) and Vj represents the Maximum Firing
Speed (MFS). In the following, unless explicitly specified, the mfs of a continuous transition tj

will be Vj’=0.
We denote the preset (postset) of transition t as •t (t•) and its restriction to continuous or
discrete places as (d)t = •t Pd or (c)t = •t Pc. A similar notation may be used for presets and
postsets of places. The incidence matrix of the net is defined as C(p,t) = Post(p,t) - Pre(p,t). The

restriction of C to PX and TY (X,Y {c,d}) is denoted CXY. Note that by the well-formedness
hypothesis Cdc = 0nd × qc.

3.2 Marking and enabling
A marking

NP
RP:m

d

0c

is a function that assigns to each discrete place a non-negative integer number of tokens,
represented by black dots, and assigns to each continuous place a fluid volume; mi denotes
the marking of place pi. The value of the marking at time is denoted m(). The restrictions
of m to Pd and Pc are denoted with md and mc, respectively.

An FOHPN system N, m(0) is an FOHPN N with an initial marking m(0).
The enabling of a discrete transition depends on the marking of all its input places, both
discrete and continuous.

Definition 3.1 Let N, m be an FOHPN system. A discrete transition t is enabled at m if for all

pi •t, mi Pre(pi ,t).
A continuous transition is enabled only by the marking of its input discrete places. The
marking of its input continuous places, however, is used to distinguish between strongly
and weakly enabling.

Definition 3.2 Let N, m be an FOHPN system. A continuous transition t is enabled at m if

for all pi (d)t, mi Pre(pi ,t).
We say that an enabled transition t Tc is:

strongly enabled at m if for all places pi (c)t, mi > 0;

weakly enabled at m if for some pi (c)t, mi = 0.

3.3 Net dynamics
We now describe the dynamics of an FOHPN. First, we consider the behaviour associated to
discrete transitions that combines a continuous dynamics associated to the timers, and a

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 97

discrete-event dynamics associated to the transition firing. Then we consider the time-
driven behaviour associated to the firing of continuous transitions.
Note that the evolution of an FOHPN is characterized by the occurrence of some events that
we call macro-events, while the time interval between two consecutive macro-events is called
a macro-period. As discussed in detail in the following two paragraphs, macro-events may be
either related to the firing and/or the enabling condition of discrete transitions, or to the
enabling condition and/or the enabling state of a continuous transition.
In the following we use ei,r to denote the ith canonical basis vector of dimension r. We also
define, to simplify the notation, the index (j)=j-qc that is used to define the firing vector
associated to a discrete transition.

3.3.1 Discrete transitions dynamics
We associate to each timed transition tj Tt a timer j.

Definition 3.3 [Timers evolution] Let N, m be an FOHPN system and [k,) be an interval

of time in which the enabling state of a transition tj Tt does not change. If tj is enabled in
this interval then

j ()= j (k)+ (- k)

while if tj is not enabled in this interval then

j ()= j (k)=0.

Whenever tj is disabled or it fires, its timer is reset to 0.
With the notation of (Ajmone Marsan et al., 1995), we are using a single-server semantics, i.e.
only one timer is associated to each timed transition, and an enabling-memory policy, i.e. each
timer is reset to 0 whenever its transition is disabled. The approach we present, however,
can also be easily extended to take into account infinite server semantics.
The vector of timers associated to timed transitions is denoted

=[qc+1, qc+2, ..., qc+qt]T (R0+)qt.

Note that the timer evolution is continuous and linear during a macro—period and may
change at the occurrence of the following macro-events:
1. a discrete transition fires, thus changing the discrete marking and enabling (or

disabling) a timed transition;
2. a continuous place reaches a fluid level that enables (or disables) a discrete transition.

An enabled timed transition tj Tt fires when the value of its timer reaches a given value j

()= j*: we call j*'s the timer set points. In the case of a deterministic transition, j* = j is the
associated delay. In the case of a stochastic transition, j* is the current sample of the
associated random variable: it is drawn each time the transition is newly enabled. An
immediate transition fires as soon as it is enabled, i.e. it can be considered as a deterministic
transition with j* =0.
Definition 3.4 [Discrete transition firing] The firing of a discrete transition tj at m(-) yields
the marking m() and for each place p it holds mp() = mp(-) + Post (p, tj) - Pre(p, tj) = mp(-)+
C (p, tj). Thus we can write

)(C)(m)(m
)(C)(m)(m

dd
dd

cd
cc

Petri Net: Theory and Applications 98

where () = e (j),qd is the firing count vector associated to the firing of transition tj.

In the above definition we note that a transition tj is the (j)th discrete transition, hence,

say, Ccd e (j),qd represents the column of matrix Ccd corresponding to transition tj.

3.3.2 Continuous transitions dynamics
The Instantaneous Firing Speed (IFS) at time of a transition tj Tc is denoted vj (). We can

write the equation which governs the evolution in time of the marking of a place pi Pc as

cj

c
Tt

cc
T

n,ijjii)(vCe)(v)t,p(C)(m (1)

where v() = [v1(), ... , vnc()]T is the IFS vector at time . Indeed, equation (1) holds
assuming that at time no discrete transition is fired and that all speeds vj() are
continuous in .
The enabling state of a continuous transition tj defines its admissible IFS vj. In particular,
three cases are alternatively possible.

If tj is not enabled then vj =0.

If tj is strongly enabled, then it may fire with any firing speed vj [V'j,V j].
If tj is weakly enabled, then it may fire with any firing speed vj [V'j,V''j], where the
upper bound V''j on the firing speed is such that V''j Vj and depends on the flow
entering the set of input continuous places (c) tj that are empty. In fact, tj cannot
remove more fluid from any empty input continuous place p than the quantity
entered in p by other transitions.

The computation of the IFS of enabled transitions is not a trivial task. We set up in the
following Subsection 3.4 a linear—algebraic formalism to do this. Here we simply discuss
the net evolution, assuming that the IFS are given.
We say that a macro-event occurs when either cases hold:
1. a discrete transition fires, thus changing the discrete marking and enabling (or

disabling) a continuous transition;
2. a continuous place becomes empty, thus changing the enabling state of a continuous

transition from strong to weak.
Definition 3.5 [Continuous transition firing] Let k and k+1 be the occurrence times of
two consecutive macro-events as defined above; we assume that within the interval of
time [k, k+1) the IFS vector is constant and denoted v(k). The continuous behaviour of an

FOHPN for [k, k+1) is described by

)(m)(m
))((vC)(m)(m

k
dd

kkcck
cc

3.4 Admissible IFS vectors
We use linear inequalities to characterize the set of all admissible firing speed vectors S.

Each IFS vector v S represents a particular mode of operation of the system described by
the net. As discussed in detail in the subsequent Subsection 3.5, the system operator may
choose, among all possible modes of operation, the best one according to a given
objective.

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 99

The set of admissible IFS vectors form a convex set described by linear equations.

Definition 3.6 [Admissible IFS vector] Let N, m be an FOHPN system with nc

continuous transitions and incidence matrix C. Let

TE(m) Tc (TN(m) Tc) be the subset of continuous transitions enabled (not enabled) at
m,

PE(m) = { p Pc | mp =0 } be the subset of empty continuous places.
Any admissible IFS vector v = [v1 , ..., vnc]T at m is a feasible solution of the following linear
set:

cjj

T
jj

jj

jjj

jjj

Tt0v)e(

)m(Pp0v)t,p(C)d(

)m(Tt0v)c(
)m(Tt0'Vv)b(
)m(Tt0vV)a(

E
t

N

E

E

Ej

 (2)

Apart from the non-negativity constraint (e), the total number of constraints that define this

set is: 2 card{TE(m)} + card{TN(m)} + card{PE(m)}. The set of all feasible solutions is denoted

S(N,m).

Note that constraints of the form (2.a), (2.b) and (2.c) follow from the firing rules of

continuous transitions. Constraints of the form (2.d) follow from (1), because if a continuous

place is empty then its fluid content cannot decrease. Note that if V'i=0, then the constraint

of the form (2.b) associated to ti reduces to a non-negativity constraint on vi.

3.5 Control
In the previous section we have shown how appropriate linear inequalities can be used to

define the set of all admissible firing speed vectors S. Each vector v S represents a

particular mode of operation of the system described by the net, and among all possible

modes of operation, the system operator may choose the best one according to a given

objective. Some examples are given in the following.

Maximize flows. In an FOHPN we may consider as optimal the solution v* of (2) that
maximizes the performance index J= 1T· v, which is of course intended to maximize
the sum of all flow rates. In the manufacturing domain this may correspond to
maximizing machines utilization.

Maximize outflows. In an FOHPN we may want to maximize the performance index
J=cT· v, where

cj=
transitionsendogeneouanisif

transitionexogenousanisif

j

j
t0

t1

In the manufacturing domain this may correspond to maximizing throughput.

Minimize stored fluid. In an FOHPN we may want to minimize the derivative of the

marking of a place p Pc. This can be done by minimizing the performance index J=cT·
v, where

Petri Net: Theory and Applications 100

otherwise

if

0
ppt)t,p(Cc

)c()c(
jj

j

In the manufacturing domain this may correspond to minimizing the work-in-process.
Note that this approach has several advantages with respect to other approaches proposed
in the literature, e.g., (Dubois et al., 1994), where an iterative algorithm is given to determine
one admissible vector. In fact, we can explicitly define the set of all admissible IFS vectors in
a given macro-state and not just compute a particular vector. Then, we compute a particular
(optimal) IFS vector solving a Linear Programming Problem (LPP), rather than by means of
an iterative algorithm, whose convergence properties may not be good.
However, the above control procedure still suffers from a serious drawback. In fact, the set

S corresponds to a particular system macro-state. Thus, our optimization scheme can only
be myopic, in the sense that it generates a piece-wise optimal solution, i.e. a solution that is
optimal only in a macro-period.
At present, we are looking for alternative solutions that are not myopic, but this is still an
open issue. We believe that the approach used in (Bemporad et al., 2004) to optimally
control CPNs could be be successfully applied also in the case of FOHPNs, but we still have
to verify this conjecture.

4. Modelling and simulation of supply chains
This section shows the efficiency of FOHPNs in modelling and controlling at the operational
level large and complex systems such as SCs.

4.1 The SC system description
The SC structure is typically described by a set of facilities with materials that flow from the
sources of raw materials to manufacturers and onwards to assemblers and consumers of
finished products. SC facilities are connected by transporters of materials, semi-finished
goods and finished products. More precisely, the SC entities can be summarized as follows.
1. Suppliers: a supplier is a facility that provides raw materials, components and semi-

finished products to manufacturers that make use of them.
2. Manufacturers and assemblers: manufacturers and assemblers are facilities that transform

input raw materials/components into desired output products.
3. Logistics and transporters: storage systems and transporters play a critical role in

distributed manufacturing. The attributes of logistics facilities are storage and handling
capacities, transportation times, operation and inventory costs.

4. Distributors: distributors are intermediate nodes of material flows representing agents
with exclusive or shared rights for the marketing of an item.

5. Retailers or customers: retailers or customers are sink nodes of material flows.
Here, part of the logistics, such as storage buffers, is considered pertaining to
manufacturers, suppliers and customers. Moreover, transporters connect the different stages
of the production process.
The dynamics of the distributed production system is traced by the flow of products
between facilities and transporters. Because of the large amount of material flowing in the
system, we model a SC as a hybrid system: the continuous dynamics models the flow of
products in the SC, the manufacturing and the assembling of different products and its

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 101

storage in appropriate buffers. Hence, the levels of buffers accommodating products are
represented by continuous states describing the amount of fluid material that the resources
store. Moreover, we consider also discrete events occurring stochastically in the system,
such as:
1. the blocking of the raw material supply, e.g. modeling the occurrence of labor strikes,

accidents or stops due to the shifts;
2. the blocking of transport operations due to the shifts or to unpredictable events such as

jamming of transportation routes, accidents, strikes of transporters, etc.;
3. the beginning and the end of a request from a SC facility.

4.2 A modular SC model based on FOHPNs
This section recalls a modular approach using FOHPNs to model SCs based on the idea of
the bottom-up approach (Zhou & Venkatesh, 1998). Such a method can be summarized in
two main steps: decomposition and composition. Decomposition involves dividing a system
into several subsystems. As shown in (Dotoli et al., 2007), in SCs this division can be
performed based on the determination of distributed system facilities (i.e., suppliers,
manufacturers, assemblers, transporters, distributors, buffers and customers). All these
subsystems are modelled by FOHPNs. Finally, composition involves the interacting of these
sub-models into a complete model, representing the whole SC.
In the following we present the FOHPN models of the elementary subsystems composing a
generic SC.

4.2.1 The inventory management model
Inventory management addresses two fundamental issues: when a stock should replenish
its inventory and how much it should order from suppliers for each replenishment (Chen et
al., 2005). Inventory systems with independent demand can use Fixed Order Quantity
(FOQ) policies that manage inventory by placing an order of fixed size whenever the
inventory position of a stock falls to a pre-specified level (Vollmann et al., 2004). In this
paper we manage input buffers of manufacturers and distributors by a FOQ policy with
finite lead time and fixed reorder level. The basic quantities of such an inventory
management strategy are: the fixed order quantity Q, the lead time, i.e., the delay between
placing an order and receiving the goods in stock; the demand D, i.e., the number of units to
be supplied from stock in a given time period and the reorder level R, i.e., the new orders take
place whenever the stock level falls to R.
Figure 1(a) shows the FOHPN model for the input buffers (Furcas et al., 2001) managed by
the FOQ policy. The continuous place pB denotes the input buffer of finite capacity CB and
p’B represents the corresponding available capacity. Thus, at each time instant, with no
ambiguity in the notation, we can write mB+m’B=CB. We assume that the buffer can receive
demands from different facilities and can require the goods from different transporters.
Each demand is modelled by a continuous transition tDi with i=1,…,m so that the demand to

be fulfilled is Di=C(tDi)Q’i. When mB>0 a transition tDi with i 1,…,m may fire at the firing

speed C(tDi)=vi, reducing the marking of the place pB with a constant slope viQ’i. As soon as
mB falls below the level RB (or, equivalently, the marking m’B goes over CB–RB) the

immediate transition t1 is enabled. When t1 fires, place pC Pd becomes marked and performs
the choice of the input facility to which new materials/products are requested by enabling

one of the transitions tTi with i=1,…,n. If a particular transition tTi with i 1,…,n is selected

Petri Net: Theory and Applications 102

and fires after the firing delay D(tTi)= i, Qi products are received in the buffer and CB–RB–Qi

units are restored in the buffer capacity. Typically, transitions tTi can represent a transport
operation and place pC selects the transport with minimum transport time among the
available ones.
In the following we apply the FOQ policy to different facilities composing the SC and
corresponding to input buffers. Note that output buffers are not managed by the FOQ policy
since they are devoted just to providing the requested material.

p’B

tT
ntT

1

tD
1 tD

m

pC

pB

Q1
Qn

t1

Q’1

Q’m

Q’m

Q’1

CB - RB

CB 0

CB - RB -Q1 CB - RB -Qn

…

…

(a)

p’k pk

t’k

tk pB p’B

tj

tT

0 CB

Q Q

Q
Q

(b)
Fig. 1. The FOHPN models of an input buffer managed by FOQ policy (a) and a supplier

(b).

4.2.2 The supplier module
The supplier is modelled as a continuous transition and two continuous places (see places
pB, p’B and transition tj in Fig.1(b)). The continuous transition tj models the arrival of raw

material in the system at a bounded rate vj that belongs to the interval vj [Vj,min,Vj,max]. We

consider the possibility that the providing of raw material is blocked for a certain period.

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 103

This situation is represented by a discrete event modelled by two exponentially distributed
transitions and two discrete places (pk and p’k). In particular, place pk represents the operative

state of the supplier, and p’k Pd is the non-operative state (see Fig.1(b)). The blocking and
the restoration of the raw material supply correspond to the firing of transitions tk and t’k,
respectively. The continuous place pB models the raw material buffer of finite capacity CB,
and p’B represents the corresponding available capacity. For the sake of clarity, in Fig. 1(b)
we also report transition tT that, as discussed later (see Section 4.2.4), models the transport
operation that corresponds to the withdrawal of material from the buffer.

Fig. 2. The FOHPN models of a manufacturer or assembler.

4.2.3 The manufacturer and assembler module
Manufacturers and assemblers are modelled by the FOHPN shown in Fig. 2. More precisely,
the continuous places pBi and p’Bi with i=2,…n describe the input buffers and the
corresponding available capacity, respectively. Each buffer stores the input goods of a
particular type. Analogously, the continuous places pB1 and p’B1 model the output buffer.
The production rate of the facility is modelled by the continuous transition tj with the

assigned firing speed vj [Vj,min,Vj,max]. Moreover, the firing speed can be optimized
according to a given objective function.

4.2.4 The logistic modules
The logistics of SCs are composed by buffers, transporters and distributors.
The buffer modules are described in the inventory management model and in the supplier,
manufacturer and assembler modules.

Petri Net: Theory and Applications 104

The FOHPN model of transporters is reported in Fig. 3(a). The transporters connecting the
different facilities are modelled by a set of discrete deterministic timed transitions tTi with
i=1,…,n. Each transition describes the transport of items of a particular type from a facility

to a subsequent one in a constant time interval i=D(tTi). The control places pC1,…,pCn Pd
determine the choice of only one type of material to transport among the available set. In
addition, place p1 Pd disables the remaining transitions. Moreover, the random stop of the
material transport is represented by two places pk,p’k Pd and two exponentially distributed
transitions tk,t’k TE.

p’k pk

t’k

tk

tT
1

pC1

. . .

pC2 pCn

tT
n

t1 t2 t3

tT
2

p1

(a)

pBp’B tj
pF

Q

CB – RB - Q

CB – RB

CB 0

Q’

Q’ Q’

(b)
Fig. 3. The FOHPN models of transporters (a) and a retailer (b).

The model of the distributors is represented by an input buffer managed by the FOQ
system. Hence, the model is similar to the FOHPN represented in Fig. 1(a) where each
continuous transition tDi , with i=1, …, m, is substituted by a deterministic timed transition
representing a transport operation.

4.2.5 The retailer module
The FOHPN model of a retailer is reported in Fig. 3(b). It is a constituted by an input buffer
pB managed by the FOQ policy with a finite lead time and stochastic demand. Hence, the
model is similar to the FOHPN represented in Fig. 1(a) where all the continuous transitions
tDi with i=1,…,m are substituted by one or more exponential transitions modelling the
stochastic demand of the consumers. Moreover, the continuous place pF denotes the system
output and collects all the products obtained by the retailer.

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 105

4.3 An application example of SCs
To illustrate the modelling technique, we consider the SC depicted in Fig. 4 composed by
three suppliers S1, S2 and S3, two manufacturers M1 and M2, one distributor D1, two
retailers R1 and R2 and eight logistics service providers T1 to T8 that suitably connect the SC
facilities. We assume that the system produces a product brand C, ordered by both retailers.
Such product is obtained by two manufacturers that receive the input components of type A
and B by the suppliers. Moreover, we assume that the SC is managed by the well-known
Make To Stock (MTS) policy (Viswanadham & Raghavan, 2000). This means that the system
is managed by a push strategy, so that end customers are satisfied from a stock of inventory
of finished goods.

 Logistics 2

 Stage 2

 Stage 4

 Logistics 3

Supplier
S1

Supplier
S2

Transporter
T2

Transporter
T3

Manufacturer
M1

Manufacturer
M2

Transporter
T5

Transporter
T6

BA

C

Stage 3

Distributor
D1

Transporter
T7

Transporter
T8

Retailer
R1

Retailer
R2

Supplier
S3

Transporter
T1

Transporter
T4

A B

Stage 1

Logistics 1

A B A B

C

C C

C C

C C

Fig. 4. The SC considered in Section 4.3.

Petri Net: Theory and Applications 106

Fig. 5. The FOHPN model of the SC in Fig. 4.

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 107

The whole system is modelled by merging all the elementary modules described in the
previous section. The resulting FOHPN is reported in Fig. 5, where each facility module is
depicted within dashed boxes. The production is determined by the firing of the continuous
transitions t1,t2,t3 that describe the input of the raw materials that can be interrupted just by
stochastic events. Consequently, under this control technique, each input buffer is managed
by the FOQ strategy. Moreover, if the input buffer of manufacturer M1 (M2) requires a
particular product, a request is sent to the transporter.

4.3.1 Simulation and optimization
The SC dynamics is analyzed via numerical simulation using the data reported in Table 1,

where we can read the manufacturer production rates range, the range of transportation

speeds and the average firing delays of discrete stochastic transitions. Table 2 shows further

data necessary to completely describe the system, namely the initial markings of continuous

places, the buffer capacities for the inventories of each stage and the values of the reorder

levels and fixed order quantities.

In order to analyze the SC behavior, some basic performance indices are assumed
(Gershwin, 2002, Viswanadham, 2000):
1. the system throughput T, i.e., the average number of products obtained by the retailers

in a time unit;
2. the average system inventory SI, i.e., the average amount of products stored in all the

system input buffers during the run time TP;
3. the lead time LT=SI/T that is a measure of the time spent by the SC in converting the

raw material into final products.

Continuous transitions Discrete transitions

 [Vmin, Vmax] Exponential
Average

firing delay
(hours)

Timed
Firing
delay

(hours)

t1 t5 t7 [2, 4] t22 t40 2 t53 1

t2 t3 t4 [3, 5] t16 t26 t34 3 t42 t43 2

t6 [4, 6] t10 t14 t18 4 t47 t48 2
t8 [0,7] t24 t28 t32 4 t52 t54 2
t9 [0,6] t36 t38 4 t44 t45 3

t20 t30 t41 5 t46 t49 3

t12 6 t50 t51 3

t13 18
t21 t31 19

t11 t15 t19 20

t25 t29 t33 20

t37 t39 20

t17 t27 t35 21

t23 22

Table 1. Firing speeds and average firing delay of continuous and discrete transitions

Petri Net: Theory and Applications 108

Initial markings
Product

units
Capacities Reorder levels

Fixed Order
quantities

m1 m5 m11 m15 20 C1,C5,C11,C15=100 R1=18 Q1,Q6=50

m23 m25 20 C23,C25=100 R2,R3,R4=25 Q2=45

m31 m37 m39 20 C31 =150 C37,C39=70 R5,R6=15 Q3=55

m3 m9 m13 15 C3,C9,C13=100 R7,R8=20 Q4=40

m7 m27 25 C7,C27=100 R9=30 Q5=60

m17 m19 m29 30 C17,C19,C29=100 R10,R11=10 Q7=30

m33 30 C33=150 Q8=25

m21 35 C21=100 Q9=2

m35 m41 0 C35=120 Q10=5

Table 2. Initial marking of odd continuous places, capacities and edge weights.

The FOHPN model has been implemented and simulated in the well-known Matlab
environment (The Mathworks, 2006). Indeed, such a matrix-based software appears
particularly appropriate for simulating the FOHPN dynamics based on the matrix
formulation of the marking update described in Section 3. In particular, the chosen software
program is able to integrate modelling and simulation of hybrid systems with the solution
of constrained optimization problems, i.e., the IFS vector choice within the set of admissible
values by optimizing a particular objective function.
In more detail, after defining the system parameters and the initial marking, the main
simulation program first selects the value of each transition timer set point, then determines
the set of IFS admissible vectors and solves the optimization program by a suitable Matlab
routine; it subsequently determines the next macro-event to occur using an appropriate
routine that singles out the enabled transitions. Hence, the simulation determines the next
marking with the matrix formulation of the marking update described in Section 3, and
finally updates the set point of all transitions so that the next macro-period may be
simulated.
All the indices assessing the performance of the SC dynamics are estimated by simulation
runs of a time period TP=480 hours and 1000 independent replications. Moreover, the
simulations are performed in two operative conditions, denoted OCi with i=1,2 and each
operative condition OCi corresponds to a different choice of the IFS vectors within the set of
admissible values.

First Operative Condition (OC1). At each macro-period the IFS vector v is selected so as to
maximize the sum of all flow rates (see first item in Section 3.5)

Second Operative Condition (OC2). At each macro-period the IFS vector v is selected so as
to minimize the stored volume (see third item in Section 3.5)

The main results of the numerical simulations we carried out are summarized in Table 3. In
particular, OC1 provides the best performances in terms of system throughput. This result is
not surprising because in such operational condition the goal was exactly that of
maximizing the sum of all flow rates. Moreover, Table 3 shows the average inventories in
the two operative conditions. The values show that the SC is able to keep stocks at a
satisfactorily high level, so that the demand is satisfied and inventory is not excessive. In
particular, as expected, OC1 corresponds to the highest inventories and OC2 to the lowest

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 109

stocks. Finally, Table 3 reports the obtained lead times in the two conditions, showing that
the obtained LT values in OC1 are greater than those obtained in OC2, since the former case
corresponds to a higher productivity.

OC1 OC2

T
units/h

SI
units

LT
hours

T
units/h

SI
units

LT
hours

2.04 1203 589 1.92 817 425

Table 3. The performance indices.

Summing up, a different choice of the production and work rates (as in the two cases OC1
and OC2) let us manage the different performance indices of the SC, i.e. the system may be
forced to evolve in an optimal way, e.g. while maximizing the flow rates or minimizing the
inventory.

5. Conclusions
In this paper we focused our attention on a particular hybrid PN model called FOHPN, that
is based on the fluidification of discrete PNs, and whose main feature is that the
instantaneous firing speed of continuous transitions keeps constant during each macro-
period. In the first part of the paper we discuss in detail the advantages of fluidification, and
provide a brief survey of the most important formalisms within the hybrid PN framework.
Finally, we showed how FOHPNs can be efficiently used to model SC, and how interesting
optimization problems can be solved via numerical simulation, by simply solving on-line a
certain number of LPPs.

6. References
Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G. (1995). Modelling

with Generalized Stochastic Petri Nets, John Wiley & sons, 1995.
Alla, H. & David, R. (1998). “A modeling and analysis tool for discrete events systems:

continuous Petri Nets”, Performance Evaluation, Vol. 33, No. 3, pp. 175-199.
Alur, R., Courcoubetis, C., Henzinger, T.A. & Ho, P.H. (1993). “Hybrid Automata: an

Algorithmic Approach to the Specification and Verification of Hybrid Systems“,
Lecture Notes in Computer Science, Springer Verlag, Vol. 736, pp. 209-229.

Amer-Yahia, C., Zerhouni, N., Ferney, M. & El Moudni, A. (1997). “Modelling of Biological
Systems by Continuous Petri Nets”, Proc. 3rd IFAC Symp. Modelling and Control in
Biomedical Systems, Warwick, UK.

Amer-Yahia, C. & Zerhouni, N. (2001). “ State equation and Stability for a Class of
Continuous Petri Nets. Application to the Control of a Production System”, Studies
in Informatics and Control, Vol. 10, No. 4, pp. 301-317.

Andreu, D., Pascal, J.C. & Valette, R. (1996). “Events as a key of a batch process control
system”, Proc. CESA'96, Symp. On Discrete Events and Manufacturing Systems, Lille,
France, 1996.

Petri Net: Theory and Applications 110

Balduzzi, F., Giua, A. & Seatzu, C. (2001). “Modelling and Simulation of Manufacturing
Systems Using First-Order Hybrid Petri Nets”, Int. J. of Production Research, Vol. 39,
No. 2, pp. 255-282.

Balduzzi, F., Giua, A. & Menga, G. (2000). “First-Order Hybrid Petri Nets: a Model for
Optimization and Control”, IEEE Trans. Robotics and Automation, Vol. 16, pp. 382-
399.

Beamon, B.M. (1999). “Measuring Supply Chain Performance”, International Journal of
Operations and Production Management, vol. 19, pp. 257-292, 1999.

Bemporad, A., Júlvez, J., Recalde, L., Silva, M. (2004). “Event-driven optimal control of
continuous Petri nets”, Proc. 43th IEEE Conf. on Decision and Control, Atlantis,
Paradise Island, Bahamas.

Champagnat, R., Esteban, P., Pingaud, H. & Valette, R. (1998). “Modeling and Simulation of
a Hybrid System Through PR/TR PN-DAE Model, Proc. 3rd Int. Conf. on
Automation of Mixed Processes, Reims, France.

Chen, H. & Hanisch, H.-M. (1998). “Hybrid net condition/event systems for modeling and
analysis of batch processes“, Proc. 3rd Int. Conf. on Automation of Mixed Processes,
Reims, France.

Chen, H., Amodeo, L., Chu, F. & Labadi, K. (2005). “Modeling and performance evaluation
of supply chains using batch deterministic and stochastic Petri nets”, IEEE
Transactions on Automation Science and Engineering, vol. 2, no. 2, pp. 132-144.

David, R. & Alla, H. (1987). “Continuous Petri Nets", Proc. 8th European Workshop on
Application and Theory of Petri Nets, Zaragoza, Spain.

David, R. & Alla, H. (2005). Discrete, continous and hybrid Petri nets, Springer, Berlin,
Heidelberg.

Demongodin, I. & Koussoulas, N.T. (1998). “Differential Petri Nets: Representing
Continuous Systems in a Discrete-Event World”, IEEE Trans. on Automatic Control,
Vol. 43, No. 4, pp. 573-579.

Demongodin, I., Caradec, M. & Prunet, F., (1998). “Fundamental Concepts of Analysis in
Batches Petri Nets”, Proc. 1998 IEEE Int. Conf. on Systems, Man, and Cybernetics, San
Diego, CA,USA.

Demongodin, I. & Giua, A. (2002). “Some analysis methods for continuous and hybrid Petri
nets”, Proc. IFAC World Congress, Barcelona, Spain

Desrochers, A., Deal, T.J. & Fanti, M.P. (2005). “Complex-Valued Token Petri nets”, IEEE
Transactions on Automation Science and Engineering, vol. 2, no. 4, pp. 309-318.

Dubois, E., Alla, H. & David, R. (1994). “Continuous Petri Net with Maximal Speeds
Depending on Time”, Proc. 15th Int. Conf. on Application and Theory of Petri Nets",
Zaragoza, Spain.

Dotoli, M., Fanti, M.P., Giua, A. & Seatzu, C. (2007). “First-order hybrid Petri nets. An
application to distributed manufacturing systems”, Nonlinear Analysis. Hybrid
Systems, in press.

Dotoli, M., Fanti, M.P., Meloni, C., & Zhou, M.C. (2005). “A Multi-Level Approach for
Network Design of Integrated Supply Chains”, International Journal of Production
Research, vol. 43, no. 20, pp. 4267-4287.

Dotoli, M., Fanti, M.P., Meloni, C. & Zhou, M.C. (2006). “Design and Optimization of
Integrated E-Supply Chain for Agile and Environmentally Conscious

Modelling Systems by Hybrid Petri Nets: an Application to Supply Chains 111

Manufacturing”, IEEE Transactions on Systems Man and Cybernetics, part A, Vol. 36,
No. 1, pp. 62-75.

Flaus, J.-M. (1997). “Hybrid Flow Nets for Batch Process Modeling and Simulation”, Proc.
2nd IMACS Symp. On Mathematical Modeling, Vienna, Austria.

Flaus, J.-M. & Alla, H. (1997). “ Structural analysis of hybrid systems modelled by hybrid
flow nets“, Proc. European Control Conference, Brussels, Belgium.

Furcas, R., Giua, A., Piccaluga, A. & Seatzu, C. (2001). “Hybrid Petri net modelling of
inventory management systems”, European Journal of Automation APII-JESA, vol. 35,
no. 4, pp. 417-434.

Gaujal, B. & Giua, A. (2004). “Optimal stationary behavior for a class of timed continuous
Petri nets”, Automatica, vol. 40, no. 9, pp. 1505--1516.

Genrich, H.J. & Schuart, I. (1998). “Modeling and verification of hybrid systems using
hierarchical coloured Petri Nets, Proc. 3rd Int. Conf. on Automation of Mixed Processes,
Reims, France.

Gershwin S.B. (2002). “Manufacturing Systems Engineering”, Copyright S. Gershwin,
Cambridge, MA, USA.

Giua, A. Pilloni, M.T., & Seatzu, C. (2005). “Modeling and simulation of a bottling plant
using hybrid Petri nets”, Int. J. of Production Research, vol. 43, no. 7, pp. 1375-1395.

Giua, A. & Usai, E. (1998). “Modeling hybrid systems by high-level Petri nets”, European
Journal of Automation APII-JESA, vol. 32, no. 9-10, pp. 1209-1231.

Júlvez, J., & Boel R. (2005). “Modelling and controlling traffic behaviour with continuous
Petri nets”, Proc. 16th IFAC World Congress, Prague, Czech Republic.

Júlvez, J., Recalde, L. & Silva, M. (2002). “On deadlock-freeness analysis of autonomous and
timed continuous mono-T semiflow nets”, Proc. 41th IEEE Conf. on Decision and
Control, Las Vegas, USA.

Júlvez, J., Recalde, L. & Silva, M. (2003). “On reachability in autonomous continuous {P}etri
net systems“, Lecture Notes in Computer Science, Springer Verlag, vol. 2679, pp. 221-
240.

Júlvez, J., Jimènez, E., Recalde, L. & Silva, M. (2004). “Design of observers for timed CPN
systems“, Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, The Hague, The
Netherlands.

Lefebvre, D. (2000). “Estimation of the production frequencies for manufacturing systems”,
IMA J. of Management Mathematics, vol. 11, no. 4.

Mahulea, C., Giua, A., Recalde, L., Seatzu, C. & M. Silva, M., (2006a). “Optimal control of
timed continuous Petri nets via explicit MPC”, Lecture Notes in Computer Science,
Springer Verlag, vol. 341, pp. 383-390.

Mahulea, C., Recalde, L. & M. Silva, M. (2006b). “On performance monotonicity and basic
servers semantics of continuous Petri nets”, 8th Int. Workshop on Discrete Event
Systems, Michigan, USA.

Mahulea, C., Ramirez Treviño, A., Recalde, L., & Silva, M. (2007). “Steady state control
reference and token conservation laws in continuous Petri net systems”, IEEE
Trans. on Automation Science and Engineering, in press.

Murata, T. (1989). “Petri Nets: Properties, Analysis and Applications”, Proceedings IEEE, vol.
77, pp. 541-580.

Petri, C.A. (1962). “Kommunikation mit Automaten (Communication with automata)”,
Ph.D. Thesis.

Petri Net: Theory and Applications 112

Puri, A. & Varaiya, P. (1996). “Decidable Hybrid Systems“, Computer and Mathematical
Modeling, vol. 23, no. 11-12, pp. 191-202.

Silva, M., Teruel, E., & Colom, J. M. (1996). “Linear algebraic and linear programming
techniques for the analysis of net systems”, Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, Lecture notes in Computer Science, vol. 1491, pp. 309-373,
Springer.

The MathWorks Inc., Matlab Release Notes For Release 14. Natick, MA, 2006.
Trivedi, K.S. & Kulkarni, V.G. (1993). “FSPNs: Fluid Stochastic Petri Nets”, Lecture Notes in

Computer Science, Springer Verlag, vol. 691, pp. 24-31.
Valentin-Roubinet, C. (1998). “Modeling of hybrid systems: DAE supervised by Petri Nets.

The example of a gas storage”, Proc. 3rd Int. Conf. on Automation of Mixed Processes,
Reims, France.

Viswanadham, N. (2000). “Analysis of manufacturing enterprises”, Kluwer Academic
Publishers, Boston, MA, USA.

Viswanadham, N. & Gaonkar, R.S. (2003).“Partner Selection and Synchronized Planning in
Dynamic Manufacturing Networks”, IEEE Transactions on Robotics and Automation,
vol. 19, no. 1, pp. 117-130.

Viswanadham, N. & Raghavan, S. (2000). “Performance Analysis and Design of Supply
Chains: a Petri Net Approach”, Journal of the Operational Research Society, vol. 51, pp.
1158-1169.

Vollmann, T.E., Berry, W.L., Whybark, D.C. & Jacobs, F.R., Manufacturing Planning and
Control Systems for Supply Chain Management, Irwin/Mc Graw Hill, New York, 2004.

Zhou, M.C. & Venkatesh, K. (1998). “Modeling, Simulation and Control of Flexible
Manufacturing Systems. A Petri Net Approach”, World Scientific, Singapore.

6

Modeling and Analysis of Hybrid Dynamic
Systems Using Hybrid Petri Nets

Latéfa Ghomri1 and Hassane Alla2

1University Aboubekr Belkaïd
2University Joseph Fourier

1Algeria,
2France

1. Introduction
Hybrid dynamic systems (HDSs) are currently attracting a lot of attention. The behavior of

interest of these systems is determined by the interaction of a continuous and a discrete

event dynamics. The hybrid character of a system can owe either to the system itself or to a

discrete controller applied to a continuous system. Several works have been devoted to the

modeling of HDSs. These topics were tackled from three different angles. The first kind of

models are tools initially conceived for continuous systems that were adapted to be able to

deal with switched systems. This approach consists of integrating the event aspect within a

continuous formalism. Introducing commutation elements in the Bond-graph formalism is

an example of this approach. The second kind of models is discrete event systems tools that

were extended for HDSs modeling. In this approach, a continuous aspect is integrated in

discrete event formalism. An example of such formalism is hybrid Petri nets. The last kind

of formalisms are hybrid models, they combine explicitly a discrete event model and a

continuous model. The most known model of this category is hybrid automata (HA). This

model presents a lot of advantages. The most important is that it combines, explicitly, the

basic model of continuous systems, which are differential equations, with the basic model of

discrete event systems, which are finite state automata, which facilitate considerably its

analysis. The existence of automatic tools for some classes of HA reachability analysis, such

as HyTech1 confer to this formalism a great analysis power. Most verification and controller

synthesis techniques use HA as the investigation tool. This makes that the analysis of

several hybrid systems formalisms is made after their translation in HA.

In this chapter, we consider the extension of PN formalism, initially a model for discrete

event systems, so that it can be used for modeling and control of HDS. The systems studied

correspond to discrete event behaviors with simple continuous dynamics. PNs were

introduced, and are still used, for discrete event systems description and analysis (Murata,

1989). Currently, much effort is devoted to adapting this formalism so that it can deal with

1 HyTech: http://www-cad.eecs.berkeley.edu/_tah/HyTech/

Petri Net: Theory and Applications 114

HDSs, and many hybrid PN formalisms were conceived (Demongodin et al 1993;

Demongodin & Koussoulas, 1998).

The first steps in this direction were taken by David & Alla (1987), by introducing the first

continuous PN model. Continuous PNs can be used either to describe continuous flow

systems or to provide a continuous approximation of discrete event systems behavior, in

order to reduce the computing time. The marking is no longer given as a vector of integers,

but as a real number vector. Thus, during a transition firing, an infinitesimal quantity of

marking is taken from upstream places and put in the downstream places. This involves

that transition firing is no longer an instantaneous operation but is now a continuous

process characterized by a speed. This speed can be compared to a flow rate. All continuous

PN models defined in the literature differ only in the manner of calculating instantaneous

firing speeds of transitions.

From continuous PNs, the hybrid PN formalism was defined by David & Alla (2001), and

since it is the first hybrid formalism to be defined from PNs, the authors, simply, gave it the

name of hybrid PN. This formalism combines in the same model a continuous PN, which

represents the continuous flow, and a discrete T-timed PN (Ramchandani, 1974), to

represent the discrete behavior.

We consider in this chapter the extensions of the PN formalism in the direction of hybrid

modeling. Section 2 briefly presents hybrid dynamic systems. Section 3 presents the hybrid

automata model. In section 4 we discuss continuous Petri nets. These models are obtained

from discrete PNs by the fluidification of the markings. They constitute the first steps in the

extension of PNs toward hybrid modeling. Then, Section 5 presents two hybrid PN models,

which differ in the class of HDS they can deal with. The first one is used for deterministic

HDS modeling, whereas the second one can deal with HDS with nondeterministic behavior.

Section 6 addresses briefly the general control structure based on hybrid PNs. Finally,

Section 7 gives a conclusion and the main future research.

2. Hybrid dynamic systems
A dynamic system is especially characterized by the nature of its state variables. The latter

can be of two kinds:

Continuous state variables are variables defined on a real interval. Time, temperature,

pressure, liquid level in a tank…, are examples of continuous variables.

Discrete variables take their values in a countable set such as natural numbers or

Boolean numbers. The state of a valve, the number of parts in a stock, are examples of

discrete variables

Figure 1 illustrates the difference between the evolutions of a continuous and a discrete
variable as a function of time.
According to the kind of state variables, we can classify the dynamic systems in three

categories: continuous systems are systems which exclusively require continuous state

variables for their modeling. Discrete event dynamic systems are systems whose modeling

requires only discrete state variables. And finally hybrid dynamic systems which are

modelled at the same time by continuous state variables and discrete state variables.

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 115

Fig. 1. –a- X is a continuous variable, it takes its values in the real interval [X0 X1]. –b- Y is a
discrete variable which takes its values in the countable set {y1, y2, y3, y4, y5, y6}

2.1 Continuous dynamic systems
Chronologically, continuous dynamic systems were the first to be studied. They treat
continuous values, like temperature, pressure, flow… etc. The modeling of the dynamic
evolution of these systems as a function of time is represented mathematically with
continuous models such as: recurrent equations, transfer function, state equations … etc, but
the model which is generally used are differential equations of the form:

)x(f=x (1)

Where X is a vector representing the state of the system. The behavior of a continuous

system is characterized by the solution of the differential equation)x(f=x starting from

an initial state x0.
A continuous dynamic system is said to be linear if it is modelled by a differential equation
of the form.

x.A=x (2)

Where A is a constant matrix.

2.2 Discrete event dynamic systems
A discrete events system is described by discrete state variables, which take their values in a
countable set. This kind of systems could be either autonomous (not timed) or timed. In the
case of an autonomous discrete event system, the variable time is just symbolic, i.e. it is just
used to define a chronology between the occurrences of events. In the case of a timed
discrete event system, time is explicitly used to define the date of events occurrence. It can
be either continuous (dense) or discrete. In the first case, to each event is attached the

moment of its occurrence which takes its values in , the set of real numbers. In the second
case of timed discrete event systems time is only defined on a discrete set. The execution of a
sequence of instructions on a processor belongs to this last category, since the executions

X

t

Y

t

X0

X1

y1
y2
y3
y4
y5
y6

-a- -b-

Petri Net: Theory and Applications 116

may take place only with signals of the processor clock. A discrete event system can be
modeled by automata, Petri nets, Markov chains, (max, +) algebra … etc.

2.3 Hybrid dynamic systems
For a long time the automatic separately treated the continuous systems and the discrete
event systems. For each one of these two classes of systems exist a theory, methods and tools
to solve problems which arise for them. However, the boundaries between the world of
continuous systems and that of discrete event systems, are not so clear, the majority of real
life systems present at the same time continuous and discrete aspects. Indeed, the majority
of the physical systems cannot be classified in one of the two homogeneous categories of the
dynamic systems; and state variables of interest may contain simultaneously discrete and
continuous variables. In this case the systems are known as hybrid dynamic systems, they
are heterogeneous systems characterized by the interaction of a discrete dynamics and a
continuous dynamics. The rise of these systems is relatively new, it dates from the 1990s.
Figure 2 illustrates the structure of a hybrid dynamic system.

Fig. 2. Structure of a hybrid dynamic system

Research on hybrid dynamic systems is articulated around three complementary axes
(Branicky et al. 1994; Petterson & Lennartson, 1995): Modeling relates to the formalization of
precise models that can describe their rich and complex behavior. Analysis consists in
developing tools for their simulation, validation and verification. Control consists in the
synthesizing of a discrete (or hybrid) controller on the terms of the performance objectives.
In the sequel, we are interested in a particular class of hybrid dynamic systems; it is the class
of continuous flows systems supervised by discrete events systems. This class comprises
positive and linear per pieces hybrid systems. A hybrid system is said to be positive if its
state variables take positive values in time. And it is said to be linear per pieces if the
differential equations describing its continuous evolution are all linear. The particular
interest given to the study of this class of systems has two principal reasons. First, it is

Continuous
 process

Continuous
towards discrete

Discrete towards
continuous

Interface

Discrete event
process

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 117

sufficiently rich to allow a realistic modeling of many problems. Then, its relative simplicity
allows an easy design of tools and models for its description and its analysis. Examples of
this class of hybrid systems are given below.

2.4 Illustrative examples
As previously mentioned, a system is said to be hybrid if it implies continuous processes
and discrete phenomena. By extension, we can state that physical systems whose certain
components vary very quickly (quasi–instantaneously) compared to the others, are also
hybrid. A hybrid modeling for this category of physical systems is possible and gives often
good results compared to a discrete modeling . We will present two examples of hybrid
systems here, the first is a system of tanks implying a (continuous) flow of liquid and the
second is a manufacturing system treating a flow of products (discrete dynamics
approached by a continuous description).
Example 1: Figure 3 represents a system of tanks. It comprises two tanks which are emptied
permanently (except if they are empty) with a flow of 5 and 7 litres/second respectively.
The tanks are also supplied in turn, with a valve whose flow is 12 litres/second. The latter
has two positions, when it is in position A, it feeds tank 1 and it supplies tank 2 if it is in
position B. To commutate between positions A and B the valve needs 0.5 seconds, during
which, the valve behaves as if it is in its precedent position.

Fig. 3. System of tanks

Example 2: Figure 4 represents a manufacturing system comprising 3 machines and 2
buffers. This system is used to satisfy a periodic request, with a period of 20 time units.
Machines 1 and 2 remain permanently operational, while machine 3 can be stopped for the
regulation of manufacturing rate. The actions of stopping and starting machine 3 take 0.5
time units. The machines have manufacturing rates of 10, 7, and 22 parts/time units,

d3 = 7

A B

d1 = 12

d2 = 5

Petri Net: Theory and Applications 118

respectively. In this system the flow of parts is supposed to be a continuous process, while
the state of machine 3 as well as the state of the request is discrete variables.

Fig. 4. Manufacturing system

3. Hybrid automata
To integrate the discrete and continuous aspects within the same model, three approaches
were presented in the literature. They depend on the dominant model, i.e. the model from
which the extension was carried out. We distinguish:

The continuous approach which consists in integrating the discrete aspect within a
continuous formalism. It is an extension of formalisms of continuous systems.

The discrete approach which consists in integrating the continuous aspect within a
discrete events model. The integration of the continuous aspect within the Petri nets
model is an example of this approach.

The hybrid approach which explicitly combines a continuous model and a discrete
event model in the same structure. The hybrid aspect is dealt with in the interface
between the two parts. An example of such formalisms is hybrid automata that we will
present below.

Hybrid automata were introduced by Alur et al. (1995) as an extension of finite automata,
which associate a continuous dynamics with each location. It is the most general model in
the sense that it can model the largest continuous dynamics variety. A HA is defined as
follows.
Definition 1 (Hybrid Automata): An n-dimensional HA is a structure HA = (Q, X, L, T, F,
Inv) such that:
1. Q is a finite set of discrete locations;

2. X Rn is the continuous state space; it is a finite set of real-valued variables; A

valuation v for the variables is a function that assigns a real-value v(x) R to each
variable

x X; V denotes the set of valuations;
3. L is a finite set of synchronization labels;

Machine 1

Machine 2

Machine 3

Buffer 1 Buffer 2

Periodic request

20
time units

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 119

4. is a finite set of transitions; Each transition is a quintuple T = (q, a, , , q’) such that:

q Q is the source location;

a L is a synchronization label associated to the transition;

 is the transition guard, it is a predicate on variables values; a transition can
be taken whenever its guard is satisfied;

 is a reset function that is applied when taking the corresponding transition;

q’ Q is the target location;
5. F is a function that assigns to each location a continuous vector field on X; While in

discrete location q, the evolution of the continuous variables by the differential equation

)x(f=x q (3)

This equation defines the dynamics of the location q;
6. Inv is a function that affects to each location q a predicate Inv (q) that must be satisfied

by the continuous variables in order to stay in the location q;
A state of a HA is a pair (q, v) consisting of a location q and a valuation v.
This model present a lot of advantages: It combines, explicitly, the basic model of
continuous systems, which are differential equations, with the basic model of discrete event
systems, which are finite state automata, this facilitate considerably its analysis; It can model
the largest variety of HDSs; It has a clear graphical representation; indeed, the discrete and
continuous parts are well identified; The existence of automatic tools for HA reachability
analysis, such as HyTech, CMC2, UPPAAL3 and KRONOS4, confer on this formalism a great
analysis power. Most verification and controller synthesis techniques use HA as the
investigation tool. Several problems, related to analysis of HA properties, could be
expressed as a reachability problem. Note that this problem is generally undecidable unless
strong restrictions are added to the basic model, to obtain special sub-classes of HA
(Henzinger et al. 1995). The existence of computer tools allowing the analysis of the
reachability problem for some classes of HA makes that the analysis of several hybrid
systems formalisms is made after their translation in HA (Cassez and Roux, 2003; Lime and
Roux 2003).

4. Continuous Petri nets
Continuous Petri nets were introduced by David and Alla, (1987) as an extension of

traditional Petri nets where the marking is fluid. A transition firing is a continuous process

and consequently the state equation is a differential equation. A continuous PN allows,

certainly, the description of positive continuous systems, but it is also used to approximate

modeling of discrete event systems (DES). The main advantage of this approximation is that

the number of events occurring is considerably smaller than for the corresponding discrete

PN. Moreover, the analysis of a continuous PN does not require an exhaustive enumeration

of the discrete state space.

2 CMC: http ://www.lsv.ens-cachan.fr/_fl/cmcweb.html/
3 UPPAAL : http ://www.uppaal.com/
4 KRONOS: http ://www-verimag.imag.fr/TEMPORISE/kronos/

Petri Net: Theory and Applications 120

As for classical (discrete) Petri nets. We can define two types of continuous Petri nets,
namely: autonomous continuous Petri nets and non-autonomous continuous Petri nets.
An autonomous continuous PN allows a qualitative description of continuous dynamic
systems, it is defined as follows:
Definition 2 (autonomous continuous Petri Net): An autonomous continuous Petri net
is a structure PN = (P, T, Pre, Post, M0) such that:
1. P = {P1, P2, …, Pm} is a nonempty finite set of m places ;
2. T = {T1, T2, …, Tn} is a nonempty finite set of n transitions ;
3. Pre : P x T R + is the pre-incidence function that associates a positive rational

weight for each arc (Tj, Pi) ;
4. Post : P x T R + is the post-incidence function that associates a positive rational

weight for each arc (Pi, Tj) ;
5. M0 : P R + in the initial marking ;
The following notations will be considered in the sequel:
°TJ is the set of input places of the transition TJ.
T°J is the set of output places of the transition TJ.
As in a classical PN, the state of a continuous PN is given by its marking; however, the
number of continuous PN reachable markings is infinite. That brought David and Alla
(2004) to group several markings into a macro-marking. The notion of macro-marking is
defined as follows:
Definition 3 (macro-marking): Let PN be an autonomous continuous PN and Mk its
marking at time k. Mk may divide P (the set of places) into two subsets:
1. P+(Mk) : The set of places with positive marking ;
2. P0(Mk) : The set of places whose marking is null ;
A Macro-marking is the set of all markings which have the same subsets P + and P0. A
macro-marking can be characterized by a Boolean vector as follows:
V : P {0, 1}

Pi 00
1

PPsi

PPsi

i

i

The concept of macro-marking was defined as a tool that permits to represent in a finite
way, the infinite set of states (markings) reachable by a continuous PN. The number of
reachable macro–marking of an n–place continuous PN is less than or equal to 2n, even
if the continuous PN is unbounded, since each macro marking is based on a Boolean
state. A macro–marking is denoted m*j

Example 3: Let us consider again the hydraulic system of example 1, and consider that
the supplying valve is in position A. In this position only the tank 1 is supplied, it is
also emptied. While tank 2 is only emptied. The levels of liquid in tanks 1 and tanks 2
are, initially, of H1 and H2 respectively.
The continuous PN shown in Figure 5(b) describes the behavior of the system of tanks.
Note that the numerical values of the valves flows cannot be represented in an
autonomous CPN. The continuous transitions, T1, T2, and T3 represent only a positive
flow for the three valves. Places and transitions of the continuous PN are represented
with double line to distinguish them from places and transitions of a discrete PN. The
firing of transitions T1, T2 and T3 represents material flow through the valves. The
marking of places P1 and P2 represents quantities of liquid in tank 1 and tank 2

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 121

respectively. Figure 5(c) represents the reachability graph; it contains all macro-marking
reachable by the continuous PN.

Fig. 5. a) System of tanks, b) Continuous PN describing the system of tanks, c) Reachability
graph for the continuous PN

From the basic definition of autonomous continuous PNs, several researchers have defined
several timed continuous PNs formalisms. Among these formalisms, we will present the
first model to be defined which is always the most studied model, which is constant speed
continuous Petri nets. It is defined as follows:
Definition 4 (Constant speed continuous Petri nets): A constant speed continuous Petri net
is a structure PNC = (PN, V) such that:

– PN is an autonomous continuous PN.
– V : T R+

Tj Vj

is a function that associates to each transition Tj its maximal firing speed Vj.
In a CCPN, a place marking is a real number that evolves according to transitions
instantaneous firing speeds. An instantaneous firing speed vj(t) of a continuous transition Tj

can be seen as the flow of markings that crosses this transition. It lies between 0 and Vj for
the transition Tj. The concept of validation of a continuous transition is different from the
traditional concept met in discrete PNs. We consider that a transition of a CCPN can have
two states:
1. The state strongly enabled, if

 Pi °Tj, Pi P+

Here, the transition Tj is fired at its maximal firing speed Vj;
2. The state weakly enabled, if

A B

Tank 1 Tank 2

H1
H2

P1 P2

T1

T2 T3

H1 H2

m*2 =
1
0

m*1 =
1
1

m*3 =
0
1

m*4 =
0
0

T3 T4

T4 T3

a) b)

c)

Valve 1

Valve 2 Valve 3

Petri Net: Theory and Applications 122

 Pi °Tj, Pi P0

In this case, the transition Tj is fired at a speed vj lower than its maximum firing speed.
The state equation in a CCPN is as follows:

)t(v.W=m (4)

Where W is the PN incidence matrix. This implies that the evolution in time of the state of a
CCPN is given by the resolution of the differential equation (4), knowing the instantaneous
firing speed vector. The evolution of a CCPN in time is given by a graph whose nodes
represent instantaneous firing speed vectors. Each node is called a phase. In addition, each
transition is labeled with the event indicating the place whose marking becomes nil and
causes the changing of the speed state. The duration of a phase is also indicated. For more
details, see (David and Alla, 2004).
Example 4: Let us consider again the system of tanks, where we associate to each valve its
flow rate (figure 6 (a). Moreover, we consider that tank 1 and tank 2 contain initially 70 litres
and 36.4 litres respectively. This system is described with the CCPN in Figure 6 (b). The only
difference between this model and the autonomous continuous PN in Figure 5 (b) is that
with each transition is associated a maximal firing speed.
Since all the places are initially marked, all the instantaneous firing speeds are equal to their
maximal value. The marking balance for each place is given by the input flow minus the
output flow; then:

At initial time t = 0, v1 = 12, v2 = 7, v3 = 3, then 1m = 7 and 2m = 7.

Markings m1 and m2 evolve initially according to the following equations, respectively:
m1 = 70 + 7.t
m2 = 36.4 – 7.t
At time t = 5.2 the marking m2 becomes nil, which defines a new dynamics for the system, as
follows:

v1 = 12, v2 = 5, v3 = 7, then 1m = 7 and 2m = 0.

And after time 5.2, m1 = 106.4 + 7.t and m2 = 0
This last dynamics is a stationary behavior for the modelled system.
The curves in Figure 7(a) and 7(b) schematize marking m1 and m2 dynamics. These plots are
made with the software SIRPHYCO5. This tool permits the simulation of discrete,
continuous and hybrid PNs. The evolution of this model in time can be described thanks to
the evolution graph in Fig. 6-c-. It can be noticed that the marking of place P1 is unbounded
while the number of nodes is finite and equal to 2.

5. Hybrid Petri nets
Continuous PNs are used for modeling continuous flow systems; however, this model does

not allow logical conditions or discrete behavior modeling (e.g. a valve may be open or

closed). For permitting modeling of discrete states, hybrid PNs were defined (David and

Alla, 2001). In a hybrid PN, the firing of a continuous transition describes the material flow,

5 SIRPHYCO: http://www.lag.ensieg.inpg.fr/sirphyco/

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 123

while the firing of a discrete transition models the occurrence of an event that can, for

example, change firing speeds of the continuous transitions.

We find in the literature several types of continuous PN (David and Alla, 2004) and several

types of discrete PN integrating time (Ramchandani, 1974; Merlin, 1974). In the autonomous

hybrid model definition, there are no constraints on discrete and continuous part types. The

most used, which is also the first formalism to be defined, is simply called the hybrid Petri

net. It combines a CCPN and a T - timed PN. The combination of these two models confers

to the hybrid model a deterministic behavior. It is used for the performance evaluation of

hybrid systems.

D-elementary hybrid PNs are another type of hybrid PN formalism. They combine a time

PN and a constant speed continuous PN (CCPN) (David and Alla 1987). Time PNs are

obtained from Petri nets by associating a temporal interval with each transition. They are

used as an analysis tool for time dependent systems.

Fig. 6. a) System of tanks, b) Constant speed continuous PN describing the system of tanks,
c) the evolution graph for the constant speed continuous PN

However, hybrid PNs were defined before D-elementary hybrid PNs. In order to simplify

the presentation, we will start by defining D-elementary hybrid PNs.

A B

Tank 1 Tank 2

70
36.4

P1 P2

T1

V1 = 12

70 36.4

a) b)

Valve 1
d1 = 12

Valve 2
d2 = 5

Valve 3
d3 = 7

T2

V2 = 5
T3

V3 = 7

(12, 5, 7)

(12, 5, 0)

t0 = 0, M0 = (70, 36.4)

t1 = 5.2, M1 = (106.4, 0)

c)

Petri Net: Theory and Applications 124

5.1 D-elementary hybrid Petri nets
Definition 5 (D-elementary hybrid PNs): A D–elementary hybrid PN is a structure PNH =
(P, T, Pre, Post, h, S, V, M0) such that:
1. P = {P1, P2, …, Pm} is a finite set of m places;
2. T = {T1, T2,…, Tn} is a finite set of n transitions;

We denote PD = {P1, P2,…, Pm’} the set of m’ discrete places (denoted by D–places and

drawn as simple circles) and TD {T1, T2,…,Tn’} the set of the n’ discrete transitions

(denoted by D–transitions and drawn as black boxes). PC = P – PD and TC = T – TD

denote respectively the sets of continuous places (denoted by C–places and drawn with

double circles) and continuous transitions (denoted by C–transitions and drawn as

empty boxes).

1. Pre : P x T N and Post : P x T N are the backward and forward incidence
mappings. These mapping are such that:

 (Pi, Tj) PC x TD, Pre (Pi, Tj) = Post (Pi, Tj) = 0;

And: (Pi, Tj) PD x TC, Pre (Pi, Tj) = Post (Pi, Tj);

This means that no arcs connect C–places to D–transitions, and if an arc connects a
D–place Pi to a C–transition Tj, the arc connecting Tj to Pi must exist. This appears
graphically as loops connecting D–places to C–transitions.
These two conditions mean that, in a D–elementary hybrid PN, only the discrete
part may influence the continuous part behavior, the opposite never occurs (the
continuous part has no influence on the discrete part).

2. h: P T {C, D} defines the set of continuous nodes, (h (x) = C) and discrete nodes,
(h (x) = D).

3. S: TD R+ x (R+ { }) associates to each D–transition Tj its firing interval [j, j].

4. V: TC R+ associates a maximal firing speed Vj to each C-transition Tj.
5. M0 is the initial marking; C–places contain non-negative real values, while D–places

contain non-negative integer values.

0 1 2 3 4 5 6 7 8 9 10
0

6

12

18

24

30

36
P2

time

m
ar

ki
ng

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

P1

time

m
ar

ki
ng

Fig.7. Temporal evolution of the marking of the PN in Fig. 6-b-

Example 5: Consider the system of tanks and suppose that valves 1 may be into the two
positions A and B. The passage from position A to position B takes 0.5 seconds, but the
commutation decision can be delayed indefinitely for the design of a control. This is

why the time interval [0.5] is associated with the discrete transition T1. On the other

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 125

hand, the passage from position B to position A takes place after exactly 10 seconds
from the last commutation (A B). This is why the time interval [10, 10] is associated
with the discrete transition T2. The D-elementary hybrid PN in Figure 8 describes this
hybrid system.
As a D-elementary hybrid PN combines a discrete and a continuous PN, its state at time
t is given by the states of the two models. The strong coupling of these models makes it
complex to analyze the hybrid model. Translating it into a hybrid automaton permits
the use of tools and techniques developed for HA analysis. Ghomri et al. (2005)
developed an algorithm permitting translation of a D-elementary hybrid PN into a HA.
In the sequel, we briefly present this algorithm.

Fig.8. D-elementary hybrid Petri net describing the system if tanks

5.2 Translating D-elementary hybrid Petri nets into hybrid automata
It is, generally, very complex to translate a hybrid PN into a hybrid automaton because
of the strong coupling between discrete and continuous dynamics. D-elementary hybrid
PNs represent only a class of hybrid PNs, which permits modeling of frequently met
actual systems: i.e. the class of continuous flow systems controlled by a discrete event
system. The translation algorithm consists in separating the discrete and the continuous
parts. Then, the translation into an automaton is performed in a hierarchical way. The
algorithm is based on three steps as follows:
1. Isolate the discrete PN of the hybrid model and construct its equivalent timed

automaton. Locations of the resulting timed automaton are said macro-locations.
2. Construct the hybrid automaton corresponding to each macro-location of the timed

automaton resulting from the previous step.
3. Replace transitions between macro-locations by transitions between internal

locations.
We detail these three steps through the following example.
Example 6: Consider the D-elementary HPN in Figure 8. Its discrete part is set again in
Figure 9(a). The timed automaton corresponding to this time PN is represented in
Figure 9(b).
To each location of the timed automaton, corresponds a marking of the time PN, and
therefore a configuration of the CCPN. For instance, if P1 is unmarked, T3 may be

P3 P4

T3
V3 = 12

70 36.4

T4
V4 = 5

T6
V6 = 7

T5
V6 = 12

P1 P2

T1

[0.5]

T2
[10 10]

Petri Net: Theory and Applications 126

eliminated from the CCPN in figure 8. The location S2, for example, corresponds to the
time PN marking vector [m1 m2]T = [0 1]T, for which the continuous part is reduced to
CCPN in Figure 10(a). This CCPN may be translated into the HA in Figure 10(b).

Fig.9. time Petri net and its equivalent time automaton

After the second step of the translation algorithm, we obtain a hierarchical form of a HA,
formed from macro-locations each containing a HA describing the continuous dynamics in
it. A generic representation of the model resulting after step 2 of the algorithm is given in
Figure 11.

Fig.10. Constant speed continuous Petri net and its equivalent hybrid automaton

The location number of the resulting hybrid automaton depends on two parameters: (i) the
location number of the TA describing the discrete part behavior, denoted as n; (ii) the
continuous place number of the continuous part, denoted as m. The first parameter n is
finite for a bounded time PN; although the propriety of boundedness is undecidable for a
time PN, there exist restrictive sufficient conditions for its verification (Berthomieu and Diaz
1991). This first parameter defines the macro-location number. The second parameter m
defines the number of locations inside a macro-location. As mentioned before, we can
always model the behavior of a continuous PN by a HA with a finite number of locations,

36.4
P3 70

T4
V4 = 5

P4

T6
V6 = 7

T5
V6 = 12

S21

5-=m 3

5=m 4

m3 0

S22

0=m 3

5=m 4

true

m3 = 0

a) b)

P1 P2

T1

[0.5]

T2
[10 10]

S1

1=x1

True

S2

1=x1

x1 10

x1 0.5 , x1 := 0

x1 = 10 , x1 := 0
a) b)

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 127

even if the continuous PN is unbounded; this number is least or equal to 2m. We have
therefore a resulting HA that contains at the most (n.2m) locations. This is an important
result since it is generally impossible to bound a priori the number of reachable states in a
hybrid PN.

Fig.11. Generic schematization of model resulting from the second step of the algorithm

5.3 Hybrid Petri nets
A hybrid PN is distinguished from a D-elementary hybrid PN by the fact that the former
contains a T-timed PN for modeling the discrete part—timed fixed values are associated
with each transition—whereas the latter model contains a T-timed PN.
Definition 6 (hybrid Petri Net): A hybrid PN is a structure PNH = (P, T, Pre, Post, h, S, V,
M0) such that :

1. P = {P1, P2, …, Pm} is a finite set of m places. P = PD PC;

2. T = {T1, T2,…, Tn} is a finite set of n transitions. T = TD TC;

3. Pre : P x T N and Post : P x T N are the backward and forward incidence
mappings.

These mapping are such that:

 (Pi, Tj) PD x TC, Pre (Pi, Tj) = Post (Pi, Tj);

1. h : P T {C, D} defines the set of continuous nodes, (h (x) = C) and discrete nodes, (h
(x) = D).

2. S : TD Q+ associates to each D-transition Tj a duration dj.

3. V : TC R+ associates a maximal firing speed Vj to each C-transition Tj.

S1 S2

S11 S12

S13

S21 S22

S23

Petri Net: Theory and Applications 128

4. M0 is the initial marking.
The condition on backward and forward incidence mappings means that, if an arc connects
a D-place Pi to a C-transition Tj , the arc connecting Tj to Pi must exist. And vice versa. This
appears graphically as loops connecting D-places to C-transitions. It means that a discrete
token cannot be split by a continuous transition. The hybrid PN model, as defined below,
allows modeling of the logical conditions, but it allows also the modeling of the
transformation of a continuous flow into discrete parts and vice versa.
Example 7: Let us consider again the system tanks, and suppose that we have the following
control strategy: we want to keep the liquid levels in tank 1 at least than a fixed level Hmax.
The hybrid PN in Figure 12 describes a system that satisfies this specification on the level in
tanks.

Fig.12. Hybrid Petri net describing the system of tanks with a restriction on its marking.

The weights (Hmax – 3.5) associated with the arcs correspond to the minimal thresholds of
tank 1 taking into account the delay 0.5.

6. Controller synthesis
The controller synthesis of HDS drifts directly from Ramadge and Wonham (1989) theory.
They synthesize, from a discrete event system, a controller whose role is to forbid the
occurrence of certain events. The controller decision to forbid an event depends only on the
past of the system, i.e. of events, which already occurred. The aim is that the system coupled
to its controller respects some given criteria.
Many researches were devoted to the problem of controller synthesis autonomous discrete
event systems. This problem is thus well solved for this category of systems. The number of
works relating to real time system controller synthesis is also very significant (Altisen et al.
2005). However, few works were devoted to solving this problem for the HDS (Wong-Toi,
1997; Antsaklis et al. 1993; Lennartson et al. 1994; Peleties & DeCarlo, 1994).

P3 P4

T3
V3 = 12

70 36.4

T4
V4 = 5

T6
V6 = 7

T5
V6 = 12

P1 P2

T1

d1 = 0.5

T2
d2 = 10

Hmax-3.5
Hmax-3.5

Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets 129

The controller synthesis of a dynamic system (autonomous, timed or hybrid) is generally
based on three steps:
1. the behavioral description of the system (called an open loop system) by a model;
2. the definition of specifications required for this behavior;
3. the synthesis of the controller which restricts the model behavior to the required one,

using a controller synthesis algorithm.

These algorithms consider the open system S and the specification on its behavior . and try

to synthesize the controller C so that the parallel composition of S and C(S || C) satisfies .
These algorithms use traditionally automata (finite state automata, timed automata and
hybrid automata) because of their ease of formal manipulation; however, a model like HPN
is preferred in the first step (the step of behavior description).
Consider an open loop Hybrid system; the aim of controller synthesis is to construct a
controller that satisfies the specifications for the closed loop hybrid system. These
specifications imply, generally, restrictions on the closed loop hybrid system. They can be
either (1) specifications on the discrete part (this type of specification forbids certain discrete
states); or (2) specification on the continuous part; in this case the specification has the form
of an invariant that the continuous state must satisfy. This implies that the continuous state
of the closed loop hybrid system is restricted to a specified region. The open problem is
synthesizing the guards associated with the controllable transitions so that the specifications
are respected leading to a maximal permissive controller.

7. Conclusion
Some extensions of PNs permitting HDS modeling were presented here. The first models to
be presented are continuous PNs. This model may be used for modeling either a continuous
system or a discrete system. In this case, it is an approximation that is often satisfactory.
Hybrid PNs combine in the same formalism a discrete PN and a continuous PN. Two hybrid
PN models were considered in this chapter. The first, called the hybrid PN, has a
deterministic behavior; this means that we can predict the occurrence date of any possible
event. The second hybrid PN considered is called the D-elementary hybrid PN; this model
was conceived to be used for HPN controller synthesis.
Controller synthesis algorithms consider the open system S and the specification on its

behavior and try to synthesize the controller C, so that the parallel composition of S and

C(S || C) satisfies . These algorithms use traditionally automata (finite state automata,
timed automata and hybrid automata) because of their ease of formal manipulation;
however, this model is not the most appropriate for behavior description. For coupling the
analysis power of hybrid automata with the modeling power of hybrid PNs, an algorithm
permitting translation of D-elementary hybrid PNs into hybrid automata was presented.
Our future research aim is to generalize the existing results to the control of hybrid systems
modeled by hybrid PNs.

8. References
Altisen, K. ; Bouyer, P. Cachat, T. Cassez F. & Gardey G. (2005) Introduction au contrôle des

systèmes temps-réel, Proceedings of modélisation des systèmes réactifs, (MSR’05),
France

Petri Net: Theory and Applications 130

Alur, R. Courcoubetis, C. Halbwchs, N. Henzinger, T.A. Ho, P. H. Nicolin, X. Olivero, A.
Sifakis J. & Yovine, S. (1995) The Algorithmic Analysis of Hybrid Systems,
Theoretical computer science, Vol. 138, pp.3-34

Antsaklis, P.J. Stiver, J.A. Lemmon, M.D. Hybrid system modeling and autonomous control
systems, in: R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel, (1993) Hybrid
Systems, in: Lecture Notes in Computer Science, vol. 736, Springer-Verlag, pp. 366–
392.

Berthomieu, B. & Diaz, M. (1991) Modelling & verification of time dependent systems using
time Petri nets, IEEE Transactions on software engineering, vol. 17(3), pp 259-273

Branicky, M. Borkar, V. Mitter, S. (1994) A unified framework for hybrid control, in
proceedings of IEEE Conference and Decision and Control, CDC, Lake Buena Vista,
USA, pp. 4228–4234.

Cassez, F.; & Roux, O.H. (2003) Traduction Structurelle des Réseaux de Petri Temporel vers
les Automates temporisés, Proceedings of 4ième colloque Francophone sur la modélisation
des systèmes réactifs, (MSR’03), Metz, France

David, R.; & Alla, H. (2001) On Hybrid Petri Nets. Discrete Event Dynamic systems: Theory &
Applications. vol. 11, pp. 9-40

David, R.; & Alla, H. (2004) Discrete, Continuous, & Hybrid Petri Nets, Springer
David, R.; Alla, H. (1987) Continuous Petri Nets, Proceedings of the 8th European Workshop on

Application & Theory of Petri Nets, Saragossa, Spain, pp. 275-94
David, R.; Alla, H. Autonomous, (1990) Timed and Continuous Petri Nets, Proceedings of the

11th Int. Conf. on Application & Theory of Petri Nets, Paris, France, pp. 367-386
Ghomri, L. Alla H. & Sari, Z. (2005) Structural & hierarchical translation of hybrid Petri nets

in hybrid automata, Proceedings of IMACS’05, Paris, France
Henzinger,; T.A. Kopke, P.W. Puri, A. & Varaiya. P. (1995) What's decidable about hybrid

automata? Proceedings of 27th Annual Symposium on Theory of Computing, ACM Press,
373-382

Lennartson, B. Egardt, B. Tittus, M. (1994) Hybrid systems in process control, in: Proc. of the
33rd CDC, Orlando, FL, USA, 1994, pp 3587–3592

Merlin, P.; (1974) A study of the recoverability of computer system, PhD thesis, Dep.
comput. Sci, Univ. California, Irvine,

Murata, T. (1989) Petri-nets: properties, analysis and applications, in proceedings of IEEE 77
(4) 541–580.

Peleties, P. DeCarlo, R.A. (1994) A modeling strategy for hybrid systems based on event
structure, Discrete Event Dynamic Systems: Theory and Applications 30 (9) 1421–
1427

Pettersson, S. Lennartson, B. (1995) Hybrid modelling focused on hybrid Petri nets, in: 2nd
European Workshop on Real-Time and Hybrid Systems, Grenoble, France, pp. 303–
309.

Ramadge, J.G.; & Wonham, W.M. (1989) The Control of Discrete Event Systems, Proceedings
of the IEEE, vol. 77(1), 81-97

Ramchandani, C., (1974) Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets. PhD thesis, MIT, Cambridge, Feb

Wong-Toi, H.; (1997) The synthesis of controllers for linear hybrid automata. In Proceedings
of the 36th Conference on Decision & Control. IEEE Computer Society Press 4607 – 4612

7

Use of Petri Nets for Modeling an Agent-Based
Interactive System: Basic Principles and Case

Study
Houcine Ezzedine and Christophe Kolski

LAMIH, University of Valenciennes
France

1. Introduction
Several architecture models of interactive systems have been put forward by researchers

over the past twenty years. Two main types of architecture can be distinguished:

architectures with functional components: Langage (Foley & Vandam, 1982), Seeheim (Pfaff,

1985) and ARCH (Bass et al., 1991) and architectures with structural components: PAC

(Coutaz, 1987), PAC-Amodeus (Nigay, et al., 1997), MVC (Goldberg, 1983), AMF (Tarpin-

Bernard & David, 1999), H4 (Guittet, 1995),…. The approaches currently used in interactive

system design adopt a modular structuring aimed towards a better apprehension of the

reactivity, flexibility, maintainability and re-use. Agent-based approaches are promising in

this way.

In the agent-based architecture proposed, we suggest using a division into three functional

components: the application agents which handle the field concepts and cannot be directly

accessed by the user; the interactive agents (or interface agents, or presentation agents) which ,

unlike the application agents, are in direct contact with the user (they can be seen by the

user); the dialogue control agents which are also called mixed agents (Ezzedine & Trabelsi,

2005). Each agent therefore plays a role within its group; this role can be expressed in the

form of the services it offers in the interactive system.

We use so-called agent Petri Nets (PN) to model a priori the services offered by each

interface agent: a service is defined as being a quadruplet S ={E, C, R, P}, with E: the event

which triggers the service, C: the conditions to be met in order to perform this service, R: the

resources necessary for the service to be performed, P: the property of this service, which

can be either an operation concerning the agent alone (with or without a change of state for

the interactive agents), or a call for the service of another agent. The succession of various

calls for services gives rise to the succession of page-screens in the human-computer

interface.

This chapter begins with a state of the art about the use of Petri nets in Human-Machine

Interaction. Then we explain the problem relating to agent-based architectures of interactive

systems, and we propose a solution for the modeling of the interface agents of such

architectures. Lastly, we illustrate our approach by a case study.

Petri Net: Theory and Applications 132

2. Use of PN in the field of human-computer interaction
Petri nets allow the modeling and visualization of behaviors comprising parallelism,
synchronization and resource sharing. Their power lies in their formal aspect; they allow the
modeling of discrete systems evolving in parallel, which represents a great contribution for
the modeling of various facets relating to human-machine interactions, particularly in
complex systems. Various complementary approaches are found on this subject in the
literature, based on the use of various types of PN in the field of human-machine
interaction, a subject which has been developed ever since the end of the Eighties (Williem
& Biljon, 1988). They are given here in a list which is not intended to be exhaustive, but
rather to be representative.
Thus, PN were used: (1) before design phases (with an aim of human-computer interaction
specification), for task modeling (also called prescribed or theoretical task); it corresponds to
the task, envisaged by the designer(s), to be carried out by the user and/or the machine (a
priori modeling); (2) for the modeling of the human activities (a posteriori modeling); this
modeling follows the phase of evaluation of the interactive system in a real or simulated
situation with users. By a confrontation of the a priori and a posteriori models, and by an
analysis of the differences between these two complementary sets of PN, it is possible to
detect design errors, lacks of information, and so on, and to put forward proposals,
especially concerning the improvement of human-computer interaction (Abed, 1990; Abed
et al. 1992; Abed, 2001). Figure 1 shows an example of modeling with PN of the human-
machine interaction planned for part of an interactive application relating to a post of
transport network supervision (Ezzedine et al., 2003). The places in the PN represent the
actions carried out by the user whereas the transitions represent the reactions from the user
interface; the graphic components present on it (bottom left part on figure 1) rise directly
from the elements described on the PN (right part of figure 1).
Very important basic research was undertaken by P. Palanque, R. Bastide and their
colleagues on the use of the PN for the checking and validation of interactive systems
(Palanque & Bastide, 1990; Palanque et al., 1995; Navarre et al., 2003; Winkler et al., 2006…).
For instance, they proposed rule-based mechanisms for the automatic evaluation of PN-
based models of interactive systems (Palanque et al., 1999).
In the works on the ICO (Interactive Cooperative Objects) (Palanque, 1992; Palanque 1997)
and the TOOD method (Task Object Oriented Design) (Mahfoudhi et al., 1995; Tabary &
Abed, 2002), Object Petri nets are used to model human tasks in a HCI context and to specify
and then design object oriented interactive systems.
Ezzedine and Kolski (2005) present a method for the modeling of cognitive activity also
using object Petri nets: the method includes the recognition of the various classes of
situation (normal and abnormal) which human operators are likely to meet whilst
performing their tasks; each of these classes is described according to the characteristics of
the state of the system (Kaddouri et al., 1995).
From a description of normal and abnormal situations possible in process control
applications, Moussa et al. (2002, 2006) use interpreted Petri Nets for human-machine
dialogue specification.
Kontogianis (2003) chooses to use colored Petri nets for ergonomic task analysis and
modeling with emphasis on adaptation to system changes. Gomes et al. (2001) propose an
interesting approach based on reactive Petri nets (inherited from colored Petri nets) for
human-machine interface modeling.

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

133

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers (Vehicle)

P2: Send a message to thetravellers(IAS) :
" Please change vehicle at the next station "

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers (Regulator) :
" Exchange vehicle numbers"

P4: Vehicle number changed (vehicle)

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Network state

t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the
first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second
vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second
vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes

Exchanges between IAS, DAS, EAS

Ag ent vehicle

Please change vehicle
in the next station

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers

P2: Send a message to thetravellers (IAS):
" Please change vehicle at the next station" (Vehicle)

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers Regulator :
" Exchange vehicle numbers" (vehicle)

P4: Vehicle number changed

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Regulatio n post

Exploitation Assistance System
(EAS)

Human Regulators
t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the
first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second
vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second
vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes
Ag ent vehicle

Please change vehicle
in the next station

Decision Assistance System
(DAS)

Information Assistance System
(IAS)

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers (Vehicle)

P2: Send a message to thetravellers(IAS) :
" Please change vehicle at the next station "

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers (Regulator) :
" Exchange vehicle numbers"

P4: Vehicle number changed (vehicle)

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Network state

t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the
first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second
vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second
vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes

Exchanges between IAS, DAS, EAS

Ag ent vehicle

Please change vehicle
in the next station

P1: Click the following vehicle (Regulator)

t2: Posting vehicle characteristics (IAS)

t3: Posting the message to thetravellers

P2: Send a message to thetravellers (IAS):
" Please change vehicle at the next station" (Vehicle)

P3: Vehicle stopped

t1:Catching up of a late vehicle by an another one (EAS)

t4: Send message to the drivers Regulator :
" Exchange vehicle numbers" (vehicle)

P4: Vehicle number changed

t7: Departure of the 2nd vehicle
"Height foot"

P5: Changing driver done

Regulatio n post

Exploitation Assistance System
(EAS)

Human Regulators
t5: Send message to drivers (IAS):
" Changevehicle please "

P7: Resume the scheduleof the
first vehicle with delay

t6: Departure of the first
vehicle

P6 : End the theoretical
schedule of the second
vehicle

P8: Normal situation (EAS)

t8: End the fir st vehicle schedulet9: End of the second
vehicle schedule

Rreturn of the network to a normal state

Incident on the network

Case of driver and vehicle changes
Ag ent vehicle

Please change vehicle
in the next station

Decision Assistance System
(DAS)

Information Assistance System
(IAS)

Fig. 1. Human-computer interaction modeling using PN

Bernonville et al. (2006) propose a method to facilitate the re-engineering of existing
interactive software by proposing a common framework for Software Engineers and Human
Factor specialists: their method explicitly combines Petri Nets and ergonomic criteria.
To our knowledge, none of these works is interested in modeling the agents which make up
agent-based interactive systems, by establishing a direct link with the software architecture.

3. Problem of modeling related to agent-based architectures of interactive
systems
The architecture of a computer system is a set of structures, each including: components,

outside visible properties of these components and relations which the components

maintain (Bass et al., 1991). We are only interested in interactive systems: in this context, the

architecture models aim to provide a framework for the design and the realization of the

complete system, emphasizing clearly the part with which the user interacts. Existing

architectures break up the interactive system into modules and define specific roles for each

module, contributing to the correct execution of the complete system. Two main types of

architecture can be distinguished: architectures with functional components (Langage,

Seeheim and Arch) and architectures with structural components (PAC, PAC-Amodeus,

MVC…). It should also be noted that certain classifications emphasize three categories

(centralized models, distributed or agent-based model, hybrid models).
The classic models of interactive systems distinguish three essential functions (presentation,
control and application). Some models, such as the Seeheim (Pfaff, 1985) and ARCH models,
consider these three functions as being three distinct functional units. Other approaches
using structural components, and in particular those said to be distributed or agent

Petri Net: Theory and Applications 134

approaches, suggest grouping the three functions together into one unit, the agent. The
agents are then organised in a hierarchical manner according to principles of composition or
communication: for example PAC (Coutaz, 1997) or its variants, or the MVC model (Model-
View-Controller) of Smalltalk and its recent evolutions (Goldberg, 1984), AMF and its
variants (Ouadou, 1994), H4 (Guittet, 1995)…
These architecture models preach the same principle based on a separation between the
system (application) and the human-computer interface (HCI). Thus, an architecture must
separate the application and the HCI, define a distribution of the services of the interface
and define a protocol of information exchange. One of the interests in separating the
interface and the application is to make it easier to modify the interface without changing
the application (Coutaz, 1997).
The architecture adopted can be considered as being intermediate as it borrows elements for
its principles from both types of model given above at the same time whilst being functional
and structural (Ezzedine et al., 2001). In (Ezzedine et al., 2003) and (Ezzedine et al., 2005), we
proposed an architecture ensuring separation in three functional components, which we
called respectively: interface with the application (connected to the application), dialogue
controller and presentation (this component is directly linked to the user), figure 2.

User

Application agents Control agents Interface agents

Application

Service

User

Application agents Control agents Interface agents

ApplicationApplication

Service

Fig. 2. Agent-based Architecture of interactive system

These three components group together agents:

the application agents which handle the field concepts and cannot be directly accessed by
the user. One of their roles is to ensure the correct functioning of the application and the
real time dispatch of the information necessary for the other agents to perform their
task;

the control (or dialogue controller) agents which are also called mixed agents; these
provide services for both the application and the user. They are intended to guarantee
coherency in the exchanges emanating from the application towards the user, and vice
versa;

the interactive agents (or interface agents, or presentation agents); unlike the application
agents, these are in direct contact with the user (they can be seen by the user). These
agents co-ordinate between themselves in order to intercept the user commands or
requests, and to form a presentation which allows the user to gain an overall
understanding of the current state of the application. In this way, a window may be
considered as being an interactive agent in its own right; its specification describes its
presentation and the services it has to perform.

In the following part, we explain how the agents which make up such agent-based
interactive systems are modeled. We focus on the interface agents.

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

135

3. Principles of modeling by PN of interactive systems with agent-based
architecture
Initially, we will point out the basic principles of the parametrized Petri nets which inspired

our modeling approach. Then we will explain how the services of the various interface

agents of interface can be modeled.

3.1 Parametrized Petri nets
Parametrized Petri nets are classified amongst the high level PN. They allow the modelling

of dynamic systems (Gracanin et al., 1994) according to the following principle: it is possible

to link, in one parameter of these PN, a coherent set of objects or of values taken by the

objects. This makes it possible to handle sets of objects, thus reducing the complexity of the

representation.

A parameterized Petri net is a n-tuple: (C, D, Pp, T, I, O) where:

C: the set of the values of the parameters; a parameter is a class of objects or values

taken by the objects.

D: the set of all the vectors built starting from the values. In such a network, in fact the

vectors are produced or consumed (tokens).

Pp: the set of the places of the network, called parameterization descriptor.

T: the set of all the transitions from vectors representing all the actions which can be

carried out by the system.

I: the set of consumed tokens (input)

O: the set of produced tokens (output)

3.2 Modeling of interface agents according to a set of services
The concept of an agent’s service such as it was introduced by (Maoudji et al., 2001)

considers the service as an action which involves the agent itself or other agents. For a

service to be started, the agent needs:

the appearance of the trigger event

the checking of the condition in connection with the service,

the checking of some resources which may be necessary for the establishment of the

service.

Formally the service is defined by a quadruplet (Moldt et Wienberg, 1997), Figure 2,
Service={E, C, R, P} where:

E: the event which triggers the service, for example a user action or a display of an

alarm or anomaly message coming from an application.

C: a condition to check in order to carry out the service, such as the exceeding of a

threshold as regards the value of one of the application’s variables, or the presence of

any risk for the application

R: the resources necessary for the service to be performed.

P: the property of the service which can be internal (the resulting action affects the

agent itself) or external (the resulting action relates to other agents); the latter will be

interpreted as an event.

Petri Net: Theory and Applications 136

P1

P2

T1

C : Condition

R : resource for the treatment

P: internal
property

P : external
property

E : Event

State1

State 2

P1

P2

T1

C : Condition

R : resource for the treatment

P: internal
property

P : external
property

E : Event

State1

State 2

Fig. 2. Modeling of an agent’s service (Maoudji et al., 2001)

3.3 Concept of PN used to model the agents of the interactive system (Agent PN)
Taking the concept of service of an agent introduced by (Maoudji et al., 2001) as a starting
point, we propose the modeling of the behaviour of an agent by the modeling of the set of
its services, Figure 3. The services of each agent can be represented by external actions on

Events intend for other agents

Cn

Rn

P :Internal P:External

C1

R1

P : Internal P:External

C2

R2

P :Internal P:External

e1 e2 en

e’1 e’2 e’n

Events intend for other agents

Cn

Rn

P :Internal P:External

Cn

Rn

P :Internal P:External

Cn

Rn

P :Internal P:External

Cn

Rn

P :Internal P:External

C1

R1

P : Internal P:External

C1

R1

P : Internal P:External

C1

R1

P : Internal P:External

C1

R1

P : Internal P:External

C2

R2

P :Internal P:External

C2

R2

P :Internal P:External

C2

R2

P :Internal P:External

C2

R2

P :Internal P:External

e1 e2 en

e’1 e’2 e’n

Fig. 3. Modeling of agent’s services with agent PN (Ezzedine et al., 2001)

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

137

other agents; they are then interpreted as trigger events for other agents such as e’1, e’2 and
up to e’n, or by actions on the agents themselves such as looping on the place which is at the
entry of their condition C. The service of an agent can be achieved by the execution of an
internal or external action only if the condition C is true: i.e. if the place upstream of the
condition C is marked (and thus has at least one token), and if event ei is triggered and the
resource necessary to achieve the action is available.
We distinguish three types of place in the PN agent which are:
1. An agent place: which always contains the current view of the agent (result of a service).
2. An event place: which contains an event which triggers the service.
3. An intermediate place: which contains the events bound for another agent.
If we model an interface with n agents and m services for each agent, we will obtain a less
readable PN agent, because of this and in order to mitigate the problem of the complexity of
the PN, we increase the model by the capacity to abstract the set of services of an agent in
one single form, Figure 4.

P1

P2

T1

Ca : Condition

R : resource for the treatment

P: internal
property

P : external
property

E : Event

State1

State 2

P1

P2

T1

Ca : Condition

R : resource for the treatment

P: internal
property

P : external
property

E : Event

State1

State 2

Fig. 4. Abstraction of the services of an agent.

Formally, an agent (set of n services) is defined by a quadruplet as follows:
Agent={E, C, R, P} where:

E= {e1, e2,..., ei,…, en}, set of events which trigger agent services (n events for n services).
An event is characterized by two fields: its identifier and the moment of the appearance.
For example, an alarm may be triggered when the threshold of a variable to be
supervised in an industrial process is exceeded (temperature too high in a chemical
process, late bus in a transport system…).

C= {c1, c2,..., ci, ..., cn}, set of conditions necessary for the establishment of the services.
Each service must check a condition so that it can trigger itself off. For example: an
event may appear following the triggering of an alarm. A condition can be made of
several elementary conditions. It at least includes the elementary condition: presence of

Petri Net: Theory and Applications 138

the service trigger event.

R= {r1, r2, ..., ri, ..., rp}, set of resources which may be necessary for the establishment of
the services (if the services have visible actions). A resource can be made of several
elementary resources. For example, it may be necessary to have a display screen, a
printer or another peripheral device (possibly a sound device) in order to inform the
user of the type of alarm message. The information contained in the fields of each
resource relates particularly to its size, color(s) and all kinds of information contributing
to the characteristics of the human-computer interface.

P: Properties of the services. Each service results from the execution:
1. either of a non visible action acN (an action which affects the agent itself): for

example the service which deals with the displaying of a value of a process
variable where the display service alone is involved in updating the value of
the variable in question; we then speak about an internal property of the
service.

2. or of a visible action acV (an action which relates to another agent); for example
actions of the human operator which consist in writing a message with a goal
to send it to another person, or the change of a value of a process parameter;
we then speak about an external property of the service.

A service can have two properties at the same time: in other words, following the
appearance of an event, an agent can act on itself (such as the service which is in charge of
the reactualization of a value of a variable) and on another agent at the same time (for
instance in the case of exceeding a tolerated threshold of the value of the variable); in this
case it will be necessary to generate and display an alarm message, which is the subject of
another service.
An external action can relate to several agents (for instance, sending the same message to
several agents); it will be regarded as a vector which includes the number of the action and
the list of the identifiers of the agents concerned. If several screens of the human-machine
interface are concerned with the same message, the agents of message acquisition, treatment
and display each perform a different service.

3.4 Mathematical model
A mathematical formulation of the PN agent can be put forward, using (Moldt et Wienberg,
1997) as a starting point:

An agent aj is a set Sj of n services, Sj= {s1, s2, ..., si, ..., sn}.

For each service is associated an event ei belonging to the set E of the events, E= {e1, e2,

..., ei, …, en}.

To each service, a condition ci is associated, belonging to the set C of the conditions, C=
{c1, c2, ..., ci, ..., cn}; a condition can be composed of several elementary conditions.

If the service comprises a visible action, a resource ri belonging to the set R of the
resources is necessary, R= {r1, r2, ..., ri, ..., rp}.

the set of the actions of the agent is composed of two subsets; ACV is the set of visible
actions and ACN corresponds to the set of non visible actions.
ACV = {acV1, acV2,…, acVP}, ACN= {acN1, acN2,…, acNq} with p n and q n.

We have:
Card (E) = n, Card (C) = n, Card (R) = p, Card (ACV) = p, Card (ACN) = q.
A service results from a minimum of one action (which can be visible in the form of a

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

139

display, input coming from a keyboard, a click on the mouse, speech acquisition, …, or non
visible, for instance when there are interactions between internal agents, such as the control
agents) and a maximum of two actions (visible and non visible).
The number of all the services of the agent is defined by:
Nb_Services = Card (E) = n.
The number of all the actions of the agent is defined by:
Nb_Actions = Card (ACV) + Card (ACN)= p + q.
It is included in the margin: n Nb_Actions 2×n.
We define the result of the service with a couple of actions (ACVk, ACNt), where the indices k
and t take the zero value if the service does not contain a visible action or a non visible
action. The number of the couples of actions is defined by:
Nb_Couples = Nb_Actions – Card (E)
We will order for example the couples of actions so that the couples which contain visible
and non visible actions are the first, then the couples which contain only visible actions are
in second place, while those which contain only non visible actions are in last place.
Then the services are defined by the following parameterized function (the parameter j
being the identifier of the agent):
Sj: Ej × Cj × Rj ACV × ACN.
 (ei,j; ci,j; rk,j) (acvk,j; acNt,j). j = 1,…, number of agents
 i = 1,...,n.
 0 k p such as if i p then k=i.
 else k=0.
 0 t q such as if i Nb_Couples then t=i
 else
 if i > p then t = i – p + Nb_Couples.
 else t=0.
j: identifier of the agent
i: number of the event
ACV: to express that it is a Visible action.
ACN: to express that it is a Not Visible action.
k,t: number of the action (if the service does not result by a visible action, then k=0; if the
service does not result by a non visible action, then t=0).
Then the specification of an agent aj consists in the definition of the sets Ei , Ci, Rk and the
mathematical specification of a task of an agent consists of the definition of a sequence of
triplets (ei, ci, rk) associated with their couples of actions (acvk,j; acnt,j), by chronological order
of appearance of the events.

4. Case study
The case study relates to an application of supervision of a complex process. It is supposed
that a human operator (or group of human operators) is located in a control room: he or she
must supervise it by the intermediary of an interactive system. The human operator
intervenes in various normal situations as well as in abnormal ones. In the abnormal
situations, it must intervene following the arrival of disturbances, or even anticipate them
(Stanton, 1994; Moray, 1997). It is supposed that the application relates to the supervision of
an urban transport network (such as tramways, buses...).
The architecture suggested for the interactive system consists of three modules: Application,

Petri Net: Theory and Applications 140

Control and Presentation (figure 5). Each module is composed of agents interacting between
themselves and/or with the agents of other modules. Let us recall that an agent (set of n
services) is defined by a quadruplet as follows:
Agent={E, C, R, P}.
It is the presentation module (composed of interactive agents) which we will model
according to the following scenario of disturbance:
1. An event e1 comes from a dialogue controller agent, following a disturbance in the

application.
2. There is Ac8 action of agent a1 (a request for service of the agent a1 to the agent a2),

following an analysis of the condition c1 for the execution of the action a1; this Ac8

action in its turn becomes the event release e5 for the agent a2 (for example for the
display of a message).

3. Agent a2 carries out the Ac3 action which consists in presenting the message to the user
if the resource "Window" is available.

4. The event e3 occurs; it represents the reaction of the user, following the display of the
message. It consists of an input of a text with the keyboard or an acknowledgement of
the message with the keyboard or the mouse.

5. The agent a3 carries out the Ac5 action following an event trigger e3 which can be a
return of an acknowledgement message or the validation of an action provided that c3 is
checked and that the display resource is available.

UserApplication

Application agents Control agents Interface agents

UserUserApplicationApplication

Application agents Control agents Interface agents

Fig. 5. Global view of the agent-based architecture, with arrival of a disturbance (Rehim,
2005).

While reformulating more formally, using (Moldt & Wienberg, 1997) as a source of
inspiration, the presentation module can be defined by the following elements (figure 6):
A= {a1, a2, a3}: set of the presentation agents (in the example of figure 6, all three of them are

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

141

visible to the user).
E= {e1,1; e1,2; e1,3, e2,3,; e2,1; e2,2; e3,1; e3,2}: set of events coming (1) from the agents of the
interface with the application module (via the dialogue controller agents which send e1,1 and
e1,2 events to the presentation module), such as alerts, dysfunctional events, incidents, and
so on (2) from user actions such as: commands or confirmations (e1,3; e2,3), (3) from non
visible actions which become events for other agents (e2,1; e2,2; e3,1; e3,2).
AC= { acv1,1; acv2,1; acv1,2; acv2,2; acN1,1; acN1,2; acN1,3; acN2,3; acN3,3}: set of agent actions; these
actions can be visible (acv1,1; acv2,1; acv1,2; acv2,2; acv1,3), such as the display of information on a
screen, or non visible (acN1,1; acN1,2; acN1,3; acN2,3; acN3,3), such as a request for service to other
agents.
R= {r1,1; r2,1; r1,2; r2,2; r1,3 }: set of resources (such as keyboard, mouse, windows…) necessary
for the visible actions of the agents, in order to carry out their actions (r1,1 is related to acv1,1,
r2,1 is related to acv2,1 , and so on).
C= {cv1,1; cv2,1; cv1,2; cv2,2; cN1,1; cN1,2; cN1,3; cN2,3; cN3,3}: set of conditions related to the execution of
the visible or non visible actions (cv1,1 is related to acv1,1, cv2,1 is related to acv2,1, and so on).

a1

a2

a3

acv1,1

acv1,2

e2,3
acN3,3

e1,2

e1,1 acN1,1 =e2,2

acN1,2 =e2,1

acN2,3 =e3,2

acv2,1

acv2,2

e1,3

acv1,3

ac
N

1,
3=

e 3
,1

a1

a2

a3

acv1,1

acv1,2

e2,3
acN3,3

e1,2

e1,1 acN1,1 =e2,2

acN1,2 =e2,1

acN2,3 =e3,2

acv2,1

acv2,2

e1,3

acv1,3

ac
N

1,
3=

e 3
,1

Fig. 6. Reformulated example related to the disturbance (presentation module)

For a better representation of the example visible in figure 6, one associates an agent

identifier i,j with all the information present in the example; i is the event, action or

necessary resource number; j is the agent number (from 1 to N). The possible couples

constituted with visible (acvi,j) and non visible (acNi,j) actions are obtained following the

appearance of an ei ,j event, under the conditions that ci,j is true and the ri,j resource is

available. The modeling of services of each of the three agents forming the presentation

module can be expressed as follows, with r0,j: resource not necessary for the execution of the

non visible action (acN0,j) by an agent j, and with acv0,j and aN0,j: visible and non visible

actions which are not performed by the agent j.

Agent1:
E1 = {e1,1; e2,1; e3,1}
Acv1 = {acv1,1; acv2,1}, AcN1 = {acN1,1},
R = {r1,1; r2,1},
C = {cv1,1; cv2,1; cN1,1}.

Petri Net: Theory and Applications 142

Card (E1) = 3, Card (Acv1) = 2, Card (AcN1) = 1.
Nb_Actions = Card (Acv1) + Card (AcN1) = 2+1=3.
Nb_Couples = Nb_Actions – Nb_Services = 3 – 3 = 0.
S1: E1 × C1 × R1 Acv1 × AcN1

 (e1,1; cv1,1; r1,1) (acv1,1; acN1,1)
 (e2,1; cv2,1; r2,1) (acv2,1; acN1,1)
 (e3,1; cN1,1; r0,1) (acv0,1; acN1,1)

Agent2:
E2 = {e1,2; e2,2; e3,2},
Acv2 ={acv1,2; acv2,2}, AcN2 ={acN1,2},
R2 = {r1,2; r2,2},
C2 = {cv1,2; cv2,2; cN1,2}.

Card (E2) = 3, Card (Acv2) = 2, Card (AcN2) = 1.
Nb_Actions = Card (Acv2) + Card (AcN2) = 2+1=3.
Nb_Couples = Nb_Actions – Nb_Services = 3 – 3 = 0.
S2: E2 × C2 × R2 Acv2 × AcN2

 (e1, 2; cv1, 2; r1, 2) (acv1, 2; acN1, 2)
 (e2, 2; cv2, 2; r2, 2) (acv2,2; acN1, 2)
 (e3,2; cN1, 2; r0, 2) (acv0, 2; acN1, 2)

Agent3:
E3 = {e1,3; e2, 3 },
Acv3 ={acv1, 3}, AcN3 ={acN1, 3; acN2, 3; aN3,3},
R3 = {r1, 3},
C3 = {cv1, 3; cN1, 3; cN2, 3; cN3,3}.

Card (E3) = 2, Card (Acv3) = 1, Card (AcN3) = 3.
Nb_Actions = Card (Acv3) + Card (AcN3) = 1+3=4.
Nb_Couples = Nb_Actions – Nb_Services = 4 – 4 = 0.
S3: E3 × C3 × R3 Acv3 × AcN3

 (e1, 3; cv1, 3; r1, 3) (acv1, 3; acN1, 3)
 (e2, 3; cN2, 3; r0, 3) (acv0, 3; acN2, 3)
 (e3, 3; c N3, 3; r0, 3) (acv0, 3; acN3, 3)
From the mathematical modeling above, which made it possible to formulate the

interactions of the agents in figure 6, each agent is modeled with the determination of its

inputs and outputs in terms of condition, action, event and resource necessary to achieve the

service. In figure 7, we present a model of interaction between the agents of the presentation
module of the human-machine interface.

Figure 8 shows an example of release of the service s7,1 “Change_Delay_Threshold_Vehicle”

of the agent called Traffic_State belonging to the presentation module of the human-machine

interface. Following the appearance of the event e7,1 “Delay_Threshold_Vehicle” the

interface agent Vehicle checks the corresponding condition c7,1 “Appearance of the event and

delay > 5”. If the condition is verified, the service is started; the visible action acv7,1 is

activated. The activation of this action exploits the resource r7,1 “Dialog_Box” and reveals an

alarm message bound for the human operator.

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

143

Fig. 7. Modeling of the example related to the disturbance (Rehim, 2005)

We notice, with the example presented above (figure 8), that there is no non visible action

(acN0,1) of agent 1 in transition T1, i.e. that there is no interaction with other internal agents;

but on the other hand, thanks to the visible action acv7,1, agent 1 acts on an external agent

which is the window n°2 belonging to the presentation module of the interactive system.

Petri Net: Theory and Applications 144

Message to be
transmitted

e
7,1

c7,1

acv7,1 (acN0,1)

r7,1
Box of communication

Message to be
transmitted

e
7,1

e
7,1

e
7,1

c7,1

acv7,1 (acN0,1)

r7,1
Box of communication

Fig. 8. Example of release of a service of the Traffic_State agent (Trabelsi, 2006)

4. Conclusion
Through their formal aspect and their capacity to model the dynamics of systems, Petri Nets

have been bringing complementary and significant contributions in the human-computer

interaction domain since the end of the Eighties. In this chapter, we have explained

their utility for the modeling of agents which make up interactive systems with an

architecture containing agents. A scenario made it possible to illustrate the approach

proposed.

The PN used represent a promising tool for the modeling of such interactive systems.

Their originality and their power reside in (1) their capacity to visualize the behavior of

each agent (external or internal actions), as well as (2) their capacity of abstraction

which makes it possible to keep the same information without any visual complexity,

and (3) their formal aspect also enables them to be potentially efficient at the time of the

evaluation and validation phase (which is not dealt with in this article).

There are several perspectives with this work. We are currently studying and

developing an assistance tool for the evaluation of interactive systems. This tool makes

it possible to connect to each interface agent, evaluation agents intended to analyze

their behavior at the time of situations of use. The PN must make it possible to

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

145

reconstitute the human activities performed (Trabelsi, 2006; Tran et al., 2007). A second

perspective relates to generalization with the agents of the two other modules: (1)

interface with the application, (2) dialogue controller. Another perspective relates to the

evaluation of the approach suggested in various application domains (for instance

design and evaluation web sites).

5. Acknowledgements
The authors thank the FEDER, the GRRT and the Nord-Pas de Calais region for their

financial support (SART, EUCUE and MIAOU projects). They also thank André Péninou,

Hacène Maoudji, Aïssam Rehim and Abdelwaheb Trabelsi for their contribution to various

modeling aspects described in this chapter.

6. References
Abed, M. (1990). Contribution à la modélisation de la tâche par des outils de spécification

exploitant les mouvements oculaires : application à la conception et à l'évaluation
des interfaces homme-machine. Thèse de doctorat, Université de Valenciennes et
du Hainaut-Cambrésis, septembre.

Abed, M, Bernard, J.M, Angué, J.C (1992). Method for comparing task model and activity
model. Proceedings 11th European annual conference Human Decision Making
and Manual Control, Valenciennes, France.

Tabary, D., Abed, M. (1998). TOOD: an object-oriented methodology for describing user task
in interface design and specification - An application to air traffic control. La Lettre
de l'Intelligence Artificielle, 134, pp. 107-114.

Abed, M. (2001). Méthodes et modèles formels et semi-formels pour la conception et
l’évaluation des systèmes homme-machine. Habilitation à diriger des recherches,
Université de Valenciennes et du Hainaut-Cambrésis, 02 mai 2001.

Benaïssa, M.L., Ezzedine, H., Angué, J.C. (1993). An interface Specification Method for
industrial processes. XII European annual conference on human decision making
and manual control, Kassel, Germany, juin.

Bernonville, S., Leroy, N., Kolski, C., Beuscart-Zéphir, M. (2006). Explicit combination
between Petri Nets and ergonomic criteria: basic principles of the ErgoPNets
method. Proceedings of the 25th Edition of EAM'06, European Annual Conference
on Human Decision-Making and Manual Control (September 27-29, 2006,
Valenciennes, France), PUV.

Coutaz, J. (1987). PAC, an Object-Oriented Model for Dialog Design. In: Bullinger, Hans-
Jorg, Shackel, Brian (ed.): INTERACT 87 - 2nd IFIP International Conference on
Human-Computer Interaction. September 1-4, Stuttgart, Germany. p.431-436.

David, R. & Alla, H. (2004). Discrete, continuous, and hybrid Petri Nets. 1er ed. Springer
Verlag, 2004, XXII, 524 p. Hardcover ISBN 3-540-22480-7

Ezzedine, H., Kolski, C. (2005). Modelling of cognitive activity during normal and abnormal
situations using Object Petri Nets, application to a supervision system. Cognitive,
Technology and Work, 7, pp. 167-181.

Ezzedine, H., Trabelsi, A., Kolski, C. (2006). Modelling of agent oriented interaction using
Petri Nets, application to HMI design for transport system supervision. P. Borne, E.

Petri Net: Theory and Applications 146

Craye, N. Dangourmeau (Ed.), CESA2003 IMACS Multiconference Computational
Engineering in Systems Applications (Lille, France, July 9-11, 2003), Ecole Centrale
Lille, Villeneuve D'Ascq, pp. 1-8, janvier, ISBN 2-9512309-5-8.

Ezzedine, H., Trabelsi, A., Kolski, C. (2006). Modelling of an interactive system with an
agent-based architecture using Petri nets, application of the method to the
supervision of a transport system. Mathematics and Computers in Simulation, 70, pp.
358-376.

Ezzedine, H., Trabelsi, A. (2005). From the design to the evaluation of an agent-based
human-machine interface. Application to supervision for urban transport system.
P. Borne, M. Benrejeb, N. Dangoumeau, L. Lorimier (Ed.), IMACS World Congress
"Scientific Computation, Applied Mathematics and Simulation" (July 11-15, Paris), ECL,
pp. 717-725, juillet, ISBN 2-915913-02-1.

Ezzedine, H., Maoudji, H. & Péninou A. (2001). Towards agent oriented specification of
Human-Machine Interface : Application to the transport systems. 8th IFAC
Symposium on Analysis, Design, and Evaluation of Human-Machine Systems
(IFAC-HMS 2001), pp. 421-426, Kassel, Germany, 18-20 September.

Foley, J.D & Van Dam, A. (1982). Fundamentals of Interactive Computer Graphics, Addison-
Wesley (IBM Systems Programming Series), Reading, MA.

Goldberg, A. (1980). Smalltalk-80, the interactive programming environnement. Addision-
Wesley.

Gomes, L., Barros, J.P., Coasta, A. (2001). Man-machine interface for real-time telecontrol
based on Petri nets specification. In T. Bahill, F.Y. Wand (Eds.), IEEE SMC 2001
Conference Proceedings (e-Systems, e-Man and e-Cybernetics), Arizona, USA: IEEE
Press, pp. 1565-1570.

Gracanin, D., Srinivasan, P. & Valavanis, K.P. (1994). Parametized Petri nets and their
applications to planning and coordination in intelligent systems. IEEE Transactions
on Systems, Man and Cybernetics, Vol. 24, pp. 1483-1497.

Guittet, L. (1995). Contribution à l'Ingénierie des IHM - Théorie des Interacteurs et
Architecture H4 dans le système NODAOO, Thèse de l’Université de Poitiers, 1995.

Jensen, K. (1980). Coloured Petri Nets and Invarient Method. Daimi PB 104, Aarhus
University.

Jensen, K. (1996). Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use.
2nd edition, vol n°2, Springer-Verlag.

Kontogiannis, T. (2003). A Petri Net-based approach for ergonomic task analysis and
modeling with emphasis on adaptation to system changes. Safety Science, vol. 41
n°10, pp. 803-835.

Kaddouri, S.A., Ezzedine, H., Angué, J.C. (1995). Task modelling using object Petri Nets. In
Anzaï Y., Ogawa K., Mori H. (Eds.), Symbiosis of Human and Artefact, HCI
International'95: 6th International, Tokyo, Japan. (pp. 988-994). Amsterdam:
Elsevier.

Mahfoudhi, A., Abed, M., Angué, J.C. (1995). An Object Oriented Methodology for Man-
Machine systems analysis and design. Anzai Y., Ogawa K., Mori H. (Ed.),
Symbiosis of Human and Artefact, HCI International'95: 6th International, Tokyo,
Japan, Elsevier, Amsterdam, pp. 965-970, janvier.

Maoudji, H., Ezzedine, H. & Péninou A. (2001). Agents oriented specification of interactive
systems. In M.J. Smith, G. Salvendy, D. Harris, R. Koubek (Ed.), Usability

Use of Petri Nets for Modeling an Agent-Based Interactive System:
Basic Principles and Case Study

147

evaluation and Interface design: Cognitive Engineering, Intelligent Agents and
Virtual Reality, volume 1. (pp. 71-75). London : Lawrence Erlbaum Associate
Publishers.

Maoudji, H., Ezzedine, H., Péninou, A. & Kolski, C. (2000). Amélioration de la qualité des
correspondances dans les réseaux de transports urbains. Rapport d'étude à mi-
parcours du projet coopératif GRRT, Juillet.

Moldt, M., Wienberg, F. (1997). Multi-Agent-Systems based on Coloured Petri Nets. In
Proceedings of the 18th International Conference on Application and Theory of
Petri Nets, Toulouse.

Moray, N. (1997). Human factors in process control. In Handbook of human factors and
ergonomics, G. Salvendy (Ed.), John Wiley & Sons, INC., pp. 1944-1971.

Moussa, F., Riahi, M., Kolski, C., Moalla, M. (2002). Interpreted Petri Nets used for Human-
Machine Dialogue Specification in Process Control : principles and application to
the Ergo-Conceptor+ tool. Integrated Computer-Aided Engineering, 9, pp. 87-98.

Moussa, F., Kolski, C., Riahi, M. (2006). Analyse des dysfonctionnements des systèmes
complexes en amont de la conception des IHM : apports, difficultés, et étude de cas.
Revue d'Interaction Homme Machine (RIHM), 7, pp. 79-111.

Navarre, D., Palanque, P., Bastide, R. (2003). A Tool-Supported Design Framework for
Safety Critical Interactive Systems, Interacting with computers, 15 (3), pp. 309-328.

 Nigay, L., Coutaz, J. (1997). Software architecture modelling: Bridging Two Worlds using
Ergonomics and Software Properties. In Formal Methods in Human-Computer
Interaction, P. Palanque & F. Paterno (Eds.), Springer-Verlag: London Publ., ISBN
3-540-76158-6, 1997, pp. 49-73.

Ouadou, K. (1994). AMF : Un modèle d’architecture multi-agents multi-facettes pour
Interfaces Homme-Machine et les outils associés. Thèse de l’Ecole Centrale de
Lyon. 1994.

Palanque, P. & Bastide, R. (1995). Design, specification and of interactive systems. Springer
Verlag 1995, ISBN 3-211-82739-0. 370 pages.

Palanque, P., Bastide, R. (1990). Petri nets with objects for specification, design and
validation of user-driven interfaces. In proceedings of the third IFIP conference on
Human-Computer Interaction, Interact'90, Cambridge,UK, 27-31 August.

Palanque, P. (1992). Modélisation par objets coopératifs interactifs d'interfaces homme-
machines dirigées par l'utilisateur. Ph.D. Thesis, University of Toulouse 1, France.

Palanque, P., Bastide, R. (1997). Synergistic modelling of tasks, system and users using
formal specification techniques. Interacting With Computers, 9 (12), pp. 129-153.

Palanque, P., Bastide, R., Sengès, V. (1995). Task model–system model: towards an unifying
formalism. In proceedings of the HCI international (EHCI'95), Chapman & Hall,
pp. 189-212.

Palanque, P., Farenc, C., Bastide, R. (1999). Embedding Ergonomic Rules As Generic
Requirements in a formal Development Process of Interactive Software. In
Proceeding Interact’99, Sasse A., Jonhson C. (Eds), IOS Press, pp. 408-416.

Pfaff, (1985). User interface management system. Springer-Verlag.
Rehim, A. (2005). Etude des outils exploitant des réseaux de Petri agent pour l’évaluation

des systèmes interactifs. Mémoire de Master recherche.
Sibertin-Blanc, C. (1985). High-level Petri nets with Data Structure. Proceedings 6th

EWPNA, June, Espoo, Finland, 1985.

Petri Net: Theory and Applications 148

Stanton, N. (1994). Human factors in alarm design. Taylor & Francis Ltd, London.
Tabary, D., Abed, M. (2002). A software Environment Task Object Oriented Design

(ETOOD). Journal of Systems and Software, 60, pp.129-141.
Tarpin-Bernard, F. & David, B. (1999). AMF : un modèle d'architecture multi-agents multi-

facettes Techniques et Sciences Informatiques. Hermès. Paris Vol. 18 No. 5. pp. 555-
586. Mai . Thèse de doctorat, Université Joseph Fourier Grenoble 1, Mars.

Trabelsi, A. (2006). Contribution à l’évaluation des systèmes interactifs orientés agents.
Application à un poste de supervision de transport urbain. Thèse de doctorat,
Université de Valenciennes et du Hainaut-Cambrésis, 25 septembre.

Trabelsi, A., Ezzedine, H. & Kolski, C. (2006). Un mouchard électronique orienté agent pour
l’évaluation de systèmes interactifs de supervision. CIFA2006, Bordeaux, France,
30-31 Mai et 1 juin. Université de Valenciennes et du Hainaut-Cambrésis, juillet.

Tran, C.D., Ezzedine, H. & Kolski, C. (2007). Towards a generic and configurable model of
an electronic informer to assist the evaluation of agent-based interactive systems.

ICEIS’2007, 9th International Conference on Entreprise Information Systems. 12-16 June,
Funchal, Madeira- Portugal

Williem, R., Biljon, V. (1988). Extending Petri Nets for specifying Man-Machine dialogues.
International Journal of Man-Machine Studies, vol. 28, pp. 437-45.

Winckler, M., Barboni, E., Palanque, P., Farenc., C. (2006). What Kind of Verification of
Formal Navigation Modelling for Reliable and Usable Web Applications? 1st Int.
Workshop on Automated Specification and Verification of Web Sites, Valencia,
Spain. Electronic Notes Theoretical Computer Science, 157(2), pp. 207-211.

8

On the Use of Queueing Petri Nets for
Modeling and Performance Analysis of

Distributed Systems
Samuel Kounev and Alejandro Buchmann

Technische Universität Darmstadt
Germany

1. Introduction
Predictive performance models are used increasingly throughout the phases of the
software engineering lifecycle of distributed systems. However, as systems grow in size
and complexity, building models that accurately capture the different aspects of their
behavior becomes a more and more challenging task. The challenge stems from the
limited model expressiveness on the one hand and the limited scalability of model
analysis techniques on the other. This chapter presents a novel methodology for modeling
and performance analysis of distributed systems [Kounev, 2006]. The methodology is
based on queueing Petri nets (QPNs) which provide greater modeling power and
expressiveness than conventional modeling paradigms such as queueing networks and
generalized stochastic Petri nets. Using QPNs, one can integrate both hardware and
software aspects of system behavior into the same model. In addition to hardware
contention and scheduling strategies, QPNs make it easy to model software contention,
simultaneous resource possession, synchronization, blocking and asynchronous
processing. These aspects have significant impact on the performance of modern
distributed systems.
To avoid the problem of state space explosion, our methodology uses discrete event
simulation for model analysis. We propose an efficient and reliable method for simulation
of QPNs [Kounev & Buchmann, 2006]. As a validation of our approach, we present a case
study of a real-world distributed system, showing how our methodology is applied in a
step-by-step fashion to evaluate the system performance and scalability. The system
studied is a deployment of the industry-standard SPECjAppServer2004 benchmark. A
detailed model of the system and its workload is built and used to predict the system
performance for several deployment configurations and workload scenarios of interest.
Taking advantage of the expressive power of QPNs, our approach makes it possible to
model systems at a higher degree of accuracy providing a number of important benefits.
The rest of this chapter is organized as follows. In Section 2, we give a brief introduction
to QPNs. Following this, in Section 3, we present a method for quantitative analysis of
QPNs based on discrete event simulation. The latter enables us to analyze QPN models of
realistic size and complexity. In Section 4, we present our performance modeling
methodology for distributed systems. The methodology is introduced in a step-by-step

Petri Net: Theory and Applications 150

fashion by considering a case study in which QPNs are used to model a real-life system
and analyze its performance and scalability. After the case study, some concluding
remarks are presented and the chapter is wrapped up in Section 5.

2. Queueing Petri nets
Queueing Petri Nets (QPNs) can be seen as a combination of a number of different
extensions to conventional Petri Nets (PNs) along several different dimensions. In this
section, we include some basic definitions and briefly discuss how QPNs have evolved. A
deeper and more detailed treatment of the subject can be found in [Bause, 1993].

2.1 Evolution of queueing Petri nets
An ordinary Petri net (also called place-transition net) is a bipartite directed graph
composed of places, drawn as circles, and transitions, drawn as bars. A formal definition
is given below [Bause and Kritzinger, 2002]:

Definition 1 An ordinary Petri Net (PN) is a 5-tuple where:
1. is a finite and non-empty set of places,
2. is a finite and non-empty set of transitions,
3. are called backward and forward incidence functions, respectively,
4. is called initial marking.

The incidence functions and specify the interconnections between places and

transitions. If , an arc leads from place p to transition t and place p is called an

input place of the transition. If , an arc leads from transition t to place p and

place p is called an output place of the transition. The incidence functions assign natural

numbers to arcs, which we call weights of the arcs. When each input place of transition t
contains at least as many tokens as the weight of the arc connecting it to t, the transition is

said to be enabled. An enabled transition may fire, in which case it destroys tokens from its

input places and creates tokens in its output places. The amounts of tokens destroyed and

created are specified by the arc weights. The initial arrangement of tokens in the net

(called marking) is given by the function , which specifies how many tokens are

contained in each place.
Different extensions to ordinary PNs have been developed in order to increase the
modeling convenience and/or the modeling power. Colored PNs (CPNs) introduced by K.
Jensen are one such extension [Jensen, 1981]. The latter allow a type (color) to be attached
to a token. A color function C assigns a set of colors to each place, specifying the types of
tokens that can reside in the place. In addition to introducing token colors, CPNs also
allow transitions to fire in different modes (transition colors). The color function C assigns
a set of modes to each transition and incidence functions are defined on a per mode basis.
A formal definition of a CPN follows [Bause & Kritzinger, 2002]:

Definition 2 A Colored PN (CPN) is a 6-tuple where:
1. is a finite and non-empty set of places,
2. is a finite and non-empty set of transitions,
3. C is a color function that assigns a finite and non-empty set of colors to each place and a

finite and non-empty set of modes to each transition.
4. and are the backward and forward incidence functions defined on , such that

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

151

1

5. is a function defined on P describing the initial marking such that
Other extensions to ordinary PNs allow temporal (timing) aspects to be integrated into
the net description [Bause & Kritzinger, 2002]. In particular, Stochastic PNs (SPNs) attach
an exponentially distributed firing delay to each transition, which specifies the time the
transition waits after being enabled before it fires. Generalized Stochastic PNs (GSPNs)
allow two types of transitions to be used: immediate and timed. Once enabled, immediate
transitions fire in zero time. If several immediate transitions are enabled at the same time,
the next transition to fire is chosen based on firing weights (probabilities) assigned to the
transitions. Timed transitions fire after a random exponentially distributed firing delay as
in the case of SPNs. The firing of immediate transitions always has priority over that of
timed transitions. A formal definition of a GSPN follows [Bause & Kritzinger, 2002]:
Definition 3 A Generalized SPN (GSPN) is a 4-tuple where:
1. is the underlying ordinary PN,
2. is the set of timed transitions, ,
3. is the set of immediate transitions, ,
4. is an array whose entry is a rate of a negative exponential

distribution specifying the firing delay, if is a firing weight specifying the relative
firing frequency, if .

Combining CPNs and GSPNs leads to Colored GSPNs (CGSPNs) [Bause & Kritzinger,
2002]:
Definition 4 A Colored GSPN (CGSPN) is a 4-tuple where:
1. is the underlying CPN,
2. is the set of timed transitions, ,
3. is the set of immediate transitions, ,
4. is an array with such that

is a rate of a negative exponential distribution specifying the firing delay due to
color c, if is a firing weight specifying the relative firing frequency due to

.
While CGSPNs have proven to be a very powerful modeling formalism, they do not
provide any means for direct representation of queueing disciplines. The attempts to
eliminate this disadvantage have led to the emergence of Queueing PNs (QPNs). The main
idea behind the QPN modeling paradigm was to add queueing and timing aspects to the
places of CGSPNs. This is done by allowing queues (service stations) to be integrated into
places of CGSPNs. A place of a CGSPN that has an integrated queue is called a queueing
place and consists of two components, the queue and a depository for tokens which have
completed their service at the queue. This is depicted in Figure 1.
The behavior of the net is as follows: tokens, when fired into a queueing place by any of
its input transitions, are inserted into the queue according to the queue's scheduling
strategy. Tokens in the queue are not available for output transitions of the place. After
completion of its service, a token is immediately moved to the depository, where it
becomes available for output transitions of the place. This type of queueing place is called
timed queueing place. In addition to timed queueing places, QPNs also introduce
immediate queueing places, which allow pure scheduling aspects to be described. Tokens
in immediate queueing places can be viewed as being served immediately. Scheduling in

1 The subscript MS denotes multisets. C(p)ms denotes the set of all finite multisets of C(p).

Petri Net: Theory and Applications 152

Fig. 1. A queueing place and its shorthand notation.

such places has priority over scheduling/service in timed queueing places and firing of
timed transitions. The rest of the net behaves like a normal CGSPN. An enabled timed
transition fires after an exponentially distributed delay according to a race policy. Enabled
immediate transitions fire according to relative firing frequencies and their firing has
priority over that of timed transitions. A formal definition of a QPN follows:
Definition 5 A Queueing PN (QPN) is an 8-tuple
where:
1. is the underlying Colored PN
2. where

is the set of timed queueing places,
is the set of immediate queueing places, and

qi denotes the description of a queue2 taking all colors of C(pi) into consideration, if pi is
a queueing place or equals the keyword 'null', if pi is an ordinary place.

3. where
is the set of timed transitions,
is the set of immediate transitions, and

such that is interpreted as a rate of
a negative exponential distribution specifying the firing delay due to color c, if
or a firing weight specifying the relative firing frequency due to color .

Example 1 (QPN) Figure 2 shows an example of a QPN model of a central server system with
memory constraints based on [Bause and Kritzinger, 2002]. Place p2 represents several terminals,
where users start jobs (modeled with tokens of color ‘o’) after a certain thinking time. These jobs
request service at the CPU (represented by a G/C/l/PS queue, where C stands for Coxian
distribution) and two disk subsystems (represented by G/C/1/FCFS queues). To enter the system
each job has to allocate a certain amount of memory. The amount of memory needed by each job is

2 In the most general definition of QPNs, queues are defined in a very generic way
allowing the specification of arbitrarily complex scheduling strategies taking into account
the state of both the queue and the depository of the queueing place [Bause, 1993]. For the
purposes of this chapter, it is enough to use conventional queues as defined in queueing
network theory.

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

153

Fig. 2. A QPN model of a central server with memory constraints (reprinted from [Bause
& Kritzinger, 2002]).

assumed to be the same, which is represented by a token of color ‘m’ on place p1. Note that, for
readability, token cardinalities have been omitted from the arc weights in Figure 2, i.e., symbol o
stands for 1’o and symbol m for 1’m. According to Definition 5, we have the following:

 where
 is the underlying Colored PN as depicted in Figure 2,

, null,

, where , so that
all transition firings are equally likely.

2.2 Hierarchical queueing Petri nets
A major hurdle to the practical application of QPNs is the so-called largeness problem or
state-space explosion problem: as one increases the number of queues and tokens in a QPN,
the size of the model's state space grows exponentially and quickly exceeds the capacity
of today's computers. This imposes a limit on the size and complexity of the models that
are analytically tractable. An attempt to alleviate this problem was the introduction of
Hierarchically-Combined QPNs (HQPNs) [Bause et al., 1994]. The main idea is to allow
hierarchical model specification and then exploit the hierarchical structure for efficient
numerical analysis. This type of analysis is termed structured analysis and it allows models
to be solved that are about an order of magnitude larger than those analyzable with
conventional techniques.
HQPNs are a natural generalization of the original QPN formalism. In HQPNs, a
queueing place may contain a whole QPN instead of a single queue. Such a place is called
a subnet place and is depicted in Figure 3. A subnet place might contain an ordinary QPN
or again a HQPN allowing multiple levels of nesting. For simplicity, we restrict ourselves
to two-level hierarchies. We use the term High-Level QPN (HLQPN) to refer to the upper level
of the HQPN and the term Low-Level QPN (LLQPN) to refer to a subnet of the HLQPN.
Every subnet of a HQPN has a dedicated input and output place, which are ordinary
places of a CPN. Tokens being inserted into a subnet place after a transition firing are
added to the input place of the corresponding HQPN subnet. The semantics of the output

Petri Net: Theory and Applications 154

place of a subnet place is similar to the semantics of the depository of a queueing place:
tokens in the output place are available for output transitions of the subnet place. Tokens
contained in all other places of the HQPN subnet are not available for output transitions
of the subnet place. Every HQPN subnet also contains actual — population place used to
keep track of the total number of tokens fired into the subnet place.

Fig. 3. A subnet place and its shorthand notation.

3. Quantitative analysis of queueing Petri nets
In [Kounev & Buchmann, 2003], we showed that QPNs lend themselves very well to
modeling distributed e-business applications with software contention and demonstrated
how this can be exploited for performance prediction in the capacity planning process.
However, we also showed that modeling a realistic e-business application using QPNs
often leads to a model that is way too large to be analytically tractable. While, HQPNs and
structured analysis techniques alleviate this problem, they do not eliminate it. This is the
reason why QPNs have hardly been exploited in the past 15 years and very few, if any,
practical applications have been reported. The problem is that, until recently, available
tools and solution techniques for QPN models were all based on Markov chain analysis,
which suffers the well known state space explosion problem and limits the size of the models
that can be analyzed. This section3 shows how this problem can be approached by
exploiting discrete event simulation for model analysis. We present SimQPN - a Java-
based simulation tool for QPNs that can be used to analyze QPN models of realistic size
and complexity. While doing this, we propose a methodology for simulating QPN models
and analyzing the output data from simulation runs. SimQPN can be seen as an
implementation of this methodology.

3 Originally published in Performance Evaluation Journal, Vol. 63, No. 4-5, S. Kounev and
A. Buchmann, SimQPN-a tool and methodology for analyzing queueing Petri net models by
means of simulation, pp. 364-394. Copyright Elsevier (2006).

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

155

SimQPN is a discrete-event simulation engine specialized for QPNs. It is extremely
lightweight and has been implemented 100% in Java to provide maximum portability and
platform-independence. SimQPN simulates QPNs using a sequential algorithm based on
the event-scheduling approach for simulation modeling. Being specialized for QPNs, it
simulates QPN models directly and has been designed to exploit the knowledge of the
structure and behavior of QPNs to improve the efficiency of the simulation. Therefore,
SimQPN provides much better performance than a general purpose simulator would
provide, both in terms of the speed of simulation and the quality of output data provided.

3.1 SimQPN design and architecture
SimQPN has an object-oriented architecture. Every element (for e.g. place, transition or
token) of the simulated QPN is internally represented as object. Figure 4 outlines the main
simulation routine which drives each simulation run. As already mentioned, SimQPN's
internal simulation procedure is based on the event-scheduling approach [Law and
Kelton, 2000]. To explain what is understood by event here, we need to look at the way
the simulated QPN transitions from one state to another with respect to time. Since only
immediate transitions are supported, the only place in the QPN where time is involved is
inside the queues of queueing places. Tokens arriving at the queues wait until there is a
free server available and are then served. A token's service time distribution determines
how long its service continues. After a token has been served it is moved to the depository
of the queueing place, which may enable some transitions and trigger their firing. This
leads to a change in the marking of the QPN. Once all enabled transitions have fired, the
next change of the marking will occur after another service completion at some queue. In
this sense, it is the completion of service that initiates each change of the marking.
Therefore, we define event to be a completion of a token's service at a queue.
SimQPN uses an optimized algorithm for keeping track of the enabling status of
transitions. Generally, Petri net simulators need to check for enabled transitions after each
change in the marking caused by a transition firing. The exact way they do this, is one of
the major factors determining the efficiency of the simulation [Gaeta, 1996]. In
[Mortensen, 2001], it is shown how the locality principle of colored Petri nets can be
exploited to minimize the overhead of checking for enabled transitions. The locality
principle states that an occurring transition will only affect the marking on immediate
neighbor places, and hence the enabling status of a limited set of neighbor transitions.
SimQPN exploits an adaptation of this principle to QPNs, taking into account that tokens
deposited into queueing places do not become available for output transitions
immediately upon arrival and hence cannot affect the enabling status of the latter. Since
checking the enabling status of a transition is a computationally expensive operation, our
goal is to make sure that this is done as seldom as possible, i.e., only when there is a real
possibility that the status has changed. This translates into the following two cases when
the enabling status of a transition needs to be checked:
1. After a change in the token population of an ordinary input place of the transition,

as a result of firing of the same or another transition. Three subcases are
distinguished:

(a) Some tokens were added. In this case, it is checked for newly enabled modes by
considering all modes that are currently marked as disabled and that require
tokens of the respective colors added.

Petri Net: Theory and Applications 156

(b) Some tokens were removed. In this case, it is checked for newly disabled modes by
considering all modes that are currently marked as enabled and that require
tokens of the respective colors removed.

(c) Some tokens were added and at the same time others were removed. In this
case, both of the checks above are performed.

2. After a service completion event at a queueing input place of the transition. The
service completion event results in adding a token to the depository of the queueing
place. Therefore, in this case, it is only checked for newly enabled modes by considering all
modes that are currently marked as disabled and that require tokens of the respective
color added.

Fig. 4. SimQPN's main simulation routine

SimQPN maintains a global list of currently enabled transitions and for each transition a
list of currently enabled modes. The latter are initialized at the beginning of the
simulation by checking the enabling status of all transitions. As the simulation progresses,
a transition's enabling status is checked only in the above mentioned cases. This reduces
CPU costs and speeds up the simulation substantially.

3.2 Output data analysis
SimQPN supports two methods for estimation of the steady state mean residence times of

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

157

tokens inside the queues, places and depositories of the QPN. These are the well-known
method of independent replications (IR) (in its variant referred to as replication/deletion approach) and
the classical method of non-overlapping batch means (NOBM). We refer the reader to [Pawlikowski,
1990; Law and Kelton, 2000; Alexopoulos and Seila, 2001] for an introduction to these
methods. Both of them can be used to provide point and interval estimates of the steady
state mean token residence time. In cases where one wants to apply a more sophisticated
technique for steady state analysis (for example ASAP [Steiger et al, 2005]), SimQPN can
be configured to output observed token residence times to files (mode 4), which can then
be used as input to external analysis tools. Both the replication/deletion approach and the
method of non-overlapping batch means have different variants. Below we discuss some
details on the way they were implemented in SimQPN.
Replication/Deletion Approach
We briefly discuss the way the replication/ deletion approach is implemented in
SimQPN. Suppose that we want to estimate the steady state mean residence time v of
tokens of given color at a given place, queue or depository. As discussed in [Alexopoulos
and Seila, 2001], in the replication/deletion approach multiple replications of the
simulation are made and the average residence times observed are used to derive steady
state estimates. Specifically, suppose that n replications of the simulation are made, each
of them generating m residence time observations Yi1,Yi2,• • •,Yim. We delete l
observations from the beginning of each set to eliminate the initialization bias. The
number of observations deleted is determined through the method of Welch
[Heidelberger and Welch, 1983]. Let Xi be given by

(1)

and

(2)

Then the s are independent and identically distributed (IID) random variables with
is an approximately unbiased point estimator for v. According to

the central limit theorem [Trivedi, 2002], if m is large, the s are going to be
approximately normally distributed and therefore the random variable

will have t distribution with (n — 1) degrees of freedom (df) [Hogg and Craig, 1995] and
an approximate 100) percent confidence interval for v is then given by

(3)

where is the upper critical point for the t distribution with (n — 1)
df [Pawlikowski, 1990; Trivedi, 2002].
Method of Non-Overlapping Batch Means
Unlike the replication/deletion approach, the method of non-overlapping batch means
seeks to obtain independent observations from a single simulation run rather than from

Petri Net: Theory and Applications 158

multiple replications. Thus, it has the advantage that it must go through the warm-up
period only once and is therefore less sensitive to bias from the initial transient. Suppose
that we make a simulation run of length m and then divide the resulting observations
Y1,Y2,• • •,Ym into n batches of length q. Assume that and let Xi be the sample
(or batch) mean of the q observations in the ith batch, i.e.

(4)

The mean v is estimated by and it can be shown (see for example

[Law and Kelton, 2000]) that an approximate 100) percent confidence interval for v
is given by substituting Xi(q) for Xi in Equations (2) and (3) above.
SimQPN offers two different stopping criteria for determining how long the simulation
should continue. In the first one, the simulation continues until the QPN has been simu-
lated for a user-specified amount of model time (fixed-sample-size procedure). In the second one, the
length of the simulation is increased sequentially from one checkpoint to the next, until
enough data has been collected to provide estimates of residence times with user-
specified precision (sequential procedure). The precision is defined as an upper bound for the
confidence interval half length. It can be specified either as an absolute value (absolute
precision) or as a percentage relative to the mean residence time (relative precision). The
sequential approach for controlling the length of the simulation is usually regarded as the
only efficient way for ensuring representativeness of the samples of collected observations
[Law and Kelton, 1982; Heidelberger and Welch, 1983; Pawlikowski et al, 1998]. Therefore,
hereafter we assume that the sequential procedure is used.
The main problem with the method of non-overlapping batch means is to select the batch
size q, such that successive batch means are approximately uncorrelated. Different
approaches have been proposed in the literature to address this problem (see for example
[Chien, 1994; Alexopoulos & Goldsman, 2004; Pawlikowski, 1990]). In SimQPN, we start
with a user-configurable initial batch size (by default 200) and then increase it
sequentially until the correlation between successive batch means becomes negligible.
Thus, the simulation goes through two stages: the first sequentially testing for an
acceptable batch size and the second sequentially testing for adequate precision of the
residence time estimates (see Figure 5). The parameters n and p, specifying how often
checkpoints are made, can be configured by the user.
We use the jackknife estimators [Miller, 1974; Pawlikowski, 1990] of the autocorrelation coefficients

to measure the correlation between batch means. A jackknife estimator of the
autocorrelation coefficient of lag k for the sequence of batch means

of size q is calculated as follows:

(5)

where is the ordinary estimator of the autocorrelation coefficient of lag k,
calculated from the formula [Pawlikowski, 1990]:

(6)

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

159

and are calculated like , except that is the estimator over
all n batch means, whereas are estimators over the first and the
second half of the analyzed sequence of n batch means, respectively.

Fig. 5. SimQPN's batch means procedure

We use the algorithm proposed in [Pawlikowski, 1990] to determine when to consider the
sequence of batch means for approximately uncorrelated: a given batch size is accepted to
yield approximately uncorrelated batch means if all autocorrelation coefficients of lag k

are statistically negligible at a given significance
level . To get an acceptable overall significance level we assume that

(7)

As recommended in [Pawlikowski, 1990], in order to get reasonable estimators of the
autocorrelation coefficients, we apply the above batch means correlation test only after at
least 100 batch means have been recorded (i.e., n >= 100). In fact, by default n is set to 200
in SimQPN. Also to ensure approximate normality of the batch means, the initial batch

Petri Net: Theory and Applications 160

size (i.e., the minimal batch size) is configured to 200.
SimQPN Validation
We have validated the algorithms implemented in SimQPN by subjecting them to a

rigorous experimental analysis and evaluating the quality of point and interval estimates

[Kounev and Buchmann, 2006]. In particular, the variability of point estimates provided

by SimQPN and the coverage of confidence intervals reported were quantified. A number

of different models of realistic size and complexity were considered. Our analysis showed

that data reported by SimQPN is very accurate and stable. Even for residence time, the

metric with highest variation, the standard deviation of point estimates did not exceed

2.5% of the mean value. In all cases, the estimated coverage of confidence intervals was

less than 2% below the nominal value (higher than 88% for 90% confidence intervals and

higher than 93% for 95% confidence intervals).

4. Performance modeling and analysis of distributed systems
Queueing Petri nets are a powerful formalism that can be exploited for modeling

distributed systems and analyzing their performance and scalability. However, building

models that accurately capture the different aspects of system behavior is a very

challenging task when applied to realistic systems. In this section4, we present a case

study in which QPNs are used to model a real-life system and analyze its performance

and scalability. In parallel to this, we present a practical performance modeling

methodology for distributed systems which helps to construct models that accurately

reflect the performance and scalability characteristics of the latter. Our methodology

builds on the methodologies proposed by Menascé, Almeida & Dowdy in [Menascé et al,
1994; 1999; Menascé & Almeida, 1998; 2000; Menascé et al, 2004], however, a major

difference is that our methodology is based on QPN models as opposed to conventional

queueing network models and it is specialized for distributed component-based systems.

The system studied is a deployment of the industry-standard SPECjAppServer2004

benchmark. A detailed model of the system and its workload is built in a step-by-step

fashion. The model is validated and used to predict the system performance for several

deployment configurations and workload scenarios of interest. In each case, the model is

analyzed by means of simulation using SimQPN. In order to validate the approach, the

model predictions are compared against measurements on the real system. In addition to

CPU and I/O contention, it is demonstrated how some more complex aspects of system

behavior, such as thread contention and asynchronous processing, can be modeled.

4.1 The SPECjAppServer2004 benchmark
SPECjAppServer2004 is a new industry-standard benchmark for measuring the

performance and scalability of J2EE hardware and software platforms. It implements a

representative workload that exercises all major services of the J2EE platform in a

4 Portions reprinted, with permission, from IEEE Transactions on Software Engineering,
Vol. 32, No. 7, Performance Modeling and Evaluation of Distributed Component-Based Systems using
Queueing Petri Nets, pp. 486-502. (c) [2006] IEEE.

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

161

complete end-to-end application scenario. The SPECjAppServer2004 workload has been

specifically modeled after an automobile manufacturer whose main customers are

automobile dealers [SPEC, 2004]. Dealers use a Web-based user interface to browse an

automobile catalogue, purchase automobiles, sell automobiles and track their inventory.

As depicted in Figure 6, SPECjAppServer2004's business model comprises five domains:

customer domain dealing with customer orders and interactions, dealer domain offering

Web-based interface to the services in the customer domain, manufacturing domain

performing "just in time" manufacturing operations, supplier domain handling

interactions with external suppliers, and corporate domain managing all dealer, supplier

and automobile information.

Fig. 6. SPECjAppServer2004 business model.

The customer domain hosts an order entry application that provides some typical online

ordering functionality. Orders for more than 100 automobiles are called large orders. The

dealer domain hosts a Web application (called dealer application) that provides a Web-based

interface to the services in the customer domain. The manufacturing domain hosts a

manufacturing application that models the activity of production lines in an automobile

manufacturing plant. There are two types of production lines, planned lines and large

order lines. Planned lines run on schedule and produce a predefined number of

automobiles. Large order lines run only when a large order is received in the customer

domain. The unit of work in the manufacturing domain is a work order. Each work order

moves along three virtual stations, which represent distinct operations in the

manufacturing flow. In order to simulate activity at the stations, the manufacturing

application waits for a designated time (333 ms) at each station. Once the work order is

complete, it is marked as completed and inventory is updated. When the inventory of

parts gets depleted, suppliers need to be located and purchase orders need to be sent out.

This is done by contacting the supplier domain, responsible for interactions with external

suppliers.

Petri Net: Theory and Applications 162

4.2 Motivation
Consider an automobile manufacturing company that wants to use e-business technology
to support its order-inventory, supply-chain and manufacturing operations. The company
has decided to employ the J2EE platform and is in the process of developing a J2EE
application. Let us assume that the first prototype of this application is
SPECjAppServer2004 and that the company is testing the application in the deployment
environment depicted in Figure 7. This environment uses a cluster of WebLogic servers
(WLS) as a J2EE container and an Oracle database server (DBS) for persistence. We
assume that all servers in the WebLogic cluster are identical and that initially only two
servers are available. The company is now about to conduct a performance modeling
study of their system in order to evaluate its performance and scalability. In the following,
we present a practical performance modeling methodology in a step-by-step fashion
showing how each step is applied to the considered scenario.

Fig. 7. Deployment environment.

4.3 Step 1: Establish performance modeling objectives
Let us assume that under peak conditions, 152 concurrent dealer clients (100 Browse, 26
Purchase and 26 Manage) are expected and the number of planned production lines could
increase up to 100. Moreover, the workload is forecast to grow by 300% over the next 5
years. The average dealer think time is 5 seconds, i.e., the time a dealer "thinks" after
receiving a response from the system before sending a new request. On average 10
percent of all orders placed are assumed to be large orders. The average delay after
completing a work order at a planned production line before starting a new one is 10
seconds. Note that all of these numbers were chosen arbitrarily in order to make our
motivating scenario more specific. Based on these assumptions, the following concrete
goals are established:

Predict the performance of the system under peak operating conditions with 6
WebLogic servers. What would be the average throughput and response time of
dealer transactions and work orders? What would be the CPU utilization of the
servers?

Determine if 6 WebLogic servers would be enough to ensure that the average
response times of business transactions do not exceed half a second. Predict how
much system performance would improve if the load balancer is upgraded with

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

163

a slightly faster CPU.

Study the scalability of the system as the workload increases and additional
WebLogic servers are added. Determine which servers would be most utilized
under heavy load and investigate if they are potential bottlenecks.

4.4 Step 2: Characterize the system in its current state
As shown in Figure 7, the system we are considering has a two-tier hardware architecture
consisting of an application server tier and a database server tier. Incoming requests are
evenly distributed across the nodes in the application server cluster. For HTTP requests,
this is achieved using a software load balancer running on a dedicated machine. For RMI
requests, this is done transparently by the EJB client stubs. Table 1 describes the system
components in terms of the hardware and software platforms used. This information is
enough for the purposes of our study.

Table 1. System component details

4.5 Step 3: Characterize the workload
Identify the Basic Components of the Workload
As discussed in Section 4.1, the SPECjAppServer2004 benchmark application is made up
of three major subapplications - the dealer application, the order entry application and the
manufacturing application. The dealer and order entry applications process business
transactions of three types - Browse, Purchase and Manage. Hereafter, the latter are
referred to as dealer transactions. The manufacturing application, on the other hand, is
running production lines which process work orders. Thus, the SPECjAppServer2004
workload is composed of two basic components: dealer transactions and work orders.
Partition Basic Components into Workload Classes
There are three types of dealer transactions and since we are interested in their individual
behavior we model them using separate workload classes. Work orders, on the other
hand, can be divided into two types based on whether they are processed on a planned or
large order line. Planned lines run on schedule and complete a predefined number of
work orders per unit of time. In contrast, large order lines run only when a large order
arrives in the customer domain. Each large order generates a separate work order
processed asynchronously on a dedicated large order line. Thus, work orders originating
from large orders are different from ordinary work orders in terms of the way their
processing is initiated and in terms of their resource usage. To distinguish between the
two types of work orders, they are modeled using two separate workload classes:

Petri Net: Theory and Applications 164

WorkOrder (for ordinary work orders) and LargeOrder (for work orders generated by large
orders). Altogether, we end up with five workload classes: Browse, Purchase, Manage,
WorkOrder and LargeOrder.
Identify the System Components and Resources Used by Each Workload Class
The following hardware resources are used by dealer transactions: CPU of the load
balancer machine (LB-C), CPU of an application server in the cluster (AS-C), CPUs of the
database server (DB-C), disk drive of the database server (DB-D), Local Area Network
(LAN). WorkOrders and LargeOrders use the same resources with exception of the first
one, since their processing is driven through direct RMI calls to the EJBs in the WebLogic
cluster, bypassing the HTTP load balancer. As far as software resources are concerned, all
workload classes use the WebLogic servers and the Oracle DBMS. Dealer transactions
additionally use the HTTP load balancer, which is running on a dedicated machine.

Fig. 8. Execution graphs for Purchase, Manage, Browse, WorkOrder and LargeOrder.

Describe the Inter-Component Interactions and Processing Steps for Each Workload
Class
All of the five workload classes identified represent composite transactions. Figure 8 uses
execution graphs to illustrate the subtransactions (processing steps) of transactions from
the different workload classes. For every subtransaction (represented as a rectangle)
multiple system components are involved and they interact to perform the respective
operation. The inter-component interactions and flow of control during the processing of
subtransactions are depicted in Figure 9 by means of client/server interaction diagrams.
Directed arcs show the flow of control from one node to the next during execution.
Depending on the path followed, different execution scenarios are possible. For example,
for dealer subtransactions two scenarios are possible depending on whether the database
needs to be accessed or not. Dealer subtransactions that do not access the database (e.g.,
goToHomePage) follow the path 1 2 3 4, whereas dealer subtransactions that access

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

165

the database (e.g., showlnven-tory) follow the path 1 2 3 5 6 7. Since most
dealer subtransactions do access the database, for simplicity, it is assumed that all of
them follow the second path.
Characterize Workload Classes in Terms of Their Service Demands and Workload
Intensity
Since the system is available for testing, the service demands can be determined by
injecting load into the system and taking measurements. Note that it is enough to have a
single WebLogic server available in order to do this, i.e., it is not required to have a
realistic production like testing environment. For each of the five workload classes a
separate experiment was conducted injecting transactions from the respective class and
measuring the utilization of the various system resources. CPU utilization was measured
using the vmstat utility on Linux. The disk utilization of the database server was
measured with the help of the Oracle 9i Intelligent Agent, which proved to have
negligible overhead. Service demands were derived using the Service Demand Law
[Menasce and Almeida, 1998]. Table 2 reports the service demand parameters for the five
workload classes. It was decided to ignore the network, since all communications were
taking place over 1 GBit LAN and communication times were negligible.

Fig. 9. Client/server interaction diagrams for Subtransactions.

Table 2. Workload service demand parameters

In order to keep the workload model simple, it is assumed that the total service demand
of a transaction at a given system resource is spread evenly over its subtransactions. Thus,
the service demand of a subtransaction can be estimated by dividing the measured total
service demand of the transaction by the number of subtransactions it has. It is also
assumed that all service demands are exponentially distributed. Whether these
simplifications are acceptable will become clear later when the model is validated. In case
the estimation proves to be too inaccurate, one might have to come back and refine the

Petri Net: Theory and Applications 166

workload model by measuring the service demands of subtransactions individually.
Now that the service demands of workload classes have been quantified, the workload
intensity must be specified. For each workload class, the number of transactions that
contend for system resources must be indicated. The way workload intensity is specified
is dictated by the modeling objectives. In our case, workload intensity was defined in
terms of the following parameters (see Section 4.3):

Number of concurrent dealer clients of each type and the average dealer
think time.

Number of planned production lines and the average time they wait
after processing a WorkOrder before starting a new one (manufacturing
think time or mfg think time).

The concerete values of the above parameters under peak operating conditions were
given in Section 4.3. The workload, however, had been forecast to grow by 300% and
another goal of the study was to investigate the scalability of the system as the load
increases. Therefore, scenarios with up to 3 times higher workload intensity need to be
considered as well.

4.6 Step 4: Develop a performance model
A QPN model of the system under study is now built and then customized to the concrete
configurations of interest. We start by discussing the way basic components of the
workload are modeled. During workload characterization, five workload classes were
identified. All of them represent composite transactions and are modeled using the
following token types (colors): ‘B’ for Browse, ‘P’ for Purchase, ‘M’ for Manage, ‘W’ for
WorkOrder and ‘L’ for Large-Order. The subtransactions of transactions from the
different workload classes were shown in Figure 8. In order to make the performance
model more compact, it is assumed that each server used during processing of a
subtransaction is visited only once and that the subtransaction receives all of its service
demands at the server's resources during that single visit. This simplification is typical for
queueing models and has been widely employed. While characterizing the workload
service demands in Section 4.5, we additionally assumed that the total service demand of
a transaction at a given system resource is spread evenly over its subtransactions. This
allows us to consider the subtransactions of a given workload class as equivalent in terms
of processing behavior and resource consumption. Thus, we can model subtransactions
using a single token type (color) per workload class as follows: ‘b’ for Browse, ‘p’ for
Purchase, ‘m’ for Manage, ‘w’ for WorkOrder and ‘l’ for LargeOrder. For the sake of
compactness, the following additional notation will be used:
Symbol ‘D’ will denote a ‘B’, ‘P’ or ‘M’ token, i.e., token representing a dealer transaction.
Symbol ‘d’ will denote a ‘b’, ‘p’ or ‘m’ token, i.e., token representing a dealer
subtransaction.
Symbol ‘o’ will denote a ‘b’, ‘p’, ‘m’, ‘w’ or ‘l’ token, i.e., token representing a
subtransaction of arbitrary type, hereafter called subtransaction token.
To further simplify the model, we assume that LargeOrder transactions are executed with
a single subtransaction, i.e., their four subtransactions are bundled into a single
subtransaction. The effect of this simplification on the overall system behavior is
negligible, because large orders constitute only 10 percent of all orders placed, i.e.,
relatively small portion of the system workload. Mapping the system components,
resources and inter-component interactions to QPN models constructs, we arrive at the
model depicted in Figure 10. We use the notation to denote a firing mode

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

167

in which an ‘x’ token is removed from place A and a ‘y’ token is deposited in place B.
Similarly, means that an ‘x’ token is removed from place A and destroyed
without depositing tokens anywhere. Table 3 provides some details on the places used in
the model.
All token service times at the queues of the model are assumed to be exponentially
distributed. We now examine in detail the life-cycle of tokens in the QPN model. As
already discussed, upper-case tokens represent transactions, whereas lower-case tokens
represent subtransactions. In the initial marking, tokens exist only in the depositories of
places C1 and C2 The initial number of ‘D’ tokens (‘B’, ‘P’ or ‘M’) in the depository of the
former determines the number of concurrent dealer clients, whereas the initial number of
‘W’ tokens in the depository of the latter determines the number of planned production
lines running in the manufacturing domain.

Fig. 10. QPN model of the system.

When a dealer client starts a dealer transaction, transition t1 is fired destroying a ‘D’ token
from the depository of place C1 and creating a ‘d’ token in place G, which corresponds to
starting the first subtransaction. The flow of control during processing of subtransactions
in the system is modeled by moving their respective subtransaction tokens across the
different places of the QPN. Starting at place G, a dealer subtransaction token (‘d’) is first
sent to place L where it receives service at the CPU of the load balancer. After that it is
moved to place E and from there it is routed to one of the N application server CPUs
represented by places A1 to AN Transitions t11,t13,...,t10+N have equal firing probabilities
(weights), so that subtransactions are probabilistically load-balanced across the N
application servers. This approximates the round-robin mechanism used by the load-
balancer to distribute incoming requests among the servers. Having completed its service

Petri Net: Theory and Applications 168

at the application server CPU, the dealer subtransaction token is moved to place F from
where it is sent to one of the two database server CPUs with equal probability (transitions
t4 and t5 have equal firing weights). After completing its service at the CPU, the dealer
subtransaction token is moved to place H where it receives service from the database disk
subsystem. Once this is completed, the dealer subtransaction token is destroyed by
transition t8 and there are two possible scenarios:
1. A new ‘d’ token is created in place G, which starts the next dealer subtransaction.
2. If there are no more subtransactions to be executed, the ‘D’ token removed from place

C1 in the beginning of the transaction is returned. If the completed transaction is of
type Purchase and it has generated a large order, additionally a token ‘l’ is created in
place E.

Note that, since LargeOrder transactions are assumed to be executed with a single sub-
transaction, to simplify the model, we create the subtransaction token (‘l’) directly instead
of first creating a transaction token (‘L’). So, in practice, ‘L’ tokens are not used explicitly
in the model. After a ‘D’ token of a completed transaction returns back to place C1, it
spends some time at the IS queue of the latter. This corresponds to the dealer think time.
Once the dealer think time has elapsed, the ‘D’ token is moved to the depository and the
next transaction is started.

Table 3. Places used in the QPN model

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

169

When a WorkOrder transaction is started on a planned line in the manufacturing domain,
transition to is fired destroying a ‘W’ token from the depository of place C2 and creating a
‘w’ token in place E, which corresponds to starting the first subtransaction. Since
WorkOrder subtransaction requests are load-balanced transparently (by the EJB client
stubs) without using a load balancer, the WorkOrder subtransaction token (‘w’) is routed
directly to the application server CPUs - places A1 to AN. It then moves along the places
representing the application server and database server resources exactly in the same way
as dealer subtransaction tokens. After it completes its service at place H, the following two
scenarios are possible:
1. The ‘w’ token is sent to place P whose IS queue delays it for 333 ms, corresponding

to the delay at a virtual production line station. After that the token is destroyed by
transition t10 and a new ‘w’ token is created in place E, representing the next WorkOrder
subtransaction.

2. If there are no more subtransactions to be executed, the ‘w’ token is destroyed by
transition t9 and the ‘W’ token removed from place C2 in the beginning of the
transaction is returned.

After a ‘W’ token of a completed transaction returns back to place C2, it spends some time
at the IS queue of the latter. This corresponds to the time waited after completing a work
order at a production line before starting the next one. Once this time has elapsed, the ‘W’
token is moved to the depository and the next transaction is started.
All transitions of the model are immediate and their firing modes, except for transitions t0,
t1, t8 and t9, are defined in such a way that whenever they fire they simply move a token
from their input place to their output place. Transitions t0 and t1 have similar behavior
except that when they remove an upper case token from their input place they deposit the
respective lower case token into the output place. We assign the same firing weight (more
specifically 1) to all modes of these transitions, so that they have the same probability of
being fired when multiple of them are enabled at the same time. The definition of the
firing modes of transitions t8 and t9 is a little more complicated. The firing modes are
described in Tables 4 and 5, respectively. The assignment of weights to the modes of these
transitions is critical to achieving the desired behavior of transactions in the model.
Weights must be assigned in such a way that transactions are terminated only after all of
their subtransactions have been completed. We will now explain how this is done,
starting with transition t9 since this is the simpler case. According to Section 4.5 (Figure 8),
WorkOrder transactions are comprised of four subtransactions. This means that, for every
WorkOrder transaction, four subtransactions have to be executed before the transaction is
completed. To model this behavior, the firing weights (probabilities) of modes 1 and 2 are
set to 3/4 and 1/4, respectively. Thus, out of every four times a ‘w’ token arrives in place
H and enables transition t9, on average the latter will be fired three times in mode 1 and
one time in mode 2, completing a WorkOrder transaction. Even though the order of these
firings is not guaranteed, the resulting model closely approximates the real system in
terms of resource consumption and queueing behavior.
Transition t8, on the other hand, has eight firing modes as shown in Table 4. According to
Section 4.5 (Figure 8), Browse transactions have 17 subtransactions, whereas Purchase and
Manage have only 5. This means that, for every Browse transaction, 17 subtransactions
have to be executed before the transaction is completed, i.e., out of every 17 times a ‘b’
token arrives in place H and enables transition t8, the latter has to be fired 16 times in

Petri Net: Theory and Applications 170

mode 1 and one time in mode 2 completing a Browse transaction. Out of every 5 times a
‘p’ token arrives in place H and enables transition t8, the latter has to be fired 4 times in
mode 3 and one time in mode 4 or mode 5, depending on whether a large order has been
generated. On average 10% of all completed Purchase transactions generate large orders.
Modeling these conditions probabilistically leads to a system of simultaneous equations
that the firing weights (probabilities) of transition t8 need to fulfil. One possible solution
is the following: w(1) = 16, w(2) = 1, w(3) = 13.6, w(4) = 3.06, w(5) = 0.34, w(6) = 13.6, w(7) =
3.4, w(8) = 17.

Table 4. Firing modes of transition t8

Table 5. Firing modes of transition t9

The workload intensity and service demand parameters from Section 4.5 are used to
provide values for the service times of tokens at the various queues of the model. A
separate set of parameter values is specified for each workload scenario considered. The
service times of subtransactions at the queues of the model are estimated by dividing the
total service demands of the respective transactions by the number of subtransactions
they have.

4.7 Step 5: Validate, refine and/or calibrate the model
The model developed in the previous sections was validated by comparing its predictions
against measurements on the real system. Two application server nodes were available
for the validation experiments. The model predictions were verified for a number of
different scenarios under different transaction mixes and workload intensities. The model
was analyzed by means of simulation using SimQPN. The method of non-overlapping
batch means was used for steady state analysis. Both the variation of point estimates from

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

171

multiple runs of the simulation and the variation of measured performance metrics from
multiple tests were negligible. For all metrics, the standard deviation of estimates was less
than 2% of the respective mean value. The metrics considered were transaction
throughput (Xi), transaction response time (Ri) and server utilization (ULB for the load
balancer, UAS for the application servers and UDB for the database server). The maximum
modeling error for throughput was 9.3%, for utilization 9.1% and for response time 12.9%.
Varying the transaction mix and workload intensity led to predictions of similar accuracy.
However, even though the model was deemed valid at this point of the study, as we will
see later, the model can lose its validity when it is modified in order to reflect changes in
the system.

4.8 Step 6: Use model to predict system performance
In Section 4.3 some concrete goals were set for the performance study. The system model
is now used to predict the performance of the system for the deployment configurations
and workload scenarios of interest. In order to validate our approach, for each scenario
considered, we will compare the model predictions against measurements on the real
system. Note that this validation is not part of the methodology itself and normally it does not
have to be done. Indeed, if we would have to validate the model results for every scenario
considered, there would be no point in using the model in the first place. The reason we
validate the model results here is to demonstrate the effectiveness of our modeling
approach and showcase the predictive power of the QPN models it is based on.
As in the validation experiments, for all scenarios considered in this section, the model is
analyzed by means of simulation using SimQPN and the method of non-overlapping
batch means is used for steady state analysis. Both the variation of point estimates from
multiple runs of the simulation and the variation of measured performance metrics from
multiple tests are negligible. For all metrics, the standard deviation of estimates is less
than 2% of the respective mean value. Table 7 shows the model predictions for two
scenarios under peak conditions with 6 application server nodes. The first one uses the
original load balancer, while the second one uses an upgraded load balancer with a faster
CPU. The faster CPU results in lower service demands as shown in Table 6. With the
original load balancer, six application server nodes turned out to be insufficient to
guarantee average response times of business transactions below half a second. However,
with the upgraded load balancer this was achieved. In the rest of the scenarios
considered, the upgraded load balancer will be used.

Table 6. Load balancer service demands

We now consider the behavior of the system as the workload intensity increases beyond
peak conditions and further application server nodes are added. Table 8 shows the model
predictions for two scenarios with an increased number of concurrent Browse clients, i.e.,
150 in the first one and 200 in the second one. In both scenarios the number of application
server nodes is 8. As evident from the results, the load balancer is completely saturated
when increasing the workload intensity and it becomes a bottleneck limiting the overall
system performance. Therefore, adding further application server nodes would not bring

Petri Net: Theory and Applications 172

any benefit, unless the load balancer is replaced with a faster one.

Table 7. Analysis results for scenarios under peak conditions with 6 app. server nodes

Table 8. Analysis results for scenarios under heavy load with 8 app. server nodes

4.9 Modeling thread contention
Since the load balancer is the bottleneck resource, it is interesting to investigate its
behavior a little further. Until now it was assumed that when a request arrives at the load
balancer, there is always a free thread which can start processing it immediately.
However, if one keeps increasing the workload intensity, the number of concurrent
requests at the load balancer will eventually exceed the number of available threads. The
latter would lead to thread contention, resulting in additional delays at the load balancer,
not captured by our system model. This is a typical example how a valid model may lose
its validity as the workload evolves. We will now show how the model can be refined to
capture the thread contention at the load balancer.
Extending the System Model
In Figure 11, an extended version of our system model is shown, which includes an
ordinary place T representing the load balancer thread pool. Before a dealer request is
scheduled for processing at the load balancer CPU, a token ‘t’ representing a thread is

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

173

allocated from the thread pool. After the dealer request has been served at the load
balancer CPU, the token is returned back to the pool. Thus, if an arriving request finds no
available thread, it will have to wait in place G until a thread is released. The initial
population of place T determines the number of threads in the thread pool. At first sight,
this appears to be the right approach to model the thread contention at the load balancer.
However, an attempt to validate the extended model reveals a significant discrepancy
between the model predictions and measurements on the real system. In particular, it
stands out that predicted response times are much lower than measured response times
for dealer transactions with low workload intensities. A closer investigation shows that
the problem is in the way dealer subtransaction tokens arriving in place G are scheduled
for processing at the load balancer CPU. Dealer sub-transaction tokens become available
for firing of transition t2 immediately upon their arrival at place G. Thus, whenever
arriving tokens are blocked in place G their order of arrival is lost. After a thread is
released, transition t2 fires in one of its enabled modes with equal probability. Therefore,
the order in which waiting subtransaction tokens are scheduled for processing does not
match the order of their arrival at place G. This obviously does not reflect the way the real
system works and renders the model unrepresentative.

Fig. 11. Extended QPN model of the system (capturing thread contention at the load
balancer).

Introducing QPN Departure Disciplines
The above situation describes a common drawback of Petri net models, i.e., tokens inside
ordinary places are not distinguished in terms of their order of arrival. One approach to
address the problem would be to replace the ordinary place G with an immediate

Petri Net: Theory and Applications 174

queueing place containing a FCFS queue. However, simply using a FCFS queue would
not resolve the problem since arriving tokens would be served immediately and moved to
the depository where their order of arrival will still be lost. To address this, we could
exploit the generalized queue definition in [Bause, 1993] to define the scheduling strategy
of place G's queue in such a way that tokens are served immediately according to FCFS,
but only if the depository is empty. If there is a token in the depository, all tokens are
blocked in their current position until the depository becomes free. Even though this
would theoretically address the issue with the token order, it would create another
problem. The available tools and techniques for QPN analysis, including SimQPN, do not
support queues with scheduling strategy dependent on the state of the depository.
Indeed, the generalized queue definition given in [Bause, 1993], while theoretically
powerful, is impractical to implement, so in practice it is rarely used and queues in QPNs
are usually treated as conventional queues from queueing network theory. The way we
address the problem is by introducing departure disciplines, which are a simple yet
powerful feature we have added to SimQPN. The departure discipline of an ordinary
place or depository determines the order in which arriving tokens become available for
output transitions. We define two departure disciplines, Normal (used by default) and
First-In-First-Out (FIFO). The former implies that tokens become available for output
transitions immediately upon arrival just like in conventional QPN models. The latter
implies that tokens become available for output transitions in the order of their arrival,
i.e., a token can leave the place/depository only after all tokens that have arrived before it
have left, hence the term FIFO. Coiming back to the problem above with the way thread
contention is modeled, we now change place G to use the FIFO departure discipline. This
ensures that subtransaction tokens waiting at place G are scheduled for processing in the
order in which they arrive. After this change, the model passes the validation tests and
can be used for performance prediction.
Performance Prediction
We consider two additional heavy load scenarios with an increased number of concurrent
dealer clients leading to thread contention in the load balancer. The workload intensity
parameters for the two scenarios are shown in Table 9.

Table 9. Workload intensity parameters for heavy load scenarios with thread contention

The first scenario has a total of 360 concurrent dealer clients, the second 420. Table 10
compares the model predictions for the first scenario in two configurations with 8
application servers and 15 and 30 load balancer threads, respectively. In addition to
response times, throughput and utilization, the average length of the load balancer thread
queue (NLBTQ) is considered. As evident from the results, the model predictions are very
close to the measurements and even for response times the modeling error does not
exceed 16.4%. The results for the second scenario look very similar. The CPU utilization of
the WebLogic servers and the database server increase to 63% and 52%, respectively,
leading to slightly higher response times and lower throughput. The modeling error does

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

175

not exceed 15.2%. For lack of space, we do not include the detailed results. Repeating the
analysis for a number of variations of the model input parameters led to results of similar
accuracy.

Table 10. Analysis results for heavy load scenario 3 with 15 and 30 load balancer threads
and 8 app. server nodes

4.10 Step 7: Analyze results and address modeling objectives
We can now use the results from the performance analysis to address the goals
established in Section 4.3. By means of the developed QPN model, we were able to predict
the performance of the system under peak operating conditions with 6 WebLogic servers.
It turned out that using the original load balancer, six WebLogic servers were insufficient
to guarantee average response times of business transactions below half a second.
Upgrading the load balancer with a slightly faster CPU led to the CPU utilization of the
load balancer dropping by a good 20 percent. As a result, the response times of dealer
transactions improved by 14 to 26 percent, meeting the "half a second" requirement.
However, increasing the workload intensity beyond peak conditions revealed that the
load balancer was a bottleneck resource, preventing us to scale the system by adding
additional WebLogic servers (see Figure 12).

Fig. 12. Predicted server CPU utilization in considered scenarios.

Petri Net: Theory and Applications 176

Therefore, in light of the expected workload growth, the company should either replace
the load balancer machine with a faster one or consider using a more efficient load
balancing method. After this is done, the performance analysis should be repeated with
the new load balancer to make sure that there are no other system bottlenecks. It should
also be ensured that the load balancer is configured with enough threads to prevent
thread contention.

5. Concluding remarks
In this chapter, we showed how QPNs can be exploited for the modeling and
performance analysis of distributed systems. We presented a practical performance
modeling methodology which helps to construct models of distributed systems that
accurately reflect their performance and scalability characteristics. We started by
introducing QPNs and discussing the state space explosion problem which is a major
hurdle to their practical use. We then showed how the problem can be approached by
exploiting discrete event simulation for model analysis. We presented SimQPN - a tool
and methodology for simulating QPN models and analyzing the output data from
simulation runs.
In the second part of the chapter, we presented a case study of a realistic distributed
system, in which we showed how QPN models can be exploited as a powerful
performance prediction tool in the software engineering process. The case study was used
as an example in order to introduce a practical methodology for performance modeling
and analysis of distributed systems. A deployment of the industry-standard
SPECjAppServer2004 benchmark was studied, a large and complex application designed
to be representative of today's distributed enterprise systems. It was shown in a step-by-
step fashion how to build a detailed QPN model of the system, validate it, and then use it
to evaluate the system performance and scalability. In addition to CPU and I/O
contention, it was demonstrated how some complex aspects of system behavior such as
composite transactions, software contention and asynchronous processing can be
modeled. The developed QPN model was analyzed for a number of different deployment
configurations and workload scenarios. The models demonstrated much better scalability
and predictive power than what was achieved in our previous work. Even for the largest
and most complex scenarios, the modeling error for transaction response time did not
exceed 20.6% and was much lower for transaction throughput and resource utilization.
Taking advantage of the modeling power of QPNs, our methodology provides the
following important benefits:
1. QPN models allow the integration of hardware and software aspects of system

behavior and lend themselves very well to modeling distributed component-based
systems.

2. In addition to hardware contention and scheduling strategies, using QPNs one
can easily model software contention, simultaneous resource possession,
synchronization, blocking and asynchronous processing.

3. By restricting ourselves to QPN models, we can exploit the knowledge of their structure
and behavior for fast and efficient simulation using SimQPN. This enables us to analyze
models of realistic size and complexity.

4. QPNs can be used to combine qualitative and quantitative system analysis. A
number of efficient techniques from Petri net theory can be exploited to verify some

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

177

important qualitative properties of QPNs. The latter not only help to gain insight
into the behavior of the system, but are also essential preconditions for a successful
quantitative analysis [Bause, 1993].

5. Last but not least, QPN models have an intuitive graphical representation that facilitates
model development.

To support the modeling and analysis of systems using QPNs, we have developed QPME
(Queueing Petrinet Modeling Environment) [Kounev et al., 2006]. QPME provides a user-
friendly graphical interface enabling the user to quickly and easily construct QPN models.
Model analysis is performed using SimQPN. Being implemented as an Eclipse
application, QPME runs on all operating systems officially supported by the Eclipse
platform. QPME provides a robust and powerful tool for performance analysis making it
possible to exploit the modeling power and expressiveness of QPNs to their full potential.

6. Reference
Alexopoulos and Goldsman, 2004, C. Alexopoulos and D. Goldsman. To Batch Or Not

To Batch. ACM Transactions on Modeling and Computer Simulation, 14(1):76-114,
January 2004.

Alexopoulos and Seila, 2001, C. Alexopoulos and A. Seila. Output Data Analysis for
Simulations. In Proceedings of the 2001 Winter Simulation Conference, Arlington, VA,
USA, December 9-12, 2001.

Bause and Kritzinger, 2002, R Bause and R Kritzinger. Stochastic Petri Nets - An Introduction
to the Theory. Vieweg Verlag, second edition, 2002.

Bause et al, 1994, R Bause, P. Buchholz, and P. Kemper. Hierarchically Combined
Queueing Petri Nets. In Proceedings of the llth International Conference on Analysis and
Optimization of Systems, Discrete Event Systems, Sophie-Antipolis (France), 1994.

Bause, 1993, R Bause. Queueing Petri Nets - A formalism for the combined qualitative
and quantitative analysis of systems. In Proceedings of the 5th International Workshop
on Petri Nets and Performance Models, Toulouse, France, October 19-22,1993.

Chien, 1994, C. Chien. Batch Size Selection for the Batch Means Method. In Proceedings of the
1994 Winter Simulation Conference, Late Buena Vista, FL, USA, December 11-14,1994.

Gaeta, 1996, Rossano Gaeta. Efficient Discrete-Event Simulation of Colored Petri Nets.
IEEE Transactions on Software Engineering, 22(9), September 1996.

Heidelberger and Welch, 1983, P. Heidelberger and P. D. Welch. Simulation Run Length
Control in the Presence of an Initial Transient. Operations Research, 31:1109-
1145,1983.

Hogg and Craig, 1995, R. V. Hogg and A. R Craig. Introduction to Mathematical Statistics.
Prentice-Hall, Upper Saddle River, New Jersey, 5th edition, 1995.

Jensen, 1981, K. Jensen. Coloured Petri Nets and the Invariant Method. Mathematical
Foundations on Computer Science, Lecture Notes in Computer Science
118:327-338,1981.

Kounev and Buchmann, 2003, S. Kounev and A. Buchmann. Performance Modelling of
Distributed E-Business Applications using Queuing Petri Nets. In Proceedings of
the 2003 IEEE International Symposium on Performance Analysis of Systems and Software -
ISPASS2003, Austin, Texas, USA, March 20-22, 2003.

Kounev and Buchmann, 2006, S. Kounev and A. Buchmann. SimQPN - a tool and
methodology for analyzing queueing Petri net models by means of

Petri Net: Theory and Applications 178

simulation. Performance Evaluation, 63(4-5):364-394, May 2006.
Kounev et al, 2006, S. Kounev, C. Dutz, and A. Buchmann. QPME - Queueing Petri Net

Modeling Environment. In Proceedings of the 3rd International Conference on
Quantitative Evaluation of SysTems (QEST-2006), Riverside, CA, September 11-14,2006.

Kounev, 2006, S. Kounev. Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets. IEEE Transactions on
Software Engineering, 32(7):486-502, July 2006.

Law and Kelton, 1982, A. Law and W. D. Kelton. Confidence Intervals for Steady-State
Simulations, II: A Survey of Sequential Procedures. Management Science, 28(5)550-
562, 1982.

Law and Kelton, 2000, Averill Law and David W. Kelton. Simulation Modeling and Analysis.
Me Graw Hill Companies, Inc., third edition, 2000.

Menascé and Almeida, 1998, D. Menasce and V. Almeida. Capacity Planning for Web
Performance: Metrics, Models and Methods. Prentice Hall, Upper Saddle River, NJ,
1998.

Menascé and Almeida, 2000, D. Menasce and V. Almeida. Scaling for E-Business -
Technologies, Models, Performance and Capacity Planning. Prentice Hall, Upper Saddle
River, NJ, 2000.

Menascé et al, 1994, Daniel A. Menasce, Virgilio A. E Almeida, and Larry W. Dowdy.
Capacity Planning and Performance Modeling - from Mainframes to Client-Server Systems.
Prentice Hall, Englewood Cliffs, NG, 1994.

Menascé et al, 1999, D. Menasce, V. Almeida, R. Fonseca, and M. Mendes. A
Methodology for Workload Characterization of E-commerce Sites. In Proceedings of
the 1st ACM conference on Electronic commerce, Denver, Colorado, United States, pages
119-128, November 1999.

Menascé et al, 2004, Daniel A. Menasce, Virgilio A. F. Almeida, and Lawrence W. Dowdy.
Performance by Design. Prentice Hall, 2004.

Miller, 1974, R. G. Miller. The Jackknife: A Review. Biometrika, 61:1-15,1974.
Mortensen, 2001, Kjeld H. Mortensen. Efficient Data-Structures and Algorithms for a

Coloured Petri Nets Simulator. In Proceedings of the 3rd Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, August 29-31,
2001.

Pawlikowski et al, 1998, K. Pawlikowski, D. Mcnickle, and G. Ewing. Coverage of
Confidence Intervals in Sequential Steady-State Simulation. Journal of Simulation
Practice and Theory, 6(3):255-267,1998.

Pawlikowski, 1990, K. Pawlikowski. Steady-State Simulation of Queueing Processes: A
Survey of Problems and Solutions. ACM Computing Surveys, 22(2):123-170,1990.

SPEC, 2004, SPEC. SPECjAppServer2004 Documentation. Specifications, April 2004.
Steiger et al, 2005, N. Steiger, E. Lada, J. Wilson, J. Joines, C. Alexopoulos, and D.

Goldsman. ASAP3: a batch means procedure for steady-state simulation
analysis. ACM Transactions on Modeling and Computer Simulation, 15(l):39-73, 2005.

Trivedi, 2002, K. S. Trivedi. Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, Inc., second edition, 2002.

9

Model Checking of Time Petri Nets
Hanifa Boucheneb and Rachid Hadjidj

Department of Computer Engineering, École Polytechnique de Montréal
Canada

1. Introduction
To model time constraints of real time systems various time extensions are proposed, in the
literature, for Petri nets. Among these extensions, time Petri nets model (TPN model) is
considered to be a good compromise between modeling power and verification complexity.
Time Petri nets are a simple yet powerful formalism useful to model and verify concurrent
systems with time constraints (real time systems). In time Petri nets, a firing interval is
associated with each transition specifying the minimum and maximum times it must be
maintained enabled, before its firing. Its firing takes no time but may lead to another
marking. Time Petri nets are then able to model time constraints even if the exact delays or
durations of events are not known. So, time Petri nets are appropriate to specify time
constraints of real time systems which are often specified by giving worst case boundaries.
This chapter reviews the well known techniques, proposed in the literature, to model
check real time systems described by means of time Petri nets.
Model checking are very attractive and automatic verification techniques of systems (Clarke
et al., 1999). They are applied by representing the behavior of a system as a finite state
transition system (state space), specifying properties of interest in a temporal logic (LTL, CTL,
CTL*, MITL, TCTL) and finally exploring the state space to determine whether they hold or
not. To use model checking techniques with timed models, an extra effort is required to
abstract their generally infinite state spaces. Abstraction techniques aim to construct by
removing some irrelevant details, a finite contraction of the state space of the model, which
preserves properties of interest. For best performances, the contraction should also be the
smallest possible and computed with minor resources too (time and space). Several
abstractions, which preserve different kinds of properties, have been proposed in the
literature for time Petri nets. The preserved properties can be verified using standard model
checking techniques on the abstractions (Alur & Dill, 1990); (Penczek & Polrola, 2004);
(Tripakis & Yovine, 2001).
This chapter has 6 sections, including introduction and conclusion sections. Section 2
introduces the time Petri nets model and its semantics. Section 3 presents the syntaxes and
semantics of temporal logics LTL, CTL, CTL* and TCTL. Section 4 is devoted to the TPN state
space abstractions. In this section, abstractions proposed in the literature are presented,
compared and discussed from state characterization, agglomeration criteria, preserved
properties, size and computing time points of view. Section 5 considers a subclass of TCTL
temporal logics and proposes an efficient on-the-fly model checking.

Petri Net: Theory and Applications 180

2. Time Petri nets
2.1 Definition of the TPN
A TPN is a Petri net with time intervals attached to its transitions. Formally, a TPN is a tuple

 = (P, T, Pre, Post, m0, Is) where

P and T are finite sets of places and transitions such that P T = ,
Pre and Post are the backward and the forward incidence functions: P T 1,

m0 is the initial marking: P N,

Is2: T Q+ (Q+ { }) associates with each transition t an interval called the static
firing interval of t.

Let Int be an interval, Int and Int denote respectively its lower and upper bounds.

Let M be the set of all markings of a TPN, m M a marking.
A transition t is said to be enabled in m, iff all tokens required for its firing are present in m,

i.e.: p P, m(p) Pre(p,t). We denote by En(m) the set of all transitions enabled in m.

Two transitions t and t’ of En(m) are in conflict for m iff (p P, m(p)< Pre(p,t) + Pre(p,t’)).
If m results from firing some transition t from another marking, New(m,t) denotes the set
of all transitions newly enabled in m, i.e.:

New(m,t) = {t’ En(m) | t’ = t (p P, m(p)-Post(p,t) < Pre(p,t’))}.

Note that only one instance of each transition is supposed to be active at the same time. A
transition which remains enabled after firing one of its instance is considered newly
enabled.

2.2 The semantics of the TPN
There are two known definitions of the TPN state. The first one, based on clocks, associates
with each transition t of the model a clock to measure the time elapsed since t became
enabled most recently (Yoneda & Ryuba, 1998); (Boucheneb & Hadjidj, 2004). The TPN clock
state is a pair s=(m,v), where m is a marking and v is a clock valuation function, v: En(m)
R+. The initial clock state of the TPN is s0 = (m0,v0), where m0 is the initial marking and v0(t) =
0, for all t in En(m0). The TPN state evolves either by time progression or by firing
transitions. When a transition t becomes enabled, its clock is initialized to zero. The value of
this clock increases synchronously with time until t is fired or disabled by the firing of
another transition. t can fire, if the value of its clock is inside its static firing interval Is(t). It
must be fired immediately, without any additional delay, when the clock reaches Is(t). Its

firing takes no time but may lead to another marking. Formally, let R+ be a nonnegative
reel number, t a transition of T, s=(m,v) and s’=(m’,v’) two clock states of a TPN.

We write 'ss iff state s' is reachable from state s after a time progression of time

units, i.e.: m=m’, t En(m), v(t)+ Is(t) and t En(m), v’(t)=v(t)+ . s’ is also denoted s+ .
We write 'ss t

 iff state s' is immediately reachable from state s by firing transition t, i.e.:

p P, m’(p)=m(p)-Pre(p,t)+Post(p,t), t En(m), v(t) Is(t) and t’ En(m’), v(t’)= if

t’ New(m’,t) then 0 else v(t’).

1 N is the set of nonnegative integers.
2 Q+ is the set of nonnegative rational numbers.

Model Checking of Time Petri Nets 181

The second characterization, based on intervals, defines the TPN state as a marking and a
function which associates with each enabled transition a firing interval (Berthomieu &
Vernadat, 2003). The TPN interval state is a couple s=(m,I), where m is a marking and I:
En(m) Q+ (Q+ { }) is an interval function. The initial interval state of the TPN is s0 =
(m0, I0), where m0 is the initial marking and I0(t) = Is(t), for all t in En(m0). When a transition t
becomes enabled, its firing interval is set to its static firing interval Is(t). The lower and
upper bounds of this interval decrease synchronously with time, until t is fired or disabled
by another firing. t can fire, if the lower bound of its firing interval reaches 0, but must be
fired, without any additional delay, if the upper bound of its firing interval reaches 0. Its

firing takes no time but may lead to another marking. Formally, let R+ be a nonnegative
reel number, t a transition of T, s=(m,I) and s=(m’,I’) two interval states of a TPN.

We write 'ss iff state s' is reachable from state s after a time progression of time

units, i.e.: m=m’ and t En(m), I(t) I’(t)=[max(0, I(t)-), I(t)-]. s’ is also denoted s+ .
We write 'ss t

 iff state s' is immediately reachable from state s by firing transition t, i.e.:

p P, m’(p)=m(p)-Pre(p,t)+Post(p,t), t En(m), I(t)=0, and t’ En(m’), I(t’)= if t’ New(m’,t)
then Is(t’) else I(t’).
The semantics of the TPN can be defined using either the clock state or interval state

characterization. In both cases, the TPN state space is defined as a structure),,(0sS , where

s0 is the initial clock or interval state of the model, and S = {s| ss *
0 } is the set of

reachable states (
*

 is the reflexive and transitive closure of the relation defined

above).

Let s and s' be two TPN states, R+ and t T. As a shorthand, we write 'ss t
iff

"s s and " 'ts s for some state s“. We write 'ss
t

 iff R+, 'ss t
.

An execution path in the TPN state space, starting from a state s S, is a maximal

sequence 0 0 1 10 1t ts s , such that s0=s. We denote by (s) the set of all

execution paths starting from state s. (s0) is therefore the sets of all execution paths of the

TPN. The total elapsed time during an execution path , denoted time(), is the sum
0 ii

.

An infinite execution path is diverging if time()= , otherwise it is said to be zeno. A TPN
model is said to be non zeno if all its execution paths are not zeno. Zenoness is a
pathological situation which suggests that infinity of actions may take place in a finite
amount of time.

The TPN state space defines the branching semantics of the TPN model, whereas (s0) defines
its linear semantics. The graph of its execution paths, called concrete state space, is the structure

(, ,s0) where s0 is the initial state of the model, = }|{
*

0 sss is the set of reachable concrete

states of the TPN model, and
*

is the reflexive and transitive closure of .

3. Temporal logics for time Petri nets
Properties of timed systems are usually specified using temporal logics (Penczek & Polrola,

2004). We consider here CTL* (computation tree logic star) and a subclass of TCTL (timed

Petri Net: Theory and Applications 182

computation tree logic). Since our goal is to reason about temporal properties of time Petri

nets, an atomic proposition is a proposition on a marking.

Let M be the set of reachable markings of a TPN model and PV the set of propositions on M,

i.e., { | : M {true, false} }.

3.1 CTL* and its semantics
CTL* is a temporal logic which allows to specify both linear and branching properties. The

syntax of CTL* is given by the following grammar:

ppppppsp

ppssss

UX

false

||||

|||||

In the grammar, PV stands for an atomic proposition. s and p define respectively

formulas that express properties of states and execution paths. ("for all paths") and

("there exists a path") are path quantifiers, whereas U ("until") and X ("next") are temporal

operators (path operators). The sublogics CTL and LTL are defined as follows:

In CTL formulas, every occurrence of a path operator is immediately preceded by a

path quantifier: XXUUfalse ||)(|)(||||

In LTL, formulas are supposed to be in the form p where state subformulas of p are

propositions: XUfalse |||||

 To ease CTL* formulas writing, some abbreviations are used: F = (true U), =
and G = F .

CTL* formulas are interpreted on states and execution paths of a model M =(S,V), where

S=(S, , s0) is a transition system and V: S 2PV is a valuation function which associates
with each state the subset of atomic propositions it satisfies.

Let s S be a state of S, (s) the set of all execution paths starting from s, and

....3210 221100 ssss ttt
 an execution path with i its suffix starting

from si. The formal semantics of CTL* is given by the satisfaction relation defined as

follows (the expression M, s is read: "s satisfies property in the model M "):

M, s false,

M, s iff V(s),

M, x iff M, x for x {s, },

M, x iff M, x and M, x for x {s, },

M, s iff (s), M, ,

M, s iff (s), M, ,

M, iff M, s0 , for a state formula ,

M, X iff M, 1 ,

M, U iff j 0, M, j and 0 i<j, M, i .

We say that M satisfies , written M , iff M, s0 . For instance M, s0 (U), iff for

any execution path starting from s0, is true in s0 and the following states, until a state that

satisfies is reached.

Model Checking of Time Petri Nets 183

To be able to specify explicitly time constraints of some important real-time properties such

as, for example, the bounded response property, timed versions have been proposed for

these logics (MITL, TCTL). Among these logics, we consider here a subclass of TCTL logic

for an on-the-fly model checking.

3.2 TCTL and its semantics
TCTL is a timed extension of CTL (computation tree logic) where a time interval is

associated with each temporal operator. The syntax of TCTL formulas is defined by the

following grammar (in the grammar, PR and index I is an interval of Q+ (Q+ { }):

 false | | | | (UI) | (UI)

TCTL formulas are also interpreted on states and execution paths of a model M =(S,V). To

interpret a TCTL formula on an execution path, we introduce the notion of dense execution

path. Let s S be a state of S, (s) the set of all execution paths starting from s,

and
0 0 1 10 1t ts s an execution path of s. The dense path of the execution path

 is the mapping SR:ˆ defined by:
isr)(ˆ s.t.

1
0

i
j jr

, i 0 and 0 i.

The formal semantics of TCTL is given by the satisfaction relation = defined as follows:

M, s false,

M, s iff V(s),

M, s iff M, s ,

M, s iff M, s and M, s ,

M, s (UI) iff (s), r I, M,)(ˆ r and 0 r’<r, M,)'(ˆ r .

M,s (UI) iff (s), r I, M,)(ˆ r and 0 r’<r, M,)'(ˆ r .

The TPN model is said to satisfy a TCTL formula iff M, s0 . When interval I is omitted,

its value is [0,] by default. Our timed temporal logic, we call TCTLTPN, is defined as

follows:

TCTLTPN (m UI m) | (m UI m) | m Ir m | GI m | GI m | FI m | FI m

m ::= m m | m m | m | | false

 is a proposition on markings (i.e., PR). I is a time interval. Ir is a time interval which

starts from 0. Formula Ir is a shorthand for TCTL formula G(FIr) which

expresses a bounded response property.

Several efficient model checking techniques were developed in the literature for LTL, CTL,
CTL*, MITL and TCTL, using timed Büchi automata, fix point techniques, or hesitant

alternating automata (Penczek & Polrola, 2004); (Tripakis et al., 2005); (Tripakis et al., 2001);

(Visser & Barringer, 2000). To apply these techniques to time Petri nets, we must construct a

finite abstraction for its generally infinite state space which preserves properties of interest.

Petri Net: Theory and Applications 184

4. TPN state space abstractions
Abstraction techniques aim to construct by removing some irrelevant details, a finite
contraction of the state space of the model, which preserves properties of interest (markings,
linear or branching properties). The preserved properties are then verified on the
contraction using the classical model checking techniques. The challenge is to construct,
with less resources (time and space), a much coarser abstraction preserving properties of
interest.

4.1 Abstract state space
An abstract state space of the TPN model is defined as a structure AS=(A, , 0) where

(Boucheneb & Hadjidj, 2006):

A is a cover of S or 3. Each element of A, called abstract state, is an agglomeration of
some states sharing the same marking.

0 is the initial abstract state class of AS, such that s0 0, and

 A T A is the successor relation that satisfies condition EE, i.e.:

i. ','',,)',,(sssst
t

and

ii.)'''(,',s.t.,)',,(
t

sAsAsts
The first part of condition EE prevents the connection of two abstract states with no

connected states. The second one ensures that all sequences of transitions in the state space

are represented in the abstraction.

Note that there are some differences between condition EE presented here and those given

in (Berthomieu & Vernadat, 2003) and (Penczek & Polrola, 2004):

EE in (Berthomieu & Vernadat, 2003):

]')','',[(,)',,(
tt

ssssATAt

EE in (Penczek & Polrola, 2004):

]')','',[(,)',,(
tt

ssssATAt

Theses conditions impose to connect each two abstract states and ' whenever some state

of the first one has a successor in the second one. However, TPN abstractions proposed in

the literature do not obey this rule, while they are still valid. As an example, consider the

TPN with its Strong State Class Graph SSCG4 shown in figure 1. Inequalities associated with

each abstract state characterize the clock domains of all states agglomerated in the abstract

state. The abstract state 3 has a state which has a successor by t0 in 5, but no transition by

t0 exists from 3 to 5. In fact, the transition from 3 to 1 by t0 ensures that some state in 3

has as successor by t0 the unique state of 1. However, there is no transition from 3 to 5 by

t0, while the unique state of 1 belongs also to 5. This situation contradicts conditions EE
given in (Berthomieu & Vernadat 2003) and (Penczek & Polrola, 2004).

3 A cover of a set X is a collection of sets whose union contains X.
4 The SSCG is a TPN abstraction proposed in (Berthomieu & Vernadat, 2003).

Model Checking of Time Petri Nets 185

0: p0+p2+3p3
 t0=0

1: p0+p1+p2+2p3
 t0=t1=0

2: p0+2p1+p2+p3

 0 t0 0 1 t1

3: p0+p2+3p3
 1 t0 2

4: p0+3p1+p2
 1 t1

5: p0+p1+p2+2p3
 0 t0 2 t1=0

6: p0+2p1+p2+p3
 t0=t1=0

7: p0+2p1+p2+p3

 t0=0 0 t1<1

8: p0+p1+p2+2p3
 1 t0 2 t1=0

7: p0+p1+p2+2p3
 0<t0 2 t1=0

7: p0+p2+3p3
 t0=2

7: p0+p2+3p3
 1<t0 2

Fig. 1. A TPN model and its SSCG.

The relation may satisfy other additional conditions such as (see figure 2):

 EA: ',,'',)',,(sssst
t

,

AE: ','',,)',,(sssst
t

t1t0

[1,]

p3

p0 p1 p2

[1,2]

Petri Net: Theory and Applications 186

Fig. 2. Conditions EE, EA and AE.

A state class space which satisfies condition AE is called an atomic state class graph. An
abstract state which satisfies condition AE for each outgoing edge is said to be atomic
The theorem below establishes a relation between conditions AE, EA and properties of the

model preserved in the abstraction.

Theorem (Boucheneb & Hadjidj, 2006): Let AS=(A, , 0) be an abstraction of a TPN. Then:

1. If (AS satisfies condition EA and 0= {s0}) then AS preserves LTL properties of the TPN,
2. If AS satisfies condition AE then it preserves CTL* properties of the TPN.

4.2 Abstract states
We can find, in the literature, several state space abstractions for the TPN model: the state

class graph SCG (Berthomieu & Vernadat, 2003), the zone based graph ZBG (Gardey &

Roux, 2003), the geometric region graph GRG (Yoneda & Ryuba, 1998), the strong state class

graph SSCG (Berthomieu & Vernadat, 2003) and the atomic state class graphs ASCGs

(Boucheneb & Hadjidj, 2006); (Berthomieu & Vernadat, 2003); (Yoneda & Ryuba, 1998).

These abstractions may differ mainly in the characterization of abstract states (interval states

(Berthomieu & Vernadat, 2003), clock states (Boucheneb & Hadjidj, 2006) or firing dates

(Yoneda & Ryuba, 1998), the agglomeration criteria of states, the kind of properties they

preserve and their size.

In all these abstractions except the GRG, abstract states are defined as a couple =(m,f),
where m is a marking and f is a conjunction of atomic constraints of the form x-y c, - x c
or x c, where c Q {- , }, {=, , , <, >}, and x, y are time variables. Each transition

enabled in m is represented in f by a time variable, with the same name, representing either

its delay or its clock (Var(f)=En(m)). All time variables are either clocks (clock abstract states)

or delays (interval abstract states). Time variables are clocks in the SSCG, ZBG and ASCGs

(clock state abstractions) but they are delays in the SCG (an interval state abstraction).

Abstract states of the SCG, SSCG, ZBG and ASCGs are respectively called state classes,

strong state classes, state zones and atomic state classes.

Abstract states of the GRG are triples (m,f,), where m is the marking obtained by firing

from the initial marking m0 the sequence of transitions and f is a set of atomic constraints

on firing dates of transitions in m and their parents (transitions of which made transitions

of En(m) enabled). This definition needs more time variables and constraints. It is therefore

less interesting than those used in other abstractions. In addition, the relation of equivalence

used in GRG involves large graphs and may induce infinite abstractions for some time Petri

Model Checking of Time Petri Nets 187

nets with unbounded firing intervals (Berthomieu & Vernadat, 2003). Two abstract states are

equivalent if they have the same marking, their enabled transitions have the same parents,

and these parents could be fired at the same dates. For all these reasons, we do not consider

here the abstract state definition of the GRG.

Though the same domain may be expressed by different conjunctions of atomic constraints,

equivalent formulas have a unique form, called canonical form. Canonical forms make

operations needed to compute and compare abstract states more simple. Let f be a

conjunction of atomic constraints. The canonical form of f is:

)(
}){)((,

yxSupyxf f
yx

f
ofVaryx

where Var(f) is the set of time variables of f, o represents the value zero, Supf (x-y) is the

supremum of x-y in the domain of f, yx
f is either or <, depending respectively on

whether x-y reaches its supremum in the domain of f or not. Dom(f) denotes the domain of f.
By convention, we suppose that Is(o)=[0,0].
The canonical form of f is usually represented by a DBM B (Daws et al., 1996) of order

|Var(f)|+1, defined by:

)),((B},{)((, x y
yx

ff yxSupofVaryx

An element of a DBM is called a bound. Operations like +, -, <, , , =, and min on bounds of

DBMs are defined as usual: },,,,{,),(),,(2211 Bcc

1 1 2 2(,) (,)c c iff (1 2 1 2 1 2()c c c c); (”<” is less than operator “ ”).

1 1 2 2 1 2 1 2(,) (,) (,min(,))c c c c ;

1 1 2 2 1 2 1 2(,) (,) (, min(,))c c c c ;

1 1 1 1(,) (,))c c

1 1 2 2 1 1 2 2 1 1 2 2min((,), (,)) (,) (,) (,) (,)c c if c c then c else c
The computation of canonical forms is based on the shortest path Floyd-Warshall's algorithm
and is considered as the most costly operation (cubic in the number of variables in f)
(Berhmann et al., 2002). In (Boucheneb & Mullins, 2003) and (Boucheneb & Hadjidj, 2006),
authors have shown how to compute, in O(n2), for respectively the SCG and the SSCG, the
canonical form of each successor abstract state, n being the number of variables in the
abstract state. An abstract state is said in canonical form iff its formula is in canonical form.
The convexity of abstract states is an important criterion to maintain their computation

simple. The simplicity of the method is particularly guaranteed by the usage of DBMs. This

data structure adapts well to all computation aspects involved in constructing abstractions,

but fails to efficiently represent non convex domains (DBMs are not closed under set-union).

To avoid this limitation, Clock Difference Diagrams (CDDs) (Larsen et al., 1999) seems to be a

better alternative. CDDs allow to represent in a very concise way the union of convex

domains. They are also closed under set-union, intersection and complementation.

However, due to the lack of a known simple computing canonical form, CDDs fail to

compete with DBMs when it comes to computing successors and predecessors of abstract

Petri Net: Theory and Applications 188

states. A detailed description of CDDs can be found in (Berhmann et al., 2002) and (Larsen et

al., 1999), where the authors use this data structure to represent computed state zones in the

list PASSED of the reachability algorithm, implemented in the tool UPPAAL. Yet, they still

use DBMs to compute successors of abstract states. Note that abstract states within the list

PASSED are handled using only two basic operations which are well supported by CDDs

(set-union and inclusion).

4.3 Abstractions preserving linear properties
An abstraction is said to preserve linear properties if it has exactly the same firing sequences

as its concrete state space. In abstractions preserving linear properties, we distinguish, in

general, three levels of abstraction (see figure 3). In the first level, states reachable by time

progression may be either represented (ZBG) or abstracted (SCG, GRG, SSCG). In the

second level, states reachable by the same firing sequence independently of their firing times

are agglomerated in the same node. In the third level, the agglomerated states are then

considered modulo some relation of equivalence (firing domain of the SCG (Berthomieu &

Vernadat, 2003), the approximations of the ZBG (Gardey & Roux, 2003) and the SSCG

(Berthomieu & Vernadat, 2003)). These abstractions, except the GRG, are finite for all

bounded time Petri nets. Indeed, for some bounded TPNs with unbounded static firing

intervals, the GRG may be infinite. However, in (Pradubsuwun et al., 2005), authors used

the approximation of timed automata to ensure the convergence of the construction of the

GRG for bounded TPNs with unbounded static firing intervals.

Fig. 3. Different levels of abstraction

4.3.1 Basic operations on abstract states
Let be an abstract state and t a transition of T. We define the basic operations on , used to
construct abstractions preserving linear properties:

}s',|'{),(tdef
ssstsucc is the set of all states reachable from by firing

immediately transition t.

t

t2
t3

t1
t1

t2

t2

t2

t3
t1
t1

t1

t1

t1

t2

t2

a) The first level

b) the second and third levels

s1 s2
ts1 s2

s’1

s2

t
s1 s2s’1

t s1 s2s’1

Model Checking of Time Petri Nets 189

}s',,|'{ sRss
def

contains and all states reachable from via some

time progression.
Let us now show how to compute successor abstract states for clock abstract states and for
interval abstract states.

Let =(m,f) be a clock abstract state in canonical form, and t a transition of T:

succ(,t) iff t En(m) and ttIsf)(is consistent. This means that there is at least a

state in such that t is firable from it (its clock reaches its static firing interval).

If succ(,t) then succ(,t) = (m’,f’) is computed in four steps:

1. p P, m’(p)=m(p)-Pre(p,t)+Post(p,t).

2. Initialize f’ with ttIsf)(. This step eliminates from f states from which t

is not immediately firable.
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t in

m.

4. Add constraints 0'
)',('
t

tmNewt
and put f’ in canonical form (clocks of newly

enabled transitions are set to 0).

)',(fm is computed in three steps:

1. Initialize f’ with f;
2. Replace all constraints t – o c with t – o Is(t). Clocks increase with time

until reaching upper bounds of the static firing intervals of their transitions or
their transitions are fired or disabled.

3. Put f’ in canonical form.

Let =(m,f) be an interval abstract state in canonical form, and t a transition of T:

succ(,t) iff t En(m) and 0tf is consistent. This means that there is at least a

state in such that t is firable from it (its delays is equal to 0).

If succ(,t) then succ(,t) = (m’,f’) is computed in four steps:

1. p P, m’(p)=m(p)-Pre(p,t)+Post(p,t).

2. Initialize f’ with 0tf . This step eliminates from f states from which t is

not immediately firable.
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t in

m.

4. Add constraints)'(')'(
)',('

tIsttIs
tmNewt

and put f’ in canonical form. The

firing interval of each newly enabled transition is set to its static firing interval.

)',(fm is computed in three steps:

1. Initialize f’ with f;
2. Replace each constraint o – t c with o – t 0. Delays decrease with time until

reaching 0 or their transitions are fired or disabled.
3. Put f’ in canonical form.

4.3.2 Approximation of clock abstract states
Let =(m,f) be a clock abstract state in canonical form and En= (m)={t |t En(m) Is(t)= }
the set of unbounded transitions enabled in m.

Petri Net: Theory and Applications 190

The SSCG approximation of denoted approxSSCG() produces a partition of : {(m, fe) | (e
En= (m) e= }, where fe is a consistent formula characterizing states of (m, f) in which all

transitions of e have not yet reached their minimal delays, while those of En= (m)-e have

reached or over-passed their minimal delays. fe is computed in three steps:

1. Initialize fe with:))'('())((
)('

tIsttIstf
emEntet

;

2. Put fe in canonical form and eliminate all variables in En= (m)-e;

3. Add the constraint ')'(
)('

ttIs
emEnt

.

Steps (2) and (3) extend fe with possibly non reachable states when replacing the domain of

each variable t' in En= (m)-e by [Is(t'),]. Nevertheless, these states correspond all to the

same interval state (Berthomieu & Vernadat, 2003). Therefore, this operation preserves

linear properties of the abstract state .

Let k be the greatest finite bound appearing in the static firing intervals of the considered

TPN. The ZBG approximation of , proposed in (Gardey & Roux, 2003), denoted approxk(),
is the abstract state (m,f’) where f’ is the canonical form of the formula computed from f as

follows: For each t En= (m), x En(m) {o},
1. Replace constraint x – t c with x – t – k, if c <- k;
2. Remove constraint t – x c if k < c.
Step (1) replaces by k the lower bound of t - x which exceeds k (x – t c <- k is equivalent to k
< - c t - x). Step (2) is equivalent to replace by the upper bound of t – x which exceeds k.

This operation extends f with possibly non reachable states but the added states do not alter

linear properties of the abstract state (Gardey & Roux, 2003). In (Boucheneb et al., 2006),

authors proposed two other approximations for the ZBG, denoted respectively approxkx and

approxkx’ which lead to much compact graphs. They showed that , approxkx() and

approxkx’() have the same firing domain and then the same firing sequences.

approxkx() is the abstract state (m,f’) where f’ is the canonical form of the formula computed

from f as follows: For each t En= (m), x En(m) {o},
1. Replace constraint x – t c with x – t – Is(t), if c - Is(t);

2. Remove constraint t – x c, if Is(t) c.

approxkx’() is the abstract state (m,f’) where f’ is the canonical form of the formula computed

from f as follows: For t, t’ En(m),
1. Replace the constraint o – t c with o – t 0, if t En= (m) ;

2. Remove constraint t’ – t c’ if t En= (m) or the constraint o– t c is s.t. c’– Is(t’) c.
approxkx’ has been integrated recently in the tool Romeo5 in replacement of the one proposed
in (Gardey & Roux, 2003). This approximation is referred in the sequel as approxZBG.

4.3.3 Construction of abstractions preserving linear properties
An abstraction preserving linear properties is generated progressively by computing the

successors of the initial abstract states and those of each newly computed abstract state, until

no more new abstract states are generated. All computed abstract states are considered

5 http://romeo.rts-software.org

Model Checking of Time Petri Nets 191

modulo some relation of equivalence. In table 1, we give the formal definition of the SCG,

ZBG and SSCG from which the construction algorithms can be derived.

AS SCG ZBG SSCG

Initial
abstract state

(m0,f0)
)()(

)(
0 tIsttIsf

mEnt

)),((00 fmapproxZBG

0
)(

0 tf
mEnt

)),((00 fmapproxSSCG

0
)(

0 tf
mEnt

(,t, ’)
AS

),(tsucc
),(' tsucc

),(tsucc

)),((' tsuccapproxZBG

),(tsucc
)),((' tsuccapproxSSCG

A }|{
*

0 SCG })(|{
*

0 ZBGZBGapprox }|{
*

0 SSCG

Table 1. Definition of SCG, ZBG and SSCG.

4.3.4 Interval state abstractions versus clock state abstractions
Clock based abstractions are less interesting than the SCG when only linear properties are of
interest. They are in general larger, and their computation takes more time. The origin of
these differences stems from the relationship between the two characterizations of states
which can be stated as follows: Let (m,v) be a clock state. Its corresponding interval state is
(m,I) s.t. t En(m), I(t) = [max(0, Is(t)-v(t)), Is(t)-v(t)]. Note that for any real value u

Is(t), if Is(t) = , Is(t) - u = and max(0, Is(t)-u)=0. This means that many clock states
may map to the same interval state. In such a case, all these states will obviously exhibit the
same future behaviour. The same remark extends also to interval abstract states and clock
abstract states. As an example, consider the model shown in figure 4.a. The repetitive firing
of transition t0, from the initial abstract state, generates 2 strong state classes sc1 and sc2
(figure 4.c) which map to the state class c1 (figure 4.b). Moreover, the number of strong state
classes which map to c1 depends and increases with the value of Is(t1). For example,
for Is(t1)= 9, we obtain 5 strong state classes which correspond to the state class c1.
Moreover, abstractions based on clocks do not enjoy naturally the finiteness property for
bounded TPNs with unbounded intervals as it is the case for abstractions based on intervals.
The finiteness is enforced using an approximation operation on clock abstract states, which
may involve some overhead computation. Another point which contributes to generate
coarser abstractions concerns states reachable by time progression. We obtain coarser
abstractions when we add to each abstract state all states reachable from it by time
progression (relaxing abstract states). Indeed, two different abstract states may have the
same relaxed abstract state. As an example, the two SCG state classes 1=(m, 2 t 3) and

2=(m, 1 t 3) are s.t. 1 2 and).30,(21 tm To achieve more contractions, we

define a relaxed version to the SCG, named relaxed state class graph (RSCG), as a structure
(A, RSCG, 0) where:

1. 0=(m0,f0) where m0 is the initial marking and)()(
)(

0 tIsttIsf
mEnt

.

2. , ’, t, (,t, ’) RSCG iff),(tsucc and),(' tsucc .

3. A = { | 0 RSCG }.

However, abstractions based on intervals are not appropriate for constructing abstractions
preserving branching properties (ASCGs). Indeed, this construction, based on splitting
abstract states, is not possible on state classes (the union of intervals is irreversible) whereas
it is possible on clock abstract states. Together, the mentioned remarks suggest that the

Petri Net: Theory and Applications 192

interval characterization of states is more appropriate to construct abstractions preserving
linear properties but is not appropriate to construct abstractions preserving branching
properties.
We have implemented and tested several abstractions. We report in table 2 sizes
(nodes/edges) and computing times of the RSCG, SCG, SSCG and ZBG we obtained for the
producer consumer model (figure 5) and the level crossing model (figure 6). The level
crossing model T(n) is obtained by putting in parallel one copy of the controller model, n
copies of the train model (with m = n) and one copy of the barrier model. Trains and the
barrier are synchronized with the controller on transitions with the same names. The
producer consumer model P(n) is the parallel composition of n-1 copies of the model in
figure 6.b with one copy of the model in figure 6.a while merging all places named P1 in one
single place. The obtained results confirm that the RSCG is in general smaller and faster to
compute too.

Fig. 4. Example showing the abstracting power of the interval state abstraction.

Fig. 5. The crossing level model

[2,3][0,2]

p0 p1
t0 t1

t0 [0,2]

t0 [0,2] b) SCG state classes of t0
+ c) SSCG classes of t0+

a) A TPN model
t0 [0,2]

t0 [0,2]

t0 [0,2]

c0 = (p0+p1, 0 t0 2 2 t1 3)

 c1 = (p0+p1, 0 t0 2 0 t1 3)

sc0 = (p0+p1, t0 = t1 = 0)

sc1 = (p0+p1, t0 = 0 0 t1 2)

sc2 = (p0+p1, t0 = 0 0 t1 3)

Model Checking of Time Petri Nets 193

Fig. 6. The producer consumer model

TPN RSCG SCG SSCG ZBG (approxkx’)
ZBG

(approxkx)

P(2)
cpu(s)

593 / 1922
0.01

748 / 2460
0.02

7963 / 42566
0.73

593 / 1922
0.14

2941 / 9952
0.31

P(3)
cpu(s)

3240 / 15200
0.12

4604 / 21891
0.30

122191 /
1111887

37.86

3240 / 15200
0.20

100060 /
385673
210.22

P(4)
cpu(s)

9267 / 54977
0.73

14086 / 83375
1.76

? 6
9504 / 56038

1.05
?

P(5)
cpu(s)

20877 / 145037
2.01

31657 / 217423
5.67

?
20877 / 145037

13.06
?

T(2)
cpu(s)

113 / 198
0

123 / 218
0

141 / 254
0

114 / 200
0

147 / 266
0

T(3)
cpu(s)

2816 / 6941
0.07

3101 / 7754
0.09

5051 / 13019
0.5

2817 / 6944
0.18

5891 / 15383
0.54

T(4)
cpu(s)

122289 / 391240
5.74

134501 / 436896
6.33

?
122290 / 391244

9.40
?

Table 2. Comparison of abstractions preserving linear properties

4.4 Abstractions preserving branching properties
Abstractions preserving branching properties (CTL* properties) are built using a partition

refinement technique in two steps (Paige & Tarjan, 1987). An abstraction, which does not

necessarily preserve branching properties, is first built then refined in order to restore the

condition AE (the resulting graph is atomic).

4.4.1 Refinement process
Let AS = (A, , 0) be an abstract state space of a TPN model, =(m,f), ’=(m’,f’) two abstract

states of A, t a transition of T s.t. (, t, ’) and }s',''|{),,'(
tdef

ssstpred . To

verify the atomicity of for the edge (, t, '), it suffices to verify that is equal or included

6 The computation has not completed after an hour of time, or aborted due to a lack of
memory.

Petri Net: Theory and Applications 194

in),,'(tpred . In case is not atomic, it is partitioned into a set of convex subclasses so as

to isolate the predecessors of ' by t in , from those which are not.

Pred(', t,)=(m,f") is computed in five steps:

1. Initialize f" to 0''
),'('
tf

tmNewt
,

2. Put f” in canonical form and eliminate by substitution all transitions in New(m', t),
3. Add constraints: Is(t) t,)'('

)'('
tIst

mEnt
 and 0,

4. Replace each variable t by t + , put f” in canonical form then eliminate ,
5. Add all constraints of f and put f” in canonical form.
Knowing that the firing of transition t sets the clock of each newly enabled transition to zero,
step (1) extracts from ' the subset of states where the clocks of newly enabled transitions
are equal to zero. Step (3) adds the firing constraints of transition t. Step (4) goes back in
time (each clock is decreased by time units). Finally, step (5) adds all constraints of class .

Since the domain of the difference is not necessarily convex, we construct a partition of -
Pred(', t,) such that all its parts are convex. Let = (m, f) and ' = (m, f') be two abstract

states such that ’ . A partition of the complement of ' in denoted Comp(, ’), is
computed as follows:

Algorithm Comp(= (m, f), ' = (m, f'))
{ Part:= ;

X:= f;
For each atomic constraint g of f'
 { if (X g) is consistent then Part := Part {(m,X g);

X:= (X f);
 }
 Return Part;
}

The refinement proceeds according to the following algorithm: After its splitting, is

replaced by its partition. Each subclass inherits all connections of in accordance with
condition EE. The refinement step is repeated until condition AE is established. The
refinement process generates a finite graph iff the intermediate abstraction is finite
(Berthomieu & Vernadat, 2003).

Algorithm Refine(AS)

{ Repeat { For each A such that is not atomic for some transition '
t

 { ":=Pred(', t,);
 Part: = Comp(");
 Part:= Part { "};

 Replace by Part in AS;
 }

 } while (AS is not atomic)
}

Model Checking of Time Petri Nets 195

4.4.2 Intermediate abstractions
The intermediate abstractions used in (Yoneda & Ryuba, 1998) (GRG) and (Berthomieu &
Vernadat, 2003) (SSCG) preserve linear properties. However, these abstractions are in
general large graphs with a high degree of state redundancy (the same state may appear in
several abstract states). Experimental results showed that this redundancy induces the
refinement procedure to waste time and space computing redundant abstract states. For
instance, if an abstract state is included into another one, refining both abstract states may
result in identical atomic abstract states. If both abstract states are replaced by the most
including one, no pertinent information will be lost while refinement steps get reduced. To
reduce state redundancy in abstraction preserving linear properties, we proposed to group
together abstract states whenever one of them includes all the others (Boucheneb & Hadjidj,
2006) or their union is convex (Boucheneb & Hadjidj, 2004). When a set of abstract states are
grouped, they are replaced by a new abstract state representing their union. All transitions
between these abstract states become loops for their union. Ingoing and outgoing transitions
of the grouped abstract states become respectively ingoing and outgoing of their union. If
one of the grouped abstract states contains the initial abstract state, their union becomes the
initial abstract state. The contraction may be performed either during or at the end of the
construction. With these abstractions, we obtain an important reduction in refinement times
and memory usage, resulting in graphs closer in size to the optimal (see table 3). Despite the
simplicity of the used models, they allowed to illustrate some interesting features related to
the computation pattern followed by the refinement procedure, depending on which
abstraction is refined (see figure 7). If an inclusion or convex-combination abstraction is
used, the refinement follows a linear pattern (i.e., the size of the graph grows linearly in time
during its construction). When an abstraction preserving linear properties is refined, the size
of the computed graph starts first to grow up to a peek size then decreases until an atomic
state class space is obtained. In certain cases, the peek size grows out of control, leading to a
state explosion.
The inclusion test is performed as follows: Let =(m,f) and ’=(m,f') be two abstract states
sharing the same marking and B, B’ their DBMs in canonical form. (m,f) is included in (m,f’)
iff: x, y En(m) {o}, Bx y B’x y.
For the convex-combination, before explaining how to perform the grouping of abstract
states, we first define what a convex-hull is. Let =(m,f), ’=(m,f') be two abstract states
sharing the same marking (see figure 8):

The convex-hull of and ’, denoted)',(ˆ , is the abstract state ”=(m,f”) where:

)(" ''
}{)(,

yxSupyxf ff
yx
ff

omEnyx

Let ”=(m,f”) be the convex-hull of and ’. ”=(m,f”) is the canonical form of the

union of and ’ iff (Dom(f”) - Dom(f)) Dom(f’).
The convex-combination test of two abstract states involves three operations: convex-hull,
complement of a domain and a test of inclusion. Moreover, abstract states which may not
combine two by two may combine three by three or more. Figure 9 illustrates some
situations involving the convex combination of abstract states with two enabled transitions

only. In case a), abstract states and ' are combined into the abstract state ". Case b)
shows two abstract states whose union is not convex and therefore cannot be grouped by

convex combination. Case c) illustrates a situation where three abstract states , ' and "
cannot combine when taken two by two, but combine well in " if taken all together. Cases

Petri Net: Theory and Applications 196

d) and e) show other situations, where the grouping two by two is not possible, but becomes
possible for other grouping.

Fig. 7. A TPN model and the refinement patterns of its SSCG and CSCG7

7 CSCG is a contraction by inclusion of the SSCG.

||

Model Checking of Time Petri Nets 197

TPN Refining SSCG Refining CSCG Refining CCSCG Optimal

P(2)
cpu(s)

2615/ 28263
8.42

2444 / 26358
1.15

2411 /26138
1.01

2334 / 25046
9.41

P(3)
cpu(s)

?
31197 / 485960

40.18
30828 / 480987

35.62
28319 / 430875

3887.30

P(4)
cpu(s)

?
151384 / 2887295

358.06
151384 / 2887295

358.06
?

T(2)
195 / 849

0.02
192 / 844

0.02
188 / 814

0.01
185 / 786

0.03

T(3)
6983 / 50044

5.00
6966 / 49802

2.11
6918 / 49025

1.49
6905 / 48749

60.88

T(4) ?
356940 / 3447624

288.21
356930 / 3447548

317.29
?

Table 3. Refining SSCG, CSCG and CCSCG.

Fig. 8. Convex-hull of two abstract states

Fig. 9. Grouping abstract states by convex-combination.

Petri Net: Theory and Applications 198

To achieve a high degree of contraction, we need to test all possible combinations of abstract

states sharing the same marking and having states in common. But this operation is

computationally very expensive. Experimental results have shown that performing the test

on abstract states two by two, results in very satisfactory contractions, in relatively short

computing times too. Furthermore, when two abstract states are such that one is included

into the other, their convex combination is simply the most including abstract state. So,

before performing the convex combination test, we check first for inclusion in O(n2), where n
is the number of transitions enabled in the shared marking of the two abstract states.

All CTL* model checking techniques can be applied directly on the atomic state class graphs

to determine linear and branching properties of time Petri nets. All states within the same

atomic abstract state have the same CTL* properties and are then considered as an

indivisible unit.

5. Model checking timed properties of time Petri nets
To verify some timed properties, in (Toussaint, J. et al., 1997), authors used observers to

express them in the form of TPNs and reduce them to reachability properties. However,

properties on markings are quite difficult to express with observers. Other techniques define

translation procedures from the TPN model into timed automata (Cassez & Roux, 2006);

(Lime & Roux, 2003), in order to make use of available model checking techniques and

tools (Penczek & Polrola, 2004); (Tripakis et al., 2005). Model checking is then performed

on the resulting timed automata, with results interpreted back on the original TPN model.

The translation into timed automata may be either structural (each transition is translated

into a timed automata using the same pattern) (Cassez & Roux, 2006) or semantic (the

state class graph of the TPN is first constructed and then translated into a timed

automaton) (Lime & Roux, 2003). Such translations show that CTL*, TCTL, LTL, MITL
model checking are decidable for bounded TPNs and that developed algorithms on timed

automata may be extended to TPNs. Though effective, these techniques face the difficulty

to interpret back and forth properties between the two models. In (Virbitskaite & Pokozy,

1999), authors proposed a method to model check TCTL properties of TPN. The method is

based on the region graph method and is similar to the one proposed in (Alur & Dill,

1990) for timed automata. However, the region graph is known to be a theoretical method

which is not applicable in practice because of its lack of efficiency.

To achieve the same goal, it is possible to adapt to the TPN, the method proposed in

(Penczek & Polrola, 2004) and (Tripakis et al., 2005) for timed automata. The verification of a

TCTL formula proceeds by adding a transition named ts8 to the TPN, translating the TCTL
formula into some CTL formula, constructing an abstraction which preserves CTL properties

of the completed TPN and then applying a CTL model checking technique. The

transformation of TCTL formulas into CTL ones needs to extend CTL with atomic

propositions of the form ts I, and a particular next operator Xts defined by: for each formula

 and each state s' of the TPN, s' satisfies Xts iff the state resulting by firing ts satisfies .

8 This transition is used to deal with time constraints of the property to be verified. Its firing

interval is [0,].

Model Checking of Time Petri Nets 199

For example, the formula = (UI) is translated into the formula ' = Xts ((' U ('

ts I)). The verification of ' is performed using the classical CTL model checking

technique by constructing an abstraction which preserves '. However, this method needs to

compute the whole abstraction of the model before it is analyzed and then runs up against

the state explosion problem. To attenuate the state explosion problem, on-the-fly model

checking methods may be a good alternative, as they allow to verify a property during the

construction of an abstraction preserving linear properties. The construction of the graph is

stopped as soon as the truth value of the property is obtained. On-the-fly methods have

proven to be very effective to model-check a subclass of TCTL on zone graphs of timed

automata. So, they can be straightforward adapted to clock based abstractions of time Petri

nets. However, TPN abstractions based on intervals are in general smaller and faster to

compute than TPN abstractions based on clocks. So, applying on-the-fly methods on TPN

abstractions based on intervals should give better performances. In this sense, in (Hadjidj &

Boucheneb, 2006), we proposed, using the state class method (SCG), a forward on-the-fly

model checking technique for a subclass of TCTL properties. The verification proceeds by

augmenting the TPN model under analysis with a special TPN, called Alarm shown in figure

10, to allow the capture of relevant time events (reaching, over passing a time interval). A

forward on-the-fly exploration combined with an abstraction by inclusion is then applied on

the resulting TPN. In the sequel, we give algorithms to model check TCTLTPN properties.
Note that all following developments apply similarly to both the SCG and the RSCG. The
SCG will be considered for explanations.

Let be a TPN model and = [0,b] . Model checking on could be performed by

analyzing each execution path of the TPN SCG, until the truth value of is established. The

SCG is progressively constructed, depth first, while looking for the satisfaction of property

1. If is satisfied at an abstract state , is looked for in each execution paths which starts

from (i.e., ()). For each execution path (), is required to be satisfied at a

state class ' such that the time separating and ' is within the time interval [0,b]. If this is

the case the verification of is restarted again from ', and so forth, until all state classes are

explored. Otherwise, the exploration is stopped, and is declared invalid.

 Fig. 10. The Alarm TPN

Petri Net: Theory and Applications 200

Fig. 11. cyclic TPN model

Some attention is required when dealing with transitions ta and tb. If transition ta can be fired

at exactly the same time as another transition t, and t is fired before ta, might be declared

wrongly false if the resulting state class satisfies 2. A similar situation might arise for
transition tb if it is fired before a transition t which can be fired at exactly the same time. To
deal with these two special situations, we assign a high firing priority to transition ta, so that it
is fired before any other transition which can be fired at exactly the same time. At the
contrary, we assign a low firing priority to tb so that it is fired after any other transition which
can be fired at exactly the same time. To cope with this priority concepts, we need to change
the way we decide if a transition is firable or not, and the way the successor of a state class

=(m,f), by a transition t, is computed (i.e., operation succ). succAC(,t) replaces succ(,t) to
check whether a transition is firable or not and compute successor state classes. What
changes is the way the firing condition fc is computed:

1. If (t ta and ta En(m)) then attffc 0

2. If (t=tb and tb En(m)) then 0tffc ('
)('

ttb
tmEnt b

)

3. If (t=ta or (ta En(m) and t tb)) then 0tffc .
In case ta is enabled while we want to fire a different transition t (case 1), we need to make
sure that t is fired ahead of time of ta. In case tb is enabled and is the one we want to fire
(case 2), we need to make sure that tb is the only transition that can be fired. The remaining
cases are handled exactly as before.

SuccAC(,t) iff fc is consistent. If succAC(,t) then succAC(,t) = (m’,f’) is computed in

four steps:

1. p P, m’(p)=m(p)-Pre(p,t)+Post(p,t).
2. Initialize f’ with fc. This step eliminates from f states from which t is not immediately

firable.
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t for m.

4. Add constraints)'(')'(
)',('

tIsttIs
tmNewt

and put f’ in canonical form. The firing

interval of each newly enabled transition is set to its static firing interval.

Model Checking of Time Petri Nets 201

The verification of proceeds as follows: During the generation of the SCG of ||Alarm, if

is satisfied in a state class =(m,f), transition ta is enabled in to capture the event

corresponding to the beginning of time interval Ir. ta is enabled by changing the marking m

in such that place Pa would contain one token, and replacing f with f ta=a. These two
actions correspond to artificially putting a token in place Pa of Alarm. Since a=0 and
transition ta has the highest priority, it is fired before all others. When ta is fired (which

means that time has come to start looking for , tb gets enabled in the resulting state class

=(m,f’) to capture the event corresponding to the end of interval Ir. If tb is fired during the

exploration, is declared invalid and the exploration stops. If before firing tb, is satisfied

in a state class ”=(m”,f”) transition tb is disabled in ” by changing the marking m” such
that place Pb would contain zero tokens, and eliminating variable tb from f”. These two

actions correspond to artificially removing the token in place Pb. After ” is modified, is

checked again starting from ”. Note that in this technique, the fact of knowing a state class
and the transition that led to it, is sufficient to know which action to take9. This means that
there is no need to keep track of execution paths during the exploration, and hence, the
exploration strategy of the SCG (depth first, breadth first,..) is irrelevant. This in turn solves
the problem of dealing with cycles and infinite execution paths for bounded TPN models.

Let =(m,f) be a state class and t the transition that led to it. The different cases that might

arise during the exploration are given in what follows:

1. The case where ta, tb En(m) and t {ta,tb} corresponds to a situation where we are

looking for . In case is satisfied in , we enable ta in ,

2. The case where tb En(m) corresponds to a situation where we are looking for . If is

satisfied in then we disable tb and get in a situation where we are looking for (i.e.,
(1)).

3. The case where t=tb corresponds to a situation where interval Ir has expired while we

are looking for . In this case, we stop the exploration and declare invalid.
Another problem may arise for zeno TPNs. Indeed, if the model is zeno and has a zeno

execution path such that all its state classes satisfy 1 but its time is less that b. In this case, tb

will never get fired to signal the end of interval Ir, and the verification would conclude that
the property is valid while it is not. To correct this problem, one solution consists in
detecting zeno cycles during the verification, but not any zeno cycle. The zeno cycles of
interest are only those which arise when transition ta or tb is enabled.

Algorithm modelCheck()
{ continue:=true; /*global variable */
 valid:=true; /*global variable */
 COMPUTED:= ;

0 := (m0,f0);

9 For uniformity reasons, we assume a fictitious transition t as the transition which led to
the initial state class.

Petri Net: Theory and Applications 202

 ':= checkStateClass (,t);
 WAIT={ 0’};
 while (continue)
 { remove =(m,f) from WAIT;
 for (t En(m) s.t. succAC(,t)) provided continue
 { ':=succAC(,t);
 If (U) and (ta En(m) or tb En(m)) and Is(t) =0) then Connect to ’;
 '':=checkStateClass (',t);
 if (continue '' p COMPUTED s.t. '' p) then
 { for(p COMPUTED s.t. p '') remove p from COMPUTED and from WAIT;
 add '' to COMPUTED and to WAIT;
 }
 }
 }
 If (U) and COMPUTED has a cycle s.t. ta or tb is enabled in all its state classes) then

valid := false;
 Return valid;
}

The on-the-fly TCTLTPN model checking of formula is based on the following exploration

algorithm modelCheck(). This algorithm uses two lists: WAIT and COMPUTED, to manage

state classes, and calls a polymorphic satisfaction function checkStateClass to check the

validity of formula . COMPUTED contains all computed state classes, while WAIT contains
state classes of COMPUTED which are not yet explored. The algorithm generates state
classes by firing transitions. The initial state class is supposed to result from the firing of a

fictive transition t . Each time a state class is generated as the result of firing a transition t,
 and t are supplied to checkStateClass to perform actions and take decisions. In general,

checkStateClass enables or disables transitions ta and tb in . It also takes decisions, and
record them in two global boolean variables continue and valid, to guide the exploration

process. Finally, it returns either after modification or in case needs to be no more
explored (i.e., ignored). The exploration continues only if continue is true. valid is used to

record the truth value of . After checkStateClass is called, the state class ' it returns is
inserted in the list WAIT only if it is not included in a previously computed state class.

Otherwise, ' is inserted in the list WAIT, while all state classes of the list COMPUTED
which are included into ' are deleted from both COMPUTED and WAIT. This strategy,
used also in the tool UPPAAL (Behrmann et al., 2002), attenuates considerably the state

explosion problem. So instead of exploring both and ', exploring ' is sufficient.

Operation checkStateClass takes as parameters: a state class, and the transition that led to it.

Three different implementations of checkStateClass are required for the three principal forms

of , i.e., 1 Ir 2, (1 UI 2) and (1 UI 2), with I=[a,b] and Ir=[0,b] (bound b can be either
finite or infinite). All of these implementations handle four mutually exclusive cases
corresponding to four types of state classes that can be encountered on an execution path.

The first implementation corresponds to property = 1 Ir 2. The first case it handles
corresponds to a state class not reached by the firing ta nor tb, and neither of them is enabled

Model Checking of Time Petri Nets 203

in it. The remaining cases correspond respectively to: a state class where transition tb is
enabled and a state class reached by the firing of transition tb.

Algorithm checkStateClass 1 Ir 2(=(m,f),t)
{ if (ta,tb En(m) t {ta,tb}) then
 if(1(m)) then enable ta in ;
 if(tb En(m) 2(m)) then disable tb in ;
 if (t=tb) then { valid=false ; continue=false; }
 Return ;
}

The second implementation corresponds to property UI In it first case, this
implementation looks for the initial state class only. The remaining cases are similar to those
of the first implementation, but different actions are taken for each one of them. Intuitively

the verification of property UI checks if proposition is true in the initial state
class and all state classes following it, until ta fires. From the moment ta is fired, the verifier

checks for the satisfaction of either or , until is true or tb is fired. If becomes true in

a state class is no more explored. In case tb is fired, the exploration is stopped and the
property is declared invalid.

Algorithm checkStateClass UI (=(m,f),t)
{ if(t=t) then
 { if (1(m)) then enable ta in ;
 else if(2(m) a>0) then { valid=false; continue=false; }
 else { valid=true; continue=false; }
 }
 if (ta En(m) 1(m)) then { valid=false; continue=false; }
 if (tb En(m)) then
 if (2(m)) then
 { if (1(m)) then { valid=false; continue=false; }
 } else Return ;
 if (t=tb) then { valid=false; continue=false; }
 Return ;
}

The implementation of checkStateClass UI corresponds to property UI . It
handles four similar cases as the previous implementation, but different actions are taken.
For instance, this implementation initializes variable valid to false as soon as the initial state

class is entered, and stops the exploration of a state class if it does not comply with the

semantics of . It also aborts the exploration as soon as a satisfactory execution path is
found.
To illustrate our verification approach, we consider the simple TPN model shown in figure

11, we call cyclic. The TCTLTPN property we verify is = 1 [0,3] , with proposition (m)=
(m(P0)=0) and proposition 2(m)= (m(P1)=1). For simplicity reasons, we selected a cyclic TPN

model with a single execution path, for which property is trivially valid.

Petri Net: Theory and Applications 204

The verification process of starts first by constructing the TPN model cyclic||Alarm, such
that a=0 and b=3, then runs according to the following steps:

1. Compute the initial state class of cyclic||Alarm: = (P0, 1 t0 2).

2. Check if 1 is valid in 0: 1 is not valid in 0.

3. Fire t2 from 0 and put the result in 1: 1= (P1, 2 t1 3).

4. Check if 1 is valid in 1: 1 is valid in 1.

5. Enable ta in 1: 1 becomes ((P1+Pa, 2 t1 3 ta=0).

6. Fire ta from 1 and put result in 2: 2 = (P1+Pb, 2 t1 3 tb=3).

7. Check if 2 is satisfied in 2: 2 is not satisfied in 2.

8. Fire t1 from 2 and put the result in 3: 3= (P0+Pb, 1 t0 2 0 tb 1).

9. Check if 2 is satisfied in 3: 2 is satisfied in 3.

10. Disables tb in 3: 3 becomes (P0, 1 t0 2).

11. Declare valid since 3 has already been explored (3= 0).

We have implemented and tested this approach on the level classical model. The properties

we considered are:

12. The gate is never open whenever a train is crossing:)(
1

1 i
ni

onopenG .

13. If a train approaches, the gate closes in less than 2 time units: 2 = coming [0,2] closed.
14. The level crossing model is deadlock free: 3= G (En(m)).
Table 3 reports results obtained for model checking the selected properties using our
approach, applied on the SCG. Each result is given in terms of the final size of the list
COMPUTED and the total number of explored state classes, followed by the exploration
time. The second column recalls the size and computing time of the ASCGs. All properties
have been successfully tested valid.

TPN ASCG

T(2)
cpu(s)

188 / 814
0.01

38 / 116
0

41 / 91
0

38 / 116
0

T(3)
cpu(s)

6918 / 49025
1.49

173 / 790
0

182 / 646
0.01

173 / 790
0.01

T(4)
cpu(s)

356930 / 3447548
317.29

1176 / 7162
0.12

1194 / 6073
0.1

1176 / 7162
0.12

T(5)
cpu(s)

?
10973 / 81370

2.37
11008 / 71152

2.04
10973/81370

2.30

T(6)
cpu(s)

?
128116/1103250

110.81
128184/986939

100.92
128116/1103250

111.18

Table 4. Comparison of ASCGs with our on-the-fly method

6. Conclusion
In this chapter, we presented and discussed model checking techniques of time Petri nets.
We pointed out some strategies which allow to make model checking techniques more
efficient. For model checking LTL properties, we proposed a contraction for the state class

Model Checking of Time Petri Nets 205

graph (SCG), called RSCG, which is both smaller and faster to compute than other
abstractions. For CTL* model checking, we showed that refining abstractions contracted by
inclusion or convex-combination allow to improve significantly the refinement process. For
all tested models, the refinement follows a linear pattern when an inclusion or convex-
combination abstraction is used. When an abstraction preserving linear properties is refined,
the size of the computed graph starts first to grow up to a peek size then decreases until an
atomic state class space is obtained. Finally, to attenuate the state explosion problem of
model checking techniques, we considered a subclass of TCTL and proposed an on-the-fly
method for the RSCG and SCG. On-the-fly methods have proven to be very effective to
model-check a subclass of TCTL of timed automata.

7. References
Alur, R. & Dill, D. (1990) . Automata for modelling real-time systems, Proceedings of

17ème ICALP, LNCS 443, pp. 322–335. Springer-Verlag, 1990.
Behrmann, G. ; Bengtsson, J.; David, A.; Larsen, K. G.; Pettersson, P. & Yi, W. (2002).

UPPAAL Implementation Secrets, Proceedings of the 7th International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 2469, pp. 3–
22. Springer-Verlag, 2002.

Berthomieu, B. & Vernadat, F. (2003). State class constructions for branching analysis of
time Petri nets, In Proceedings of TACAS 2003, LNCS 2619, pp. 442–457. Springer-
Verlag. 2003.

Boucheneb, H.; Gardey, G. & Roux. O. H. (2006). TCTL model checking of time Petri nets.
Technical Report IRCCyN number RI2006-14, 2006.

Boucheneb, H. & Hadjidj, R. (2006). CTL* model checking for time Petri nets, Theoretical
Computer Science journal, vol. 353(1-3)(1-3), pp. 208-227, 2006.

Boucheneb, H. & Hadjidj, R. (2004). Towards optimal CTL* model checking of Time Petri
Nets, Proceedings of the International Workshop on Discrete Event Systems
(WODES). Reims-France, 2004.

Boucheneb, H. & Mullins, J. (2003). Analyse de réseaux de Petri temporels. Calculs des

classes en O(n2) et des temps de chemin en O(m n), Technique et Science
Informatiques, vol. 22, no. 4, 2003.

Bucci, G. & Vicario, E. (1995). Compositional validation of time-critical systems using
communicating Time Petri nets, IEEE transactions on software engineering, vol. 21,
no. 12. pp. 969–992 December 1995.

Cassez, F. & Roux, O. H. (2006). Structural translation from time Petri nets to timed
automata, Journal of Systems and Software, 79(10), pp. 1456-1468, 2006

Clarke, E. M.; Grumberg, O. & Peled, D. (1999). Model Checking, MIT Press, Cambridge,
MA. 1999.

Daws, C.; Olivero, A.; Tripakis, S. & Yovine, S. (1996). The tool Kronos, In Hybrid Systems
III, Verification and Control, LNCS 1066, pp. 208–219, Springer-verlag, 1996.

Gardey, G. & Roux, O. H. Using zone graph method for computing the state space of a time
Petri net, In Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS
2791, pp 246-259, Springer-Verlag, Marseille, France, September 2003.

Hadjidj, R. & Boucheneb, H. (2006). On-the-fly TCTL model checking for time Petri nets
using the state class method, In Proceedings of the 6th International Conference on

Petri Net: Theory and Applications 206

Application of Concurrency to System Design (ACSD), IEEE Computer Society
Press, 2006.

Hadjidj, R. & Boucheneb, H. (2005). Much compact Time Petri Net state class spaces useful
to restore CTL* properties, In Proceedings of the Sixth International Conference on
Application of Concurrency to System Design (ACSD), IEEE Computer Society
Press, 2005

Henzinger, T. A.; Ho, P-H. & Wong-Toi, H. (1997). HyTech : A Model Checker for Hybrid
Systems, Software Tools for Technology Transfer 1, 1997.

Larsen, K.G.; Weise, C.; Yi, W. & Pearson, J. (1999) Clock difference diagrams. Nordic J.
Comput. 26(3), pp. 271–298 (1999).

Lime, D. & Roux, O. H. (2003). State class timed automaton of a time Petri net, In
Proceedings of the 10th Int. Workshop on Petri Nets and Performance Models
(PNPM). IEEE Comp. Soc. Press, 2003.

Paige, R. & Tarjan, R. (1987). Three partition refinement algorithms. SIAM, J. Comput. 16(6),
pp. 973–989 (1987).

Penczek, W. & Polrola, A. (2004). Specification and Model Checking of Temporal Properties
in Time Petri Nets and Timed Automata, In Proceedings of ICATPN’01, pp. 37–76,
2004.

Pettersson, P. (1999). Modelling and Verification of Real-Time Systems Using Timed
Automata: Theory and Practice, Ph.D. thesis, Uppsala University, 1999.

Pradubsuwun, D.; Yoneda, T. & Myers, C. (2005) Partial order reduction for detecting safety
and timing failures of timed circuits, IEICE Trans. Inf. & Syst., vol. E88-D, no. 7,
July 2005.

Toussaint, J.; Simonot-Lion, F. & Thomesse, J.P. (1997). Time constraint verifications
methods based on time Petri nets. In Proceedings of the 6th Workshop on Future
Trends in Distributed Computing Systems, 1997.

Tripakis, S.; Yovine S. & Bouajjani, A. (2005). Checking Timed Buchi Automata Emptiness
Efficiently, Formal Methods in System Design, 26(3), 2005.

Tripakis, S. & Yovine, S. (2001). Analysis of timed systems using time-abstracting
bisimulations, Formal Methods in System Design, 18(1), 2001.

Vicario, E. (2001) Static analysis and dynamic steering of time dependent systems, IEEE
Transactions on Software Engineering, 2001.

Virbitskaite, I. & Pokozy, E. (1999). A partial order method for the verification of time Petri
nets, In Fundamentals of Computation Theory, LNCS 1684, Springer-Verlag, 1999.

Visser, W. & Barringer, H. (2000). Practical CTL model checking - should SPIN be extended?
Software Tools for Technology Transfer, 2(4):350--365, Apr. 2000.

Yoneda, T. & Ryuba, H. (1998). CTL Model Checking of Time Petri Nets Using Geometric
Regions, IEICE Trans. Inf. And Syst., Vol. E99-D, no. 3, 1998.

Yoneda. T & Schlingloff, B.H. (1997). Efficient Verification of Parallel Real-Time Systems,
Formal Methods in System Design, Kluwer Academic Publishers, vol. 11, no. 2,
pp.187-215, August 1997.

10

A Linear Logic Based Approach to
Timed Petri Nets

Norihiro Kamide
Waseda Institute for Advanced Study, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo,

Japan

1. Introduction
1.1 Relationship between Petri net and linear logic
Petri nets were first introduced by Petri in his seminal Ph.D. thesis, and both the theory and
the applications of his model have flourished in concurrency theory (Reisig & Rozenberg,
1998a; Reisig & Rozenberg, 1998b).
The relationships between Petri nets and linear logics have been studied by many
researchers (Engberg & Winskel, 1997; Farwer, 1999; Hirai, 2000; Hirai 1999; Ishihara &
Hiraish, 2001; Kamide, 2004, Kamide, 2006; Kanovich, 1995; Kanovich 1994; Larchey-
Wendling & Galmiche, 1998; Larchey-Wendling & Galmiche, 2000; Lilius, 1992; Mart -Oliet
& Meseguer, 1991; Okada, 1998; Tanabe, 1997). A category theoretical investigation of such a
relationship was given by Mart -Oliet and Meseguer (Mart -Oliet & Meseguer, 1991),
purely syntactical approach using Horn linear logic was established by Kanovich (Kanovich,
1995; Kanovich 1994), a naive phase linear logic for a certain class of Petri nets was given by
Okada (Okada, 1998), a linear logical view of object Petri nets were studied by Farwer
(Farwer, 1999), and various Petri net interpretations of linear logic using quantale models
were obtained by Ishihara and Hiraishi (Ishihara & Hiraish, 2001), Engberg and Winskel
(Engberg & Winskel, 1997), Larchey-Wendling and Galmiche (Larchey-Wendling &
Galmiche, 1998; Larchey-Wendling & Galmiche, 2000), and Lilius (Lilius, 1992).
Petri net interpretations using Kripke semantics for various fragments and extensions of
intuitionistic linear logic were studied by Kamide (Kamide, 2004; Kamide, 2006c). In
(Kamide, 2004), Petri net interpretations of various fragments of a spatio-temporal soft
linear logic were discussed. In (Kamide, 2006c), Petri nets with inhibitor arcs, which were
first introduced by Kosaraju (Kosaraju, 1973) to show the limitation of the usual Petri nets,
were described using Kripke semantics for intuitionistic linear logic with strong negation.
The approarches using Kripke semantics can obtain a very simple correspondence between
Petri net and linear logic.

1.2 Relationship between timed Petri net and temporal linear logic
A number of formalizations of timed Petri nets (Bestuzheva and Rudnev, 1994; Wang, 1998)
can be considered since time can be associated with tokens, transitions, arcs and places. In
the existing linear logic based approaches including the present paper’s one, time was
associated to tokens (or markings). In fact, to express the fireability of transitions by

Petri Net: Theory and Applications 208

multisets of tokens in Petri nets, it seems to be a natural extension to do it by multisets of
timed tokens in timed Petri nets.
Temporal linear logic based methods for timed Petri nets were introduced and studied by
Tanabe (Tanabe, 1997) and Hirai (Hirai, 1999; Hirai, 2000). In (Tanabe, 1997), a relationship
between a timed Petri net and a temporal linear logic was discussed based on quantale
models with the soundness theorem for this logic. In (Hirai, 1999; Hirai 2000), a reachability
problem for a timed Petri net was solved syntactically by extending Kanovich’s result
(Kanovich, 1994) with an extended temporal intuitionistic linear logic.
In the present paper, a kind of temporal linear logic, called linear-time linear logic, is used to
describe timed Petri nets with timed tokens. This logic is formalized using a natural “linear-
time” formalism which is widely used in the standard linear-time temporal logic based on
the classical logic rather than linear logics.

1.3 Linear-time temporal logic
Linear-time temporal logic (LTL) has been studied by many researchers, and also been used as
a base logic for verifying and specifying concurrent systems (Clarke et al., 1999; Emerson,
1990; Kröger, 1977; Lichtenstein & Pnueli, 2000; Pnueli, 1977; Vardi, 2001; Vardi, 2007)
bacause of the virtue of the “linear-time” formalism (Vardi, 2001). LTL is thus known as one
of the most useful modal logics based on the classical logic. Sequent calculi for LTL and its
neighbors have been introduced by extending the sequent calculus LK for the classical logic
(Kawai, 1987; Baratella and Masini, 2004; Paech, 1988; Pliuškevi ius, 1991; Szabo, 1980;
Szalas, 1986). A sequent calculus LT for LTL was introduced by Kawai, and the cut-
elimination and completeness theorems for this calculus were proved (Kawai, 1987). A 2-
sequent calculus 2S for LTL, which is a natural extension of the usual sequent calculus,
was introduced by Baratella and Masini, and the cut-elimination and completeness
theorems for this calculus were proved based on an analogy between LTL and Peano
arithmetic with -rule (Baratella and Masini, 2004). A direct equivalence between Kawai’s
LT and Baratella and Masini’s 2S was shown by Kamide introducing the functions that
preserve cut-free proofs of these calculi (kamide, 2006b). In the present paper, (intuitionistic)
linear logic-based versions of LT and 2S are considered.

1.4 Temporal linear logic
Linear logic, which was originally introduced by Girard (Girard, 1987), is known as a
resource-aware refinment of the classical and intuitionistic logics, and useful for obtaining
more appropriate specifications of concurrent systems (Okada, 1998; Troelstra, 1992). In
order to handle both resource-sensitive and time-dependent properties of concurrent
systems, combining linear logics with temporal operators has been desired, since the
(classical) linear logic (as a basis for temporal logics) is more expressive and appropriate
than the classical logic. For this purpose, temporal linear logics have been proposed by Hirai
(Hirai, 2000), Tanabe (Tanabe, 1997), and Kanovich and Ito (Kanovich & Ito, 1998). Hirai’s
intuitionistic temporal linear logic (Hirai, 2000) is known as useful for describing a timed
Petri net (Hirai, 1999) and a timed linear logic programming language (Tamura et al., 2000).
Extensions of Hirai’s logic were proposed by Kamide (Kamide, 2004; Kamide, 2006a) as
certain spatio-temporal linear logics combined with the idea of handling spatiality in
Kobayashi, Shimizu and Yonezawa’s modal (spatial) linear logic (Kobayashi et al., 1999).
Tanabe’s temporal linear logic (Tanabe, 1997) is used as a base logic for timed Petri net

A Linear Logic Based Approach to Timed Petri Nets 209

specifications. Kanovich and Ito’s temporal linear logics (Kanovich & Ito, 1998) are a result
of combining linear logic with linear-time temporal operators.

1.5 Linear-time linear logic
Linear-time (temporal) linear logics and their usefulness have already been presented by
Kanovich and Ito (Kanovich & Ito, 1998). Classical and intuitionistic linear-time linear logics
were introduced as cut-free sequent calculi, and the strong completeness theorems for these
logics were shown using the algebraic structure of time phase semantics. Although in
(Kanovich & Ito, 1998), the phase semantic methods for both classical and intuitionistic cases
were intensively investigated, other semantic methods and their applications to concurrency

theory for the intuitionistic case have yet to be studied su ciently.
In this paper, an intuitionistic linear-time temporal linear logic, calld also here linear-time
linear logic, is introduced as cut-free sequent calculi based on the ideas of Kawai’s LT
(Kawai, 1987) and Baratella and Masini’s 2S (Baratella & Masini, 2004). It is shown that the
logic based on thses calculi derives intuitive linear-time, informational and Petri net
interpretations using Kripke semantics with the completeness theorem. The Kripke
semantics presented is introduced based on the exsisting Kripke semantics by Došen
(Došen, 1988), Kamide (Kamide, 2003), Kobayashi, Shimizu and Yonezawa (Kobayashi et al.,
1999), Hodas and Miller (Hodas & Miller, 1994), Ono and Komori (Ono & Komori, 1985),
Urquhart (Urquhart, 1972) and Wansing (Wansing, 1993a; Wansing, 1993b). 1

1.6 Organization of this paper
This paper is organized as follows.
In Section 2, the linear-time linear logic is introduced as two cut-free Gentzen-type sequent
calculi LT and 2LT, and show their equivalence using the method posed in (Kamide, 2006b).
The sequent calculi LT and 2LT are regarded as the linear logic based versions of Kawai’s
LT and Baratella and Masini’s 2S , respectively.
In Section 3, Kripke semantics with a natural timed Petri net interpretation is introduced for
LT, and the completeness theorem w.r.t. the semantics is proved as the main result of this
paper. The completeness theorem is the basis for obtaining a natural relationship between
LT and a timed Petri net.
In Section 4, a timed Petri net with timed tokens is introduced as a structure, and the
correspondence between this structure and Kripke frame for LT is observed. An illustrative
example for verifying the reachability of timed Petri nets is also addressed based on LT.
In Section 5, this paper is concluded, and some remarkes are given.

2. Linear-time linear logic
2.1 LT
Before the precise discussion, the language used in this paper is introduced. Formulas are
constructed from propositional variables, 1 (multiplicative constant), (implication),

(conjunction), (fusion), (exponential), temporal operators X (next) and G (globally).
Lower-case letters p, q,... are used for propositional variables, Greek lower-case letters ,

1 For a historical overview of Kripke semantics for modal substructural logics, see. e.g.

(Kamide, 2002).

Petri Net: Theory and Applications 210

... are used for formulas, and Greek capital letters are used for finite (possibly
empty) multisets of formulas. For any , an expression is used to denote the

multiset . The symbol is used to denote equality as sequences (or multisets) of

symbols. The symbol or N is used to represent the set of natural numbers. An expression

 for any is used to denote , e.g and

. An expression means and

means . An expression means if and
means 1 if is empty. Lower-case letters i, j and k are used to denote any natural numbers.

A sequent is an expression of the form (the succedent of the sequent is not empty). It
is assumed that the terminological conventions regarding sequents (e.g. antecedent,
succedent etc.) are the usual ones. If a sequent S is provable in a sequent system L, then such

a fact is denoted as L S or S. The parentheses for is omitted since is associative, i.e.

 for any formulas .
In the following, the linear-time linear logic LT is introduced as a sequent calculus. This is
regarded as a linear logic version of Kawai’s LT (Kawai, 1987).
Definition 1 (LT) The initial sequents of LT are of the form:

A Linear Logic Based Approach to Timed Petri Nets 211

It is remarked that (Gright) has infinite premises. It is noted that the cases for i = k = 0 in LT
derive the usual inference rules for the intuitionistic linear logic.
Although a proof is not given in this paper, the following cut-elimination theorem can be
proved by a phase semantic method (Kamide, 2007).
Theorem 2 (Cut-elimination for LT) The rule (cut) is admissible in cut-free LT.
An expression means the sequents . Then, the following
sequents are provable in LT for any formulas and any :

The last sequent above corresponds to the linear logic version of the temporal induction
axiom: , and an LT-proof of this sequent is as follows. .

 where for any is shown by mathematical induction on as
follows. The base step, i.e. , is obvious using (!we). The induction step can be shown
using (!co) as follows.

2.2 2LT
A 2-sequent calculus 2LT for the linear-time linear logic is introduced below. This calculus
is a linear logic version of Baratella and Masini’s 2-sequent calculus 2S (Baratella & Masini,
2004). The language of 2LT and the notations used are almost the same as those of LT.
Definition 3 An expression (is a formula and) is called an indexed formula. Let be an
indexed formula and be finite (possibly empty) multiset of indexed formulas. Then an expression

 is called a 2-sequent.
An expression is used to denote the multiset of i-indexed formulas.

Petri Net: Theory and Applications 212

Definition 4 (2LT) The initial sequents of 2LT are of the form:

The cut rule of 2LT is of the form:

The logical inference rules of 2LT are of the form:

An expression is used to denote the fact that is provable in a 2-sequent
calculus L.
Definition 5 Let be the set of formulas of LT and be the set of indexed formulas of 2LT.

It is remark that and hold for any formula .
Theorem 6 (Equivalence between LT and 2LT) (1) for any 2-sequent , if 2LT

, then . (2) for any sequent , if , then
.

Proof We show only (1) by induction on a proof P of in 2LT. We show only the
following case.

A Linear Logic Based Approach to Timed Petri Nets 213

Case (Xleft): The last inference of P is of the form:

By the hypothesis of induction, we obtain LT , and hence obtain LT

 Q.E.D.
By Theorems 2 and 6, the following theorem is obtained.
Theorem 7 (Cut-elimination for 2LT) The rule (cut2) is admissible in cut-free 2LT.

Proof Suppose 2LT for a 2-sequent . Then we have by
Theorem 6 (1). By Theorem 2, we obtain . We thus obtain

 by Theorem 6 (2). Therefore .
Conversely, by Theorem 7 and an appropriate modification of Theorem 6, a proof of
Theorem 2 is also derived. Q.E.D.

3. Kripke semantics
3.1 Kripke model and soundness
The following definition (except the existence of N) of the Kripke frame is the same as that
for the (fragment of) intuitionistic linear logic (Kamide, 2003).
Definition 8 A Kripke frame for LT is a structure satisfying the following
conditions:
1. N is the set of natural numbers,
2. is a commutative monoid with the identity ,
3. is a pre-ordered set,
4. is a unary operation on M such that

5. · is monotonic with respect to , i.e.

Definition 9 A valuation on a Kripke frame for LT is a mapping from the set of
all propositional variables to the power set of M × N and satisfyning the following hereditary
condition: for any propositional variable p, any

and any . An expression will be used for . Each
valuation can be extended to a mapping from the set of all formulas to the power set of by
1.

2.
3.
4.
5.

Petri Net: Theory and Applications 214

6.
7.
Proposition 10 Let be a valuation on a Kripke frame for LT. Then the following
hereditary condition holds: for any formula

.
Proof By induction on the complexity of . Q.E.D.

Definition 11 A Kripke model for LT is a structure such that

1. is a Kripke frame for LT,
2. is a valuation on .

A formula is true in a Kripke model for LT if , and valid in a

Kripke frame for LT if it is true for any valuation on the Kripke frame. A
sequent is true in a Kripke model for LT if the
formula is true in it, and valid in a Kripke frame for LT if the
formula is valid in it.
The Kripke model defined has a natural informational interpretation due
to Urquhart (Urquhart, 1972) and Wansing (Wansing, 1993a; Wansing, 1993b). M is a set of
information pieces, is the addition of information pieces, is the infinite addition of
information pieces, and is the empty piece of information. Then the forcing relation

 can read as “the resource is obtained at the time i by using the information
piece x.”
Theorem 12 (Soundness) Let C be a class of Kripke frames for and

Proof It is su cient to prove the following: for any sequent S, if S is provable, then S is valid
in any frame . This is proved by induction on a proof P of
S. We distinguish the cases according to the last inference rules and initial sequents in P . Let

 be a valuation on F . In the following, we sometimes use implicitly the fact that is a pre-
order, is a commutative monoid with the identity , is monotonic, and has the
hereditary condition (Proposition 10). We show some cases.

Case (!left): It is shown that L(C) is closed under (!left), i.e. for any formula and any

multiset of formulas, if is valid in F then so is . In the following, we
consider only the case that is nonempty (the empty case can be shown similarly). Suppose

that . We will show
. By (2), there exist such that and

. By (4), there exists such that By
(6), the frame condition C1 and the transitivity of , we have . Moreover, by (8)

and the monotonicity of ·, we have By (9), (3) and the transitivity of ,
we have . Thus, by (10), (7) and (5), we obtain the following: there exist

 such that . Hence, by (1) we have
.

Case (!right): It is shown that L(C) is closed under (!right), i.e. for any formula and any
multiset of formulas, if is valid in F then so is .
We only show the case that is nonempty (the empty case can easily be shown using the

frame condition C0). Suppose (1) for any

A Linear Logic Based Approach to Timed Petri Nets 215

 and (2) . We will show . By (1), we have that
there exist such that (3) , and (4) .

Then, by (4), we have that for any , there exists such that (5)

and (6) . By (6), the frame condition C1 and the hereditary condition of , we

obtain (7) . Thus we have that there exists (because M is closed under

, and there exists) such that (by the frame condition C2) and

 (by (7)). This means that (8) for any

. Further we have (9) since is reflexive. Hence we
have that there exist such that (8) and (9). This

means , i.e. (10) . By the

hypothesis (2) and the fact (10), we have (11)

. By the facts (3), (5), the monotonicity of · and the frame conditions C2,

C3, we have (12)

Hence we obtain the following: there exist (because M is closed under ·)

such that (by (12) and the transitivity of) and (by

(11)). This means .
Case (!co)): It is shown that L(C) is closed under (!co), i.e. for any formulas and any

multiset of formulas, if is valid in F then so is . In the
following we consider only the case that is nonempty (the empty case can be shown

similarly). Suppose (1) for any and (2) .
We will show . By (1), there exist such that (3) , (4)

 and (5) . By (4), we have that there exists such that (6)

 and (7) . By (3), (6) and the monotonicity of ·, we have (8)

. On the other hand, we have that there exists such that

 (by the frame condition C4), (because, by (7), the frame

conditions C1, C2 the hereditary condition of , we have that there exists such

that . This means (9) . Further we have

that there exist such that (by (8) and the transitivity of),

 (by (9)) and (by (5)). This means (10)

. By the hypothesis (2) and the fact (10), we obtain .
Case (!we): It is shown that L(C) is closed under (!we), i.e. for any formulas and any

multiset of formulas, if is valid in F then so is . In the following we
consider only the case that is nonempty (the empty case can be shown similarly). Suppose

(1) for any and (2) . We will show . By

(1), we have that there exist such that (3) , (4) and (5)

 . By (4), we have that there exists such that (6) .

Then we obtain (7) since we have by (3), (6), the
monotonicity of , the transitivity of and the frame condition C5. Hence, by (7), (5) and

the hereditary condition of , we obtain (8) . Thus we obtain by the
hypothesis (2) and the fact (8).

Case (Gleft): It is shown that L(C) is closed under (Gleft), i.e. for any formulas and

multiset of formulas, if is valid in F thenso is . In the
following, we consider only the case that is nonempty (the empty case can be shown

Petri Net: Theory and Applications 216

similarly).

Suppose

and implies . We will show

. It

is thus enough to show that . Suppose

 . Then

. Thus we obtain .

Case (Gright): It is shown that L(C) is closed under (Gright), i.e. for any formula and
multiset of formulas, if (for all) are valid in F then so is . We
consider here only the case that is nonempty (the empty case can be shown similarly).

Suppose for all , i.e. for all implies

. We will show implies

. It is thus enough to show that implies

. Suppose .

Then we obtain as follows:

 i . Q.E.D.

3.2 Completeness
In order to prove the completeness theorem, constructing a canonical model is needed, and
the resulting canonical model will be used to show the relationship between a timed Petri
net and LT.
Definition 13 A canonical model is a structure such that

It can then be shown that is a Kripke frame for LT. It is remarked that the
condition C0 corresponds to is defined by where {} is
the empty multiset. It is also remarked that the sequent is not true in this canonical

model. is interpreted as) but does not correspond to
. Also is not true in any Kripke model, because is interpreted as (i.e.,

).
Further it will be proved that is a Kripke model for LT. To show this
fact is essentially to show the completeness theorem. To achive the completeness theorem,
the following lemma is needed.

A Linear Logic Based Approach to Timed Petri Nets 217

Lemma 14 Let be the canonical model defined in Definition 13. Then, for
any formula , any and any ,

.

Proof This lemma is proved by induction on the complexity of . We show some cases.
(Case) : By the definition of .

(Case): Suppose . Then we have i i i

. Thus we obtain :

Conversely, suppose . Then we have

and hence
 (Case): First we show that implies . Suppose

 implies for any . We take for
. We have by the induction hypothesis, and by the

hypothesis. Thus we have by the induction hypothesis, and hence
. Conversely, suppose

for any . Then we have by the induction hypothesis. We obtain:

and hence by the induction hypothesis.
: First we show that for

any . Suppose . Then we have . We
obtain by the hypothesis of induction. Thus we have

. Conversely, suppose . Then we have

Thus we have by the induction hypothesis, and hence
.

Petri Net: Theory and Applications 218

 First, we show that implies for any .
Suppose . Then there exists such that . By
the hypothesis of induction, we obtain . Thus we obtain :

Conversely, suppose . We will show , i.e. there exists such
that . We take . Then we obtain by
the induction hypothesis. Using the hypothesis , we obtain :

Thus, we obtain .

 (by the induction

hypothesis) i .
 Suppose . Then we have , and hence

by the induction hypothesis. This means , and
thus by (Gright). Conversely, suppose . Then we have:

for any . By the hypothesis of induction, we obtain

and hence . Q.E.D.

Lemma 15 The canonical model defined in Definition 13 is a Kripke model for
LT such that

for any formula .
Proof The hereditary condition on is obvious. By taking 0 for i and taking for in
Lemma 14, the required fact is obtained. Q.E.D.
By using Lemma 15, the following theorem is obtained, because for any sequent , it
can take the formula such that .
Theorem 16 (Completeness) Let C be a class of Kripke frames for
and . Then .

A Linear Logic Based Approach to Timed Petri Nets 219

4. Timed Petri net interpretation
The following definition of timed Petri net is roughly the same as that in (Tanabe, 1997).
Definition 17 (Timed Petri net) A timed Petri net is a structure such that
8. N is the set of natural numbers representing liner-time,
9. P is a set of places,
10. T is a set of transitions,
11. and are mappings from T to the set S of all multisets over P × N.
For are called the pre-multiset and the post-multiset of t respectively. Each
element of S is called a timed marking.
In this definition, indicates the waiting time until the pending tokens which are
usable in future become available in a place. Thus, an expression , which
corresponds to the formula , means “A token has pending time i, i.e., will be active
after i time units.” In such an expression, a token is called an active token, and a token

with is called a pending token.
Definition 18 (Reachability relation) A firing relation is defined as

follows: for any m1, m2 S,

A reachability relation on S is defined as follows: for any ,

.
It is remarked that is transitive and reflrxive.
We sometimes have to add certain time passage functions and timing conditions to the
definitions of timed Petri net, firing relation and reachability relation, in case-by-case. A time
passage function , which means the passage of time by i time units, is a function on S such
that . A firing relation may be extended with respect to
such time passage functions such that . A timing condition TC is a
binary relation on S. Then an extended reachability relation on S may have, for example,
the following conditions:

Following (Tanabe, 1997), we give an example of timed Petri nets.
Example 19 (Apple drinks 1) Suppose that we have just picked up three apples from an
apple tree, and we can choose apple drinks between two options according to the following
two rules.

(Rule 1): from an apple of less than one month old (i.e., less than a month has
passed since picked from the tree), we can make a glass of apple juice.
(Rule2): from two apples of between 10 and 20 months old, we can make a glass of cider.

We then give a timed Petri net with two time passage functions 1 and 11, and
two timing conditions TC1 and TC2. Let P be {A, J, C} where A, J and C correspond to an apple, a
glass of juice and a glass of cider, respectively. Let T be {t1,t2}, be {(A, i)}, be {(J, i)}, be
{(A, i), (A, i))}, and be {(C, i)}. Let TC1 be {(A, x)} {(J, 0)} , and TC2 be

. It is remarked that TC1 and TC2
correspond to (Rule1) and (Rule2), respectively. Graphically this becomes the following:

Petri Net: Theory and Applications 220

In this net, indicates a timed token (A, i).
Example 20 (Apple drinks 2) In Example 19, we consider the situation (Tanabe, 1997) that
starting from three apples, how can we get a glass of juice and a glass of cider? Going
through the stage of getting drinks.
1. We have three fresh apples: {(A, 0), (A, 0), (A, 0)}.
2. One month has passed, i.e., all the apples has become one month old:
3. {(A, 1), (A, 1), (A, 1)}.
4. A glass of juice is made from an apple: {(J, 0), (A, 1), (A, 1)}.
5. More eleven months have passed: {(J, 11), (A, 12), (A, 12)}.
6. We finally have a glass of juice and a glass of cider: {(J, 11), (C, 0)}.
 Then this situation is expressed as follows:

Thus we can obtain:

In the next example, this will be verified using LT.
In order to compare timed Petri net and LT, the following definition is considered. It is
assumed here that there is no time passage function or timing condition, since these are
additional items in case-by-case.
Definition 21 (Timed Petri net structure) A timed Petri net structure is a structure

such that
7. N is the set of natural numbers representing liner-time,
8. S is the set of all timed-markings,
9. + is a multiset union operation on S,
10. is the empty multiset,
11. is a reachability relation on S.
It is remarked that a timed Petri net structure satisfies the following
conditions:
1. is a commutative monoid,
2. is a pre-ordered set,

3.
We then have the following basic proposition.
Proposition 22 (Correspondence: Timed Petri net and Kripke frame)
A timed Petri net structure is just a -free reduct of a Kripke frame for LT.
By this prposition and the canonical model defined in Definition 13, a timed Petri net
interpretation for LT is obtained.
1. A timed token or place name, , corresponds to the formula .

A Linear Logic Based Approach to Timed Petri Nets 221

2. The reachability of a timed Petri net corresponds to the provability of a sequent in LT,
i.e. corresponds to .

Then we have the remained question: “What is the Petri net interpretation of the exponential
operator?” The following example is an answer from the idea of Ishihara and Hiraishi
(Ishihara & Hiraishi, 2001).
Example 23 (Exponential operator) We give a timed Petri net with

,
, where all tokens are active tokens, i.e., tokens with

. Graphically this becomes the following:

This net corresponds to the facts . In this net, the place !
 (if it has a timed token) can produce a number of tokens in many-times (i.e. as many as needed).

We now show a LT based expression of the timed Petri net in the apple drink examples
discussed before.
Example 24 (Apple drinks 3) We recondider Examples 19 and 20 based on a sequent
calculus expression for LT.
The time passage functions 1 and 11, and the timing conditions TC1 and TC2 are expressed as
initial sequents (non-logical axioms) for LT.

In the following, we verify ,

Petri Net: Theory and Applications 222

5. Concluding remarks
In this paper, a new logic, called linear-time linear logic, was introduced as two equivalent
cut-free sequent calculi LT and 2LT, which are the linear logic versions of Kawai’s LT and
Baretella and Masini’s 2S for the standard linear-time temporal logic. The completeness
theorem w.r.t. the Kripke semantics with a natural timed Petri net interpretation was proved
for LT as the main result of this paper. By using this theorem, a relationship between LT and
a timed Petri net with timed tokens was clarified, and the reachability of such a Petri net was
transformed into the provability of LT and also 2LT. This means that the timed Petri net can
naturally be expressed as the proof-theoretic framework by LT.
In the following, some technical remarks are given. The Kripke semantics presented is
similar to the Kripke semantics (or resource algebras) with location interpretations by
Kobayashi, Shimizu and Yonezawa (Kobayashi et al., 1999)) and Kamide (Kamide, 2004).
The sequent calculi and Kripke semantics for LT can also be adapted to Lafont’s
(intuitionistic) soft linear logic (Lafont, 2004) by using the framework presented in (Kamide,
2004). The framework posed in this paper can be extended to a rich framework with the
first-order universal quantifier ,based on the technique posed in (Kamide, 2004). It is
known in (Lilius, 1992) that the linear logic framework with the first-order quantifiers
correspond to a high-level Petri net framework.

6. References
Baratella, S. and Masini, A. (2004). An approach to infinitary temporal proof theory. Archive

for Mathematical Logic 43 (8), pp. 965–990.
Bestuzheva, I.I. & Rudnev, V.V. (1994). Timed Petri nets: Classification and comparative

analysis. Automation and Remote Control 51 (10), pp. 1308–1318.
Clarke, E.M., Grumberg, O. & Peled, D. A. (1999). Model checking. The MIT Press.
Došen, K. (1988). Sequent systems and groupoid models I, II. Studia Logica 47, 48, pp. 353–385,

pp. 41–65.
Emerson, E.A. (1990). Temporal and modal logic. In Handbook of Theoretical Computer Science,

Formal Models and Semantics (B), Jan van Leeuwen (Ed.), pp. 995–1072, Elsevier and MIT
Press.

Engberg, U. & Winskel, G. (1997). Completeness results for linear logic on Petri nets. Annals
of Pure and Applied Logic 86, pp. 101–135.

Farwer, B. (1999). A linear logic view of object Petri nets. Fundamenta Informaticae 37 (3), pp.
225–246.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50, pp. 1–102.
Hirai, T. (2000). Propositional temporal linear logic and its application to concurrent

systems. IEICE Transactions (Fundamentals) E83-A 11, pp. 2219–2227.
Hirai, T. (1999). An application of a temporal linear logic to timed Petri nets. Proceedings of

Petri nets’ 99, Workshop on applications of Petri nets to intelligent system
development, pp. 2–13.

Hodas, J. & Miller, D. (1994). Logic programming in a fragment of intuitionistic linear logic.
Information and Computation 110, pp. 327–365.

Ishihara, K. & Hiraishi, K. (2001). The completeness of linear logic for Petri net models. Logic
Journal of the IGPL 9, No. 4, pp. 549–567.

A Linear Logic Based Approach to Timed Petri Nets 223

Kamide, N. (2002). Kripke semantics for modal substructural logics. Journal of Logic, Language
and Information 11, pp. 453–470.

Kamide, N. (2003). A simplified semantics for a fragment of intuitionistic linear logic. Bulletin
of the Section of the Logic 32 (3), pp. 121–127.

Kamide, N. (2004). Combining soft linear logic and spatio-temporal operators. Journal of
Logic and Computation 14 (5), pp. 625–650, 2004.

Kamide, N. (2006a). Linear and a ne logics with temporal, spatial and epistemic operators.
Theoretical Computer Science 353 (1–3), pp. 165–207.

Kamide, N. (2006b). An equivalence between sequent calculi for linear-time temporal logic.
Bulletin of the Section of the Logic 35 (4), pp. 187–194.

Kamide, N. (2006c). Phase semantics and Petri net intepretation for resource-sensitive strong
negation. Journal of Logic, Language and Information 15 (4), pp. 371–401.

Kamide, N. (2007). Phase semantics for linear-time formalism. Preprint 2007.
Kanovich, M.I. & Ito, T. (1998). Temporal linear logic specifications for concurrent procesess

(extended abstract). Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, pp. 48–57.

Kanovich, M.I. (1995). Petri nets, Horn programs, linear logic and vector games. Annals of
Pure and Applied Logic 75, pp. 107–135.

Kanovich, M.I. (1994). Linear logic as a logic of computations. Annals of Pure and Applied Logic
67, pp. 183–212.

Kawai, H. (1987). Sequential calculus for a first order infinitary temporal logic. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 33, pp. 423–432.

Kosaraju, S. (1973). Limitations of Dijkstra’s semaphore primitives and Petri nets. Operating
Systems Review 7, No. 4, pp. 122–126.

Kobayashi, N., Shimizu, T. & Yonezawa, A. (1999). Distributed concurrent linear logic
programming. Theoretical Computer Science 227, pp. 185–220.

Kröger, F. (1977). LAR: a logic of algorithmic reasoning. Acta Informatica 8, pp. 243–266.
Lafont, Y. (2004). Soft linear logic and polynomial time. Theoretical Computer Science 318 (1-2),

pp. 163–180.
Larchey-Wendling, D & Galmiche, D. (1998). Provability in intuitionistic linear logic from a

new interpretation on Petri nets — extended abstract —. Electronic Notes in Theoretical
Computer Science 17, 18 pages, 1998.

Larchey-Wendling, D. & Galmiche, D. (2000). Quantales as completions of ordered monoids:
revised semantics for intuitionistic linear logic. Electronic Notes in Theoretical Computer
Science 35, 15 pages.

Lichtenstein, O. & Pnueli, A. (2000). Propositional temporal logics: decidability and
completeness. Logic Journal of the IGPL 8 (1), pp. 55–85.

Lilius, J. (1992). High-level nets and linear logic. Lecture Notes in Computer Science 616,
Springer-Verlag, pp. 310–327.

Mart -Oliet, N. & Meseguer, J. (1991). From Petri nets to linear logic. Mathematical
Structures in Computer Science 1, pp. 69–101.
Okada, M. (1998). An introduction to linear logic: expressiveness and phase semantics. MSJ

Memoirs 2, pp. 255–295.
Ono, H. & Komori, Y. (1985). Logics without the contraction rule. Journal of Symbolic Logic 50,

pp. 169–201.

Petri Net: Theory and Applications 224

Paech, B. (1988). Gentzen-systems for propositional temporal logics. Lecture Notes in
Computer Science 385, pp. 240–253.

Pliuškevi ius, R. (1991). Investigation of finitary calculus for a discrete linear time logic by
means of infinitary calculus. Lecture Notes in Computer Science 502, pp. 504–528.

Pnueli, A. (1977). The temporal logic of programs. Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 46–57.

Reisig, W & Rozenberg, G. (Eds.), (1998a). Lectures on Petri nets I: basic models (Advances
in Petri nets). Lecture Notes in Computer Science 1491, Springer-Verlag.

Reisig, W. & Rozenberg, G. (Eds.), (1998b). Lectures on Petri nets II: applications (Advances
in Petri nets). Lecture Notes in Computer Science 1492, Springer-Verlag.

Szabo, M.E. (1980). A sequent calculus for Kröger logic. Lecture Notes in Computer Science
148, pp. 295–303.

Sza as, A. (1986). Concerning the semantic consequence relation in first-order temporal
logic. Theoretical Computer Science 47 (3), pp. 329–334.

Tanabe, M. (1997). Timed Petri nets and temporal linear logic. Lecture Notes in Computer
Science 1248, pp. 156–174.

Tamura, N., Hirai, T., Yoshikawa, H., Kan, Kyoung-San & Banbara, M. (2000). Logic
programming in an intuitionistic temporal linear logic. Information Processing Society of
Japan, Transactions on Programming 41, SIG4 (PRO 7), pp. 11–23 (in japanease).

Troelstra, A.S. (1992). Lectures on linear logic. CSLI Lecture Notes, Vol. 29, Stanford, CA:
CSLI.

Urquhart, A. (1972). Semantics for relevant logics. Journal of Symbolic Logic 37, pp. 159–169.
Vardi, M.Y. (2001). Branching vs. linear-time: final showdown. Proceedings of the 7th

International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’01), pp. 1–22.

Vardi, M.Y. (2007). Automata-theoretic model checking revisited. Invited paper of the 8th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’07), 14 pages.

Wang, J. (1998). Timed Petri nets: theory and application. Kluwer Academic Publishers,
Boston.

Wansing, H. (1993a). Informational interpretation of substructural propositional logics.
Journal of Logic, Language and Information 2, pp. 285–308.

Wansing, H. (1993b). The logic of information structures. Lecture Notes in Artificial
Intelligence 681, pp. 1–163.

11

From Time Petri Nets to Timed Automata

Franck Cassez and Olivier H. Roux
Institut de Recherche en Communication et Cybernétique de Nantes (IRCCyN)

France

1. Introduction
In this chapter we introduce a formalism, Time Petri Nets (TPNs), to model real-time systems.
We compare it with another well-known formalism, Timed Automata (TA), used for specifying
timed systems. We precisely define the semantics of TPNs and TA and compare them accord-
ing to two criteria: the languages (or set of behaviours) they can generate, and the trees (or
branching behaviours) they can generate. We show that every TPN can be translated into an
equivalent1 TA.
Then, we introduce a real-time logic to specify properties of real-time systems. We show
how to check that a given TPN satisfies a property written in this logic. For this, we use our
translation2 from TPNs to TA and check the property on the equivalent TA. Finally we briefly
report on experiments for checking real-time properties of TPNs using this framework.

1.1. Petri Nets with Time
The two main extensions of Petri Nets with time are Time Petri Nets (TPNs) (Merlin, 1974) and
Timed Petri Nets (Ramchandani, 1974). In a TPN a transition can fire within a time interval
whereas for Timed Petri Nets it fires as soon as possible. For Timed Petri Nets, time can
be considered relative to places or transitions (Sifakis, 1980; Pezzè, 1999). It is interesting to
formally compare the different classes of Petri Nets with time: this gives a better idea of what
one subclass should be used for. The expressive power of (time) Petri Nets can be compared
w.r.t. the set of (timed) behaviors they can generate. One class C is a subclass of another C′,
if for every net n in C, there is a net n′ in C′ which can generate the same behaviors as n. In
this case, we say that the class C is less expressive than C′. For instance, the two subclasses
P-Timed Petri Nets and T-Timed Petri Nets are expressively equivalent (Sifakis, 1980; Pezzè,
1999) (i.e., P-Timed Petri Nets are less expressive than T-Timed Petri Nets and vice-versa). The
same subclasses are defined for TPNs i.e., T-TPNs and P-TPNs. Both classes of Timed Petri
Nets are less expressive than both P-TPNs and T-TPNs (Pezzè, 1999). P-TPNs and T-TPNs are
incomparable (Khansa et al., 1996). Finally TPNs are less expressive than Time Stream Petri
Nets (Diaz and Senac, 1994) which were introduced to model multimedia applications.
Another way of comparing two classes is to determine the status of different decision prob-
lems (e.g., reachability, coverability, boundedness) for the two classes. For instance, reachability
is undecidable for TPNs, as well as boundedness. Recent work (de Frutos Escrig et al., 2000;
Abdulla and Nylén, 2001) considers timed arc Petri nets where each token has a clock rep-
resenting its “age”. The authors prove that coverability and boundedness are decidable for
this class of Petri nets by applying a backward exploration technique. They use a lazy (non-
urgent) behavior of the net: the firing of transitions may be delayed, even if that implies that

1This equivalence is formally defined in the chapter.
2This translation preserves the properties of this logic.

226 Petri Net. Theory and Applications

some transitions are disabled because their input tokens become too old.
The class T-TPNs is the most commonly-used subclass of TPNs to specify real-time systems. In
this chapter, we focus on this subclass that will be henceforth referred to as TPNs. For classical
TPNs (with closed intervals), boundedness is undecidable (Berthomieu and Diaz, 1991), and
papers on this model report undecidability results, or decidability under the assumption that
the TPN is bounded, e.g., reachability in (Popova, 1991).

1.2. Verifying Time Petri Nets
The main objective in specifying real-time systems with formalisms like TPNs is to build a
model of a system S, and be able to mathematically reason about it. By reasoning we mean
“verifying that some properties are satisfied on the model”. The properties we would like to
check range from simple ones like “the system cannot reach a bad state” which are reachability
properties, to more involved properties like “after each failure, the system will reach a stable
state within 10 time units”, which are quantitative real-time properties. Given a formal model
S and a temporal logic formula ϕ, verifying that S satisfies ϕ is usually achieved by a model-
checking algorithm: such an algorithm checks that S is a model of the formula ϕ. Hence the
process of verifying that a formal model of a system satisfies a property in a temporal logic is
often called model-checking.
Algorithms for verifying properties on TPNs have been designed for more than a decade.
Formally, the behavior of a TPN can be defined by timed firing sequences which are sequences
of pairs (t, d) where t is a transition of the TPN and d ∈ R≥0. A sequence of transitions
like ω = (t1, d1) (t2, d2) . . . (tn, dn) . . . indicates that t1 is fired after d1 time units, then t2 is
fired after d2 time units have elapsed since t1 was fired, and so on, so that transition ti is
fired at absolute time ∑

i
k=1 dk. A marking M is reachable in a TPN if there is a timed firing

sequence ω from the initial marking M0 to M. Reachability analysis of TPNs relies on the
construction of the so-called State-Class Graph (SCG) that was introduced in (Berthomieu
and Menasche, 1983) and later refined in (Berthomieu and Diaz, 1991). It has been recently
improved in (Lilius, 1998) by using partial-order reduction methods.
For bounded TPNs, the SCG construction obviously solves the marking reachability problem:
“Given a marking M, is it possible to reach M from M0?”. If one wants to solve the state
reachability problem: “Given M and v ∈ R≥0 and a transition t, can we reach a marking M
such that transition t has been enabled for v time units?”, the SCG is not precise enough and an
alternative graph, the Strong State Class Graph has to be built for this purpose (Berthomieu and
Vernadat, 2003). The previous two graphs allow for checking qualitative properties written in a
real-time logic called LTL (Emerson, 1990). A more powerful real-time logic, CTL∗ (Emerson,
1990), can be checked on TPNs using yet another more precise graph.
Anyway, none of the previous graphs is a good3 abstraction (accurate enough) for checking
quantitative real-time properties e.g., “it is not possible to stay in marking M more than n
time units” or “from marking M, marking M′ is always reached within n time units”. In this
chapter we introduce a logic to specify such quantitative real-time properties and present an
algorithm to check for such properties on TPNs.

1.3. Timed Automata
Timed Automata (TA) were introduced by Alur & Dill (Alur and Dill, 1994) and have since
been extensively studied. They are now widely used to model real-time systems. TA forms
an extension of finite automata with dense time clocks and enables one to specify real-time

3The use of observers is of little help as it requires to specify a property as a TPN; thus it is hard to
specify properties on markings.

From Time Petri Nets to Timed Automata 227

systems. It has been shown that model-checking a quantitative real-time logic, called TCTL,
is decidable (Alur and Dill, 1994; Henzinger et al., 1994) for TA and some of their exten-
sions (Bouyer et al., 2000). There also exist several efficient tools like UPPAAL (Larsen et al.,
1997), KRONOS (Yovine, 1997) and CMC (Laroussinie and Larsen, 1998) for model-checking
TA and many real-time industrial applications have been specified and successfully verified
with them. In this chapter, we show how to translate TPNs into equivalent TA. This enables
us to use the technology and tools developed for TA to verify TPNs.

1.4. Outline of the Chapter
In Section 2 we fix notations and provide basic notions for defining the formal semantics of
Time Petri Nets and Timed Automata. In Section 3, we introduce Time Petri Nets and define
their semantics. We also give the main properties of this model together with an algorithm
to compute a finite representation of the state space of a Time Petri Net; this algorithm can
be used to check marking reachability. In Section 4, we compare the expressiveness of Timed
Automata and Time Petri Nets and show that they are equivalent w.r.t. language equivalence.
We give the translation from TPNs to TA and show in Section 5 how to check quantitative
properties on TPNs using a timed temporal logic. In Section 6, we apply the framework
defined in Section 4 on some examples. Finally, we conclude with recent or ongoing work
on this subject in Section 7.

2. Preliminaries
Let Σ be a finite alphabet. Σ∗ (resp. Σω) denotes the set of finite (resp. infinite) sequences
over Σ and Σ∞ = Σ∗ ∪ Σω (called words in the sequel). By convention if u ∈ Σω , then the
length of u, denoted |u|, is ω; otherwise if u = a1 · · · an, |u| = n. We also use Σε = Σ ∪ {ε}
where ε �∈ Σ, where ε is the empty word. BA stands for the set of mappings from A to B. If
A is finite and |A| = n, an element of BA is also a vector in Bn. The usual operators +,−, <
and = are used on vectors of An with A = N, Q, R and are the point-wise extensions of
their counterparts in A. The set B = {tt, ff} denotes the boolean truth values true and false,
R≥0 denotes the set of non-negative reals and R>0 = R≥0 \ {0}. A valuation ν for the set of
variables X is an element of RX

≥0. For ν ∈ RX
≥0 and d ∈ R≥0, ν + d denotes the valuation

defined by (ν + d)(x) = ν(x) + d, and for X′ ⊆ X, ν[X′ 	→ 0] denotes the valuation ν′ with
ν′(x) = 0 for x ∈ X′ and ν′(x) = ν(x) otherwise. 0 denotes the valuation s.t. ∀x ∈ X, 0(x) = 0.
An atomic constraint is a formula of the form x �� c for x ∈ X, c ∈ Q≥0 and ��∈ {<,≤,≥, >}.
We denote C(X) the set of constraints over a set of variables X which consists of conjunctions
of atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation ν ∈ RX

≥0, we denote
ϕ(ν) ∈ B the truth value obtained by substituting each occurrence of x in ϕ by ν(x).

2.1. Timed Languages and Timed Transition Systems
Let Σ be a fixed finite alphabet s.t. ε �∈ Σ and A be a finite alphabet which can contain ε.

Definition 1 (Timed Word) A timed word w over Σ is a finite or infinite sequence

w = (a0, d0)(a1, d1) · · · (an, dn) · · ·

s.t. for each i ≥ 0, ai ∈ Σ, di ∈ R≥0 and di+1 ≥ di.

A timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · over Σ can also be viewed as a pair (v, τ) ∈
Σ∞ × R∞

≥0 s.t. |v| = |τ|. The value dk gives the absolute time (considering the initial in-
stant is 0) of action ak. We write Untimed(w) = a0a1 · · · an · · · for the untimed part of w, and

228 Petri Net. Theory and Applications

Duration(w) = ∑k≥0 dk for the duration of the timed word w. We let TW∗(Σ) (resp. TWω(Σ))
be the set of finite (resp. infinite) timed words over Σ and TW(Σ) = TW∗(Σ) ∪ TWω(Σ). A
timed language L over Σ is a set of timed words i.e., any set L ⊆ TW(Σ).
Timed Transition Systems (TTS) are usual transition systems with two types of labels: discrete
labels for events and positive reals’ labels for time elapsing. Consequently, they have two
types of transitions: discrete transitions and time transitions:

Definition 2 (Timed Transition System) A timed transition system (TTS) (over a set of actions
A) is a tuple S = (Q, Q0, A,→, F, R) where:

• Q is a set of states;

• Q0 ⊆ Q is the set of initial states;

• A is a finite set of actions disjoint from R≥0;

• −→⊆ Q × (A ∪ R≥0)× Q is a set of edges. If (q, e, q′) ∈−→, we also write q e
−→ q′;

• F ⊆ Q and R ⊆ Q are respectively the set of final and repeated states.

For a time transition q d
−→ q′ with d ∈ R≥0, d denotes a delay and not an absolute time.

We assume that in any TTS there is a transition q 0
−→ q′ and in this case q = q′. A run ρ of

length n ≥ 0 is a finite (n < ω) or infinite (n = ω) sequence of alternating time and discrete
transitions of the form:

ρ = q0
d0−−→ q′0

a0−−→ q1
d1−−→ q′1

a1−−→ · · · qn
dn−−→ q′n · · ·

with di ∈ R≥0 and ai ∈ A. We write first(ρ) = q0. We assume that a finite run ends with

a time transition dn . If ρ ends with dn, we let last(ρ) = q′n and write q0
d0a0···dn−−−−−→ q′n. We

write q ∗
−→ q′ if there is run ρ s.t. first(ρ) = q0 and last(ρ) = q′. The set of reachable states

in S is the set of states q s.t. q0
∗
−→ q for some q0 ∈ Q0. The trace of an infinite run ρ

is the timed word trace(ρ) = (ai0 , d0 + · · · + di0) · · · (aik
, d0 + · · · + dik

) · · · that consists of
the sequence of letters (aik

)k∈N of A \ {ε}. If ρ is a finite run, we define the trace of ρ by
trace(ρ) = (ai0 , d0 + · · · + di0) · · · (aik

, d0 + · · · + dik
) where the aik

are in A \ {ε}. By def-
inition Untimed(ρ) = Untimed(trace(ρ)) and Duration(ρ) = ∑dk∈R≥0

dk. A run ρ is zeno if
|Untimed(ρ)| = ω and Duration(ρ) = Duration(trace(ρ)) = r with r ∈ R≥0.
A run is initial if first(ρ) ∈ Q0. A run ρ is accepting if i) either ρ is a finite initial run and
last(ρ) ∈ F or ii) ρ is an infinite initial run and there is a state q ∈ R that appears infinitely
often on ρ. A timed word w = (ai, di)i≥0 is accepted by S if there is an accepting run ρ s.t. trace
trace(ρ) = w. The timed language, L(S), accepted by S is the set of finite and infinite timed
words accepted by S. We let L∗(S) (resp. Lω(S)) be the set of finite (resp. infinite) timed
words accepted by S. When we omit the sets F and R, it means that F = R = Q i.e., every
state is final and repeated. In this case the language accepted by the TTS is prefix-closed, that
is, if the TTS accepts a timed word w, then it also accepts every finite prefix of w.

2.2. Equivalences on Timed Transition Systems
We can define two types of equivalences on TTS: roughly speaking, language equivalences are
based on the set of timed words two TTS generate. Branching equivalences (like simulation or
bisimulation) are finer in the sense that they involve the branching structure of the two TTS.

Definition 3 (Timed Language Equivalence) Let Si = (Qi, Qi
0, A,−→i, Fi, Ri) with i = 1, 2 be

two TTS. S1 and S2 are language equivalent, denoted S1 =L S2, if L(S1) = L(S2).

From Time Petri Nets to Timed Automata 229

Branching equivalences can be defined on TTS and are more constraining:

Definition 4 (Strong Timed Similarity) Let S1 = (Q1, Q1
0, A,−→1, F1, R1) and S2 = (Q2, Q2

0,
A,−→2, F2, R2) be two TTS and be a binary relation over Q1 × Q2. We write s s′ for (s, s′) ∈.
 is a strong (timed) simulation relation of S1 by S2 if:

1. if s1 ∈ F1 (resp. s1 ∈ R1) and s1 s2 then s2 ∈ F2 (resp. s2 ∈ R2);

2. if s1 ∈ Q1
0 there is some s2 ∈ Q2

0 s.t. s1 s2;

3. if s1
d
−→1 s′1 with d ∈ R≥0 and s1 s2 then s2

d
−→2 s′2 for some s′2, and s′1 s′2;

4. if s1
a
−→1 s′1 with a ∈ A and s1 s2 then s2

a
−→2 s′2 and s′1 s′2.

A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation of S1 by S2. We write
S1 S S2 in this case.

When there is a strong simulation relation of S1 by S2 and −1 is also a strong simulation
relation4 of S2 by S1, we say that is a strong (timed) bisimulation relation between S1 and S2
and use ≈ instead of . Two TTS S1 and S2 are strongly (timed) bisimilar if there exists a strong
(timed) bisimulation relation between S1 and S2. We write S1 ≈S S2 in this case.

Let S = (Q, Q0, Σε,−→, F, R) be a TTS. We define the ε-abstract TTS Sε = (Q, Qε
0, Σ, −→ε, F, R)

(with no ε-transitions) by:

• q d
−→ε q′ with d ∈ R≥0 iff there is a run ρ = q ∗

−→ q′ with Untimed(ρ) = ε and
Duration(ρ) = d,

• q a
−→ε q′ with a ∈ Σ iff there is a run ρ = q ∗

−→ q′ s.t. Untimed(ρ) = a and Duration(ρ) = 0,

• Qε
0 = {q | ∃q′ ∈ Q0 | q′ ∗

−→ q and Duration(ρ) = 0 ∧ Untimed(ρ) = ε}.

Definition 5 (Weak Timed Similarity) Let Si = (Qi, Qi
0, Σε,−→i, Fi, Ri) for i = 1, 2 be two TTS

and be a binary relation over Q1 × Q2. is a weak (timed) simulation relation of S1 by S2 if it
is a strong timed simulation relation of Sε

1 by Sε
2. A TTS S2 weakly simulates S1 if there is a weak

(timed) simulation relation of S1 by S2. We write S1 W S2 in this case.

When there is a weak simulation relation of S1 by S2 and −1 is also a weak simulation
relation of S2 by S1, we say that is a weak (timed) bisimulation relation between S1 and S2
and use ≈ instead of . Two TTS S1 and S2 are weakly (timed) bisimilar if there exists a weak
(timed) bisimulation relation between S1 and S2. We write S1 ≈W S2 in this case. Note that if
S1 S S2 then S1 W S2 and if S1 W S2 then L(S1) ⊆ L(S2).

3. Time Petri Nets
Time Petri Nets were introduced in (Merlin, 1974) and extend Petri Nets with timing con-
straints on the firings of transitions. In this section, we give the definitions and semantics of
an extended class of TPNs using open and/or closed intervals (Bérard et al., 2005a; Cassez
and Roux, 2006).

4s2 −1 s1 ⇐⇒ s1 s2.

230 Petri Net. Theory and Applications

3.1. Definition and Semantics
Definition 6 (Time Petri Net) A Time Petri Net (TPN) T is a tuple (P, T, •(.), (.)•, M0, (α, β))
where:

• P = {p1, p2, · · · , pm} is a finite set of places;

• T = {t1, t2, · · · , tn} is a finite set of transitions;

•
•(.) ∈ (NP)T is the backward incidence mapping; (.)• ∈ (NP)T is the forward incidence
mapping;

• M0 ∈ NP is the initial marking;

• α ∈ (Q≥0)
T and β ∈ (Q≥0 ∪ {∞})T are respectively the earliest and latest firing time

mappings.

A labeled TPN is a pair (T , L) where L : T → Σε.

The semantics of TPNs can be given by a Timed Transition System. ν ∈ (R≥0)
n is a valuation

such that each value νi is the elapsed time since transition ti was last enabled. 0 is the initial
valuation with ∀i ∈ [1..n], 0i = 0. A marking M of a TPN is a mapping in NP and if M ∈ NP,
M(pi) is the number of tokens in place pi. A transition ti is enabled in a marking M iff M ≥ •ti
and α(ti) ≤ νi ≤ β(ti). The predicate ↑enabled(tk, M, ti) ∈ B is true if tk is enabled by the
firing of transition ti from marking M, and false otherwise. This definition of enabledness
is based on (Berthomieu and Diaz, 1991; Aura and Lilius, 2000) which is the most common
one. In this framework, a transition tk is newly enabled after firing ti from marking M if “it is
not enabled by M − •ti and is enabled by M′ = M − •ti + ti

•” (Berthomieu and Diaz, 1991).
Formally this gives:

↑Enabled(tk, M, ti) =
(

M − •ti + ti
• ≥ •tk

)
∧

(
(M − •ti < •tk) ∨ (tk = ti)

)
(1)

Definition 7 (Semantics of a TPN) The semantics of a TPN T is a timed transition system ST =
(Q, q0, T,→) where: Q = NP × (R≥0)

n, q0 = (M0, 0), −→ ∈ Q × (T ∪ R≥0)× Q consists of:

• the discrete transition relation is defined for all ti ∈ T by (M, ν)
ti−→ (M′, ν′) iff:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M ≥ •ti ∧ M′ = M − •ti + ti
•

α(ti) ≤ νi ≤ β(ti)

ν′k =

{
0 if ↑Enabled(tk, M, ti),
νk otherwise.

• and the continuous transition relation is defined for all d ∈ R≥0 by (M, ν)
d
−→ (M, ν′) iff:

{
ν′ = ν + d
∀k ∈ [1..n],

(
M ≥ •tk =⇒ ν′k ≤ β(tk)

)
A run of a time Petri net T is a (finite or infinite) path in ST starting in q0. The set of runs of T
is denoted by Runs(T). As a shorthand we write (M, ν) −→d

e (M′, ν′) for a sequence of time

elapsing and discrete steps like (M, ν)
d
−→ (M′′, ν′′)

e
−→ (M′, ν′). A state (M, ν) is reachable in

T if (M0, ν0)
∗

−−−−→ (M, ν). ReachState(T) is the reachable set of states in T . A marking M is

From Time Petri Nets to Timed Automata 231

reachable in T if there is a state (M, ν) ∈ ReachState(T). The set of reachable markings of T is
denoted ReachMark(T). If the set ReachMark(T) is finite we say that T is bounded, otherwise
it is unbounded.
If we add two sets of markings, F (final) and R (repeated), we can define the languages ac-
cepted by T . We let SF (resp. SR) be the set of states (M, ν) of ST s.t. M ∈ F (resp. M ∈ R).
The timed language L(T) accepted by T is the timed language accepted by ST with sets SF
and SR as final and repeated states. Similar definitions hold for L∗(T) and Lω(T). Moreover,
for a labeled TPN (T , L), the languages accepted by (T , L) are the languages accepted by T
where, in each timed word, a transition label t is replaced by L(t).
In Definition 7, we have implicitly assumed that the constraints given on each transition of the
TPN by the mapping (α, β) are closed constraints. We can also consider that the firing intervals
of a transition are left and/or right open. The semantics is defined accordingly substituting
< to ≤: assume α(ti), β(ti) is left-closed and right open; in this case the discrete transition
relation for ti is defined using α(ti) ≤ νi < β(ti) instead of α(ti) ≤ νi ≤ β(ti) in Definition 7
and for the continuous transition relation, we should use ν′i < β(ti). Most of the results we
give in this chapter hold for any type of intervals. In the sequel, we denote T PN the most
general class of TPNs using open or closed intervals and T PN (≤,≥) for the subclass that
uses only closed intervals.
Our semantics (Bérard et al., 2005a; Cassez and Roux, 2006) is based on the common definition
of (Berthomieu and Diaz, 1991; Aura and Lilius, 2000) for safe TPNs but still there are some
advantages using ours. First, previous formal semantics (Berthomieu and Diaz, 1991; Lilius,
1998; Pezzè, 1999; Aura and Lilius, 2000) for TPNs required the TPNs to be safe. Our semantics
encompasses the whole class of TPNs and is fully consistent with the previous semantics
when restricted to safe TPNs5. Thus, we have given a semantics to multiple enabledness of
transitions which seems the most simple and adequate. Indeed, several interpretations can be
given to multiple enabledness (Berthomieu and Diaz, 1991).
Second, some variations can be found in the literature about TPNs concerning the firing of
transitions. The paper (Pezzè, 1999) considers two distinct semantics: Weak Time Semantics
(WTS) and Strong Time Semantics (STS). According to WTS, a transition can be fired only in its
time interval whereas in STS, a transition must fire within its firing interval unless disabled by
the firing of others. The most commonly used semantics is STS as in (Merlin, 1974; Berthomieu
and Diaz, 1991; Pezzè, 1999; Aura and Lilius, 2000). A more complete study on the firing
policy in TPNs can be found in (Bérard et al., 2005c).
Third, it is possible for the TPN to generate zeno runs or to be unbounded. When it is un-
bounded, the discrete component (i.e., marking) of the state space of the timed transition sys-
tem is infinite. If ∀i, α(ti) > 0 then the TPN cannot generate any zeno word and time diverges
on each run. Otherwise, if the TPN is bounded and at least one lower bound is 0, whether or
not a TPN accepts a zeno run can be decided (Henzinger et al., 1994) (for instance using the
equivalent timed automaton we build in section 4.3). In the next subsections we summarize
the status of basic decision problems for TPNs.

3.2. Decidable and Undecidable Problems for TPNs
Let T = (P, T, •(.), (.)•, M0, (α, β)) be a TPN with |P| = p, |T| = n and let ST = (Q, q0, T,→)
its semantics. Let us consider the following problems:

(1) The marking reachability problem: Given m ∈ Np, is m in ReachMark(T)?

(2) The boundedness problem: Is there a bound b ∈ Np s.t. ∀m ∈ ReachMark(T), m ≤ b?

5If we except the difference with (Lilius, 1998) in the definition of the reset instants for newly enabled
transitions.

232 Petri Net. Theory and Applications

(3) The k-boundedness problem: Given k = (k1, k2, · · · , kp) ∈ Np, is it true that for all
m ∈ ReachMark(T), m ≤ k?

(4) The state reachability problem: Given (M, ν) ∈ NP × Rn
≥0, is (M, ν) in ReachState(T)?

(5) The liveness problem: For t ∈ T, (M, ν) ∈ ReachState(T), is there any run (M, ν)
∗
−→

(M′, ν′) such that (M′, ν′)
t
−→ (M′′, ν′′)?

(6) The emptiness problem: Is the language accepted by T empty i.e., L(ST) = ∅?

(7) The universal problem: Does T accept all the finite (resp. infinite) timed words over T
i.e., L∗(T) = TW∗(T) (resp. Lω(T) = TWω(T))?

Problem (1) was proved undecidable for TPNs in (Jones et al., 1977). It follows that all prob-
lems (1–2) and (4–5) are undecidable for TPNs. There are however a number of sufficient con-
ditions for the boundedness property of TPNs, the stronger being that the underlying Petri
net is bounded, and the latter is known decidable. For Time Petri nets, we have the following
results:

Theorem 1 (Berthomieu and Diaz, 1991) k-boundedness (3) is decidable for TPNs. State reacha-
bility (4) and liveness (5) are decidable for bounded TPNs.

Theorem 2 (Cassez and Roux, 2006) The emptiness problem (6) is PSPACE-complete for bounded
TPNs.

Theorem 3 (Bérard et al., 2005a) The universal problem (7) is undecidable for bounded TPNs.

Theorem 2 is obtained by reducing the emptiness problem for bounded TPNs to the emptiness
problem for TA (using the result of Section 4). Theorem 3 is more difficult to obtain and
consists in translating a TA into an equivalent TPN (using the results of Table 1). In the next
two subsections we describe two ways of solving the state reachability (4) problem.

3.3. State Reachability Using The State Class Method
To decide problem 4, we can compute a finite representation of the state space of a bounded
TPN. If, on this representation G, we can decide whether a state (M, ν) belongs to G we have
an algorithm to check state reachability.
The first method to compute the state space of a TPN is based on the aggregation of states into
classes and was introduced by BERTHOMIEU and DIAZ in (Berthomieu and Diaz, 1991).

Definition 8 (State Class) A State Class C of a TPN is a pair (M, D) where M is a marking and D
is a set of inequalities, over a set of variables X, called the firing domain. The value of a variable xi ∈ X
of the firing domain represents the firing time of the enabled transition ti relatively to the time when
the class C was entered.

To obtain an abstract representation of the state space of a TPN, it is possible to compute a
graph of state classes called the State Class Graph (SCG). An edge in the SCG from a class to
another is defined by:

Definition 9 (State Class Transition) Given a class C = (M, D) and a transition tj enabled in
(M, D), the tj-successor class, C′ = (M′, D′), of C is computed as follows:

1. Compute the new marking M′ = M − •tj + tj
•;

From Time Petri Nets to Timed Automata 233

2. Add the constraints xj ≤ xi for each i �= j to D. Then substitute in D each variable xi , i �= j by
x′i + xj where x′i are new fresh variables. The new domain obtained this way is D′;

3. Eliminate xj from D′ using for instance the Fourier-Motzkin method;

4. Replace x′i by xi in D′.

5. Compute a canonical form of D′ using for instance the Floyd-Warshall algorithm.

Computing all the edges of the SCG from the initial class of a TPN is called the State-Class
Method. In the state class method, the domain associated with a class is relative to the time
when the class was entered and as the transformation (we reset the time origin) is irreversible,
absolute values of clocks cannot be obtained easily. The graph produced is an abstraction
of the state space for which temporal information has been lost. Often, the graph has more
classes than the number of markings of the TPN. Edges between classes are no longer labeled
with a firing constraint but only with the name of the fired transition: the state class graph
accepts the untimed (prefix closed) language of the TPN. If the TPN is bounded the SCG of
a TPN is finite. The SCG computation is implemented in the tool TINA (Berthomieu and
Vernadat, 2006a).
As a consequence of the SCG construction, sophisticated temporal properties are not easy to
check. Indeed, the domain associated with a marking is made of relative values of clocks and
the function to compute domains is not bijective. Consequently, domains cannot be easily
used to verify properties involving constraints on clocks.
In order to get rid of these limitations, several papers have proposed to construct a different
state class graph by modifying the equivalence relation between classes. To our knowledge,
the methods proposed in (Berthomieu and Vernadat, 2003) depend on the property to check.
Checking LTL or CTL properties will lead to different state class graphs.
Another limitation of the methods and associated tools to check properties of TPN using the
SCG, is the need to compute the whole state graph while only the reachability of a given
marking is needed (safety properties). The graph is then analyzed by a model checker for
finite state systems. Using observers is even more costly: actually, for each property to be
checked, a new state class graph has to be built and the observer can dramatically increase the
size of the state space.

3.4. State Reachability Using a Zone Based Abstraction
Another method to compute a finite representation of the state space of a bounded TPN was
recently proposed by GARDEY et al. in (Gardey et al., 2003; Gardey et al., 2006). It is based on
the Region Graph introduced for Timed Automata (Alur and Dill, 1994; Rokicki, 1993).
A zone is a convex union of regions as defined by ALUR and DILL (Alur and Dill, 1994). For
short, considering n clocks, a zone is a convex subset of Rn

≥0. A zone can be represented by
a conjunction of constraints on pairs of clocks: xi − xj ∼ c where ∼∈ {<,≤, =,≥, >} and
c ∈ N.
The graph which is computed in this case is a simulation graph of a TPN which is an abstract
and symbolic representation of the state space of the TPN. Given the initial marking M0 and an
initial zone Z0 (the values of clocks for Z0 are 0), time and discrete successors are iteratively
computed by letting time pass or by firing transitions. Let M be a marking and Z a zone. The
computation of the reachable markings from (M, Z) is done as follows:

1. Compute the possible states reachable by time elapsing: we let
−→
Z be the set of such

states. It is obtained by setting all upper bounds of constraints on clocks defining Z to
infinity;

234 Petri Net. Theory and Applications

2. Select only the possible valuations of clocks for which M could exist, i.e., the valuations
of clocks are smaller than the latest firing time of any enabled transitions;

Z′ =
−→
Z ∩

∧
ti∈EnabledM,Z

{xi ≤ βi}

where {x ≤ β} denotes the zone defined by the constraint x ≤ β. Z′ is the maximal
zone starting from Z for which the marking M exists.

3. Determine the firable transitions in (M, Z′): ti is firable if Z′ ∩ {xi ≥ αi} is a non empty
zone.

4. For each firable transition ti leading to a marking Mi, compute the zone obtained when
we enter the new marking Mi as follows:

Zi = (Z′ ∩ {xi ≥ αi})[Xe := 0]

where Xe is the set of newly enabled clocks. This means that each transition which is
newly enabled has its clock reset. Then, Zi is a zone for which the new marking Mi is
reachable.

It is then possible to compute all the reachable pairs (M, Z) reachable from (M0, Z0) using the
previous method. This way we obtain a forward algorithm to compute the simulation graph
for a bounded TPN.
An algorithm to enumerate reachable markings for a bounded TPN could be based on the
previous iterative process but, in some cases, it will lead to a non-terminating computation.
Though the number of reachable markings is finite for a bounded TPN, the number of zones
in which a marking is reachable is not necessarily finite as shown by the TPN T0 in Fig. 1.

• •P1 P2

P3

T1[0, ∞[T2[1, 1] T3[1, 1]

Figure 1. A TPN T0 with an Unbounded Number of Zones

The initial zone of T0 is Z0 is {x1 = 0 ∧ x2 = 0 ∧ x3 = 0} (where xi is the clock associated to
Ti) and the initial marking M0 = (P1, P2, P3) = (1, 1, 0). Consider the infinite firing sequence:
(T2.T3)

ω . By letting time pass, M0 is reachable until x2 = 1. When x2 = x1 = 1 the transition
T2 has to be fired. The zone corresponding to these clock values is: Z0 = {0 ≤ x1 ≤ 1 ∧
x1 − x2 = 0}. By firing T2 and then T3, T0 reaches its initial marking M0. When it enters
M0, the values of (new) clocks are: x1 = 2, x2 = 0 and x1 − x2 = 2. Indeed, T1 remains
enabled while T2 and T3 are fired and x2 is reset when T3 is fired because T2 became newly
enabled. Given these new values, the initial marking can exist while x2 ≤ 1 i.e., for the zone:
Z1 = {2 ≤ x1 ≤ 3 ∧ x1 − x2 = 2}. By applying infinitely the sequence T2.T3, there exists an
infinite number of zones for which the initial marking is reachable.

From Time Petri Nets to Timed Automata 235

Actually, the number of zones is not bounded because infinity is used as latest firing time
for T1. If for all the transitions ti of a TPN, β(ti) ∈ Q≥0, i.e., the upper bound is finite, we
say that the TPN is t-bounded. if a TPN is t-bounded, all the clocks in the simulation graph
are bounded and so, the number of different zones is bounded (Alur and Dill, 1994). The
algorithm computing the simulation graph terminates in this case and it gives a finite (exact)
representation of the state space of a bounded TPN.
We now present a more general algorithm which computes the state space of a TPN as defined
in section 2, i.e., even if the TPN is not t-bounded. It is based on the use of an operator on zones
which constructs equivalence classes. The resulting equivalence relation will be of finite index.
A common operator on zones is the k-approx operator. For a given integer k, the use of this
operator allows to create a finite set of distinct zones as presented in (Alur and Dill, 1994).
To compute the simulation graph, we refine step 4 of the previous computation algorithm by
applying the k-approx operator on the zone resulting from this last step.
This approximation is based on the fact that once the clock associated with an “unbounded”
transition ([α, ∞[) has reached the value α, its precise value does not matter. Using k-approx
(with k = α) allows to group all zones [x, ∞[, x ≥ α in one equivalence class.
Previous papers on Timed Automata (Bouyer, 2004; Bouyer, 2003) have proved that this oper-
ator generally leads to a strict upper-approximation of the reachable state space. Nevertheless,
for a given class of TA called diagonal-free TA, there is no upper-approximation of the reachable
markings (Bouyer, 2004; Bouyer, 2003), and this also holds for TPNs:

Theorem 4 For a bounded TPN, the (forward) algorithm to compute the simulation graph using k-
approx on zones is exact (with respect to marking reachability) and terminates.

In other words, checking whether M ∈ ReachMark(T) is equivalent to checking whether there
is a state class C = (M, D) in the simulation graph. As the approximation is only needed for
TPNs where some transitions have infinity as latest firing time, the following corollary holds:

Corollary 1 For a bounded and t-bounded TPN, the (forward) algorithm to compute the simulation
graph using zones is exact (with respect to marking reachability) and terminates.

4. Comparison of Time Petri Nets and Timed Automata
In this section we give some results concerning the expressive power of TPNs and Timed au-
tomata (Alur and Dill, 1994). Timed automata (TA) are very similar to TPNs and a lot of the-
oretical results have been obtained for TA. Moreover efficient tools have been developed to
check real-time properties on this model. It is thus important to compare the two formalisms
and see if they can provide new insights for TPNs.

4.1. Timed Automata and Products of Timed Automata
Timed automata were studied by ALUR and DILL (Alur and Dill, 1994) and are used to model
systems which combine discrete and continuous evolutions.

Definition 10 (Timed Automaton) A Timed Automaton H is a tuple (N, l0, C, A, E, Inv) where:

• N is a finite set of locations;

• l0 ∈ N is the initial location;

• X is a finite set of positive real-valued clocks;

• A is a finite set of actions;

236 Petri Net. Theory and Applications

• E ⊆ N × C(C) × A × 2X × N is a finite set of edges, e = 〈l, γ, a, R, l ′〉 ∈ E represents an
edge from the location l to the location l ′ with the guard γ, the label a and the reset set R ⊆ X;

• Inv ∈ C(X)N assigns an invariant to any location. We restrict the invariants to conjuncts of
terms of the form c ≤ r for c ∈ C and r ∈ N.

The semantics of a timed automaton is a timed transition system.

Definition 11 (Semantics of a Timed Automaton) The semantics of a timed automaton H = (N,
l0, X, A, E, Inv) is given by a timed transition system SH = (Q, q0,→) with Q = N × RX

≤0, q0 =
(l0, 0) is the initial state and → consists of the discrete and continuous transition relations:

• the discrete transition relation if defined for all a ∈ A by (l, v)
a
−→ (l ′, v′) if:

∃ (l, γ, a, R, l ′) ∈ E s.t.

⎧⎪⎨
⎪⎩

γ(v) = tt,
v′ = v[R 	→ 0]

Inv(l ′)(v′) = tt

• the continuous transitions is defined for all t ∈ R≥0 by (l, v)
t
−→ (l ′, v′) if:{

l = l ′ v′ = v + t and
∀ 0 ≤ t′ ≤ t, Inv(l)(v + t′) = tt

A run of a timed automaton H is an initial run in SH starting in q0. The set of runs of H is denoted
by Runs(H). If we add two sets of locations F ⊆ N and R ⊆ N we can define the timed languages
accepted by a TA H. We let L(H), L∗(H) and Lω(H) be the different timed languages accepted by
H.

Modularity is important for modeling systems and it is convenient to describe a system as a
parallel composition of timed automata. To this end, we use the classical composition notion
based on a synchronization function à la Arnold-Nivat. Let X = {x1, · · · , xn} be a set of clocks,
H1, . . . , Hn be n timed automata with Hi = (Ni, li,0, X, A, Ei, Invi). A synchronization function
f is a partial function from (A ∪ {•})n ↪→ A where • is a special symbol used when an
automaton is not involved in a step of the global system. Note that f is a synchronization
function with renaming. We denote by (H1| . . . |Hn) f the parallel composition of the Hi’s
w.r.t. f . The configurations of (H1| . . . |Hn) f are pairs (l, v) with l = (l1, . . . , ln) ∈ N1 × . . . ×
Nn and v = (v1, · · · , vn) where each vi is the value of the clock xi ∈ X. Then the semantics of
a synchronized product of timed automata is also a timed transition system: the synchronized
product can do a discrete transition if all the components agree to do so, and time can progress
in the synchronized product also if all the components agree to do so. This is formalized by
the following definition:

Definition 12 (Semantics of a Product of Timed Automata) Let H1, . . . , Hn be timed automata
with Hi = (Ni, li,0, X, A, Ei, Invi), and f a (partial) synchronization function (A∪ {•})n ↪→ A. The
semantics of (H1| . . . |Hn) f is a timed transition system S = (Q, q0, A,→) with Q = N1 × . . . ×
Nn × RX

≥0, q0 is the initial state ((l1,0, . . . , ln,0), 0) and → is defined by:

• (l, v)
b
−→ (l′, v′) if there exists (a1, . . . , an) ∈ (A ∪ {•})n s.t. f (a1, . . . , an) = b and for any i

we have:

From Time Petri Nets to Timed Automata 237

. If ai = •, then l′[i] = l[i] and v′[i] = v[i],

. If ai ∈ A, then (l[i], v[i])
ai−→ (l′[i], v′[i]).

• (l, v)
t
−→ (l, v′) if for all i ∈ [1..n], every Hi agrees on time elapsing i.e., (l[i], v[i]) t

−→
(l[i], v′[i]).

We could equivalently define the product of n timed automata syntactically, building a new
timed automaton from the n initial ones. In the sequel, we consider a product (H1| . . . |Hn) f
to be a timed automaton the semantics of which is timed bisimilar to the semantics of the
product we have given in Definition 12.

4.2. Expressiveness of TA vs TPNs
In this subsection, we define some criteria to compare the expressive power of TA and TPNs.
We then show how to translate a TPN into an equivalent TA.

4.2.1. Expressiveness and Equivalence Problems
If B, B′ are either TPNs or TA, we write B ≈S B′ (resp. B ≈W B′) for SB ≈S SB′ (resp.
SB ≈W SB′). Let C and C′ be two classes of TPNs or TA.

Definition 13 (Expressiveness w.r.t. Timed Language Acceptance) The class C is more expres-
sive than C′ w.r.t. timed language acceptance if for all B′ ∈ C′ there is a B ∈ C s.t. L(B) = L(B′).
We write C′ ≤L C in this case. If moreover there is some B ∈ C s.t. there is no B′ ∈ C′ with
L(B) = L(B′), then C′ <L C (read “strictly more expressive”). If both C′ ≤L C and C ≤L C′ then C
and C′ are equally expressive w.r.t. timed language acceptance, and we write C =L C′.

Definition 14 (Expressiveness w.r.t. Timed Bisimilarity) The class C is more expressive than
C′ w.r.t. strong (resp. weak) timed bisimilarity if for all B′ ∈ C′ there is a B ∈ C s.t. B ≈S B′ (resp.
B ≈W B′). We write C′ ≤S C (resp. C′ ≤W C) in this case. If moreover there is a B ∈ C s.t. there is
no B′ ∈ C′ with B ≈S B′ (resp. B ≈W B′), then C′ <S C (resp. C′ <W C). If both C′ <S C and
C <S C′ (resp. <W) then C and C′ are equally expressive w.r.t. strong (resp. weak) timed bisimilarity,
and we write C ≈S C′ (resp. C ≈W C′).

In the sequel we will compare various classes of TPNs and TAs. When refering to language
acceptance we assume that two sets F and R have been given for a TPN (see Definition 7) and
for a TA. We use the following notations:

• B-T PN ε for the set of bounded labeled TPNs with ε-transitions (Definition 7);

• 1-B-T PN ε for the subset of B-T PN ε with at most one token in each place (one safe
TPN);

• B-T PN (≤,≥) for the subset of B-T PN ε where only closed intervals are used;

• T Aε for TA with ε-transitions; TA∗
(≤,≥) for the syntactical subclass of TA that is equiv-

alent to B-T PN (≤,≥) (see (Bérard et al., 2005a)).

T A∗
(≤,≥) is formally defined by:

Definition 15 The subclass T A∗
(≤,≥) of TA is defined by the set of TA of the form (L, l0, X, A, E, Inv)

where :

238 Petri Net. Theory and Applications

Timed Language Acceptance Timed Bisimilarity

≤L TAε (Cassez and Roux, 2006) ≤W TAε (Cassez and Roux, 2006)
B-T PN ε =L T Aε (Bérard et al., 2005a) <W TAε (Bérard et al., 2005a)

≈W 1-B-T PN (≤,≥) (Bérard et al., 2005b)
B-T PN (≤,≥) =L T A∗

(≤,≥) (Bérard et al., 2005b) ≈W TA∗
(≤,≥) (Bérard et al., 2005b)

Table 1. Summary of the Expressiveness Results for TPNs vs. TA

• guards are conjunctions of atomic constraints of the form x ≥ c and invariants are conjunction
of atomic constraints x ≤ c.

• the invariants satisfy the following property; ∀e = (�, γ, a, R, �′) ∈ E, if x �∈ R and x ≤ c is an
atomic constraint in Inv(�), then if x ≤ c′ is Inv(�′) for some c′ then c′ ≥ c.

In Table 1, L or W with ∈ {<,≤}, respectively means “less expressive than” w.r.t. Timed
Language Acceptance and Weak Timed Bisimilariry; the term =L means “equally expressive
as” w.r.t. language acceptance and ≈W “equally expressive as” w.r.t. weak timed bisimilarity.
A consequence of the results in this table is that 1-B-T PN ε and B-T PN ε are equally expres-
sive w.r.t. Timed Language Acceptance i.e., 1-B-T PN ε =L B-T PN ε. An equivalent result
was known for untimed PN (we can always obtain a safe PN that accepts the same language
as a PN) but the counterpart for TPN was proved in (Bérard et al., 2005a).
Surprisingly, bounded TPNs are less expressive than timed automata w.r.t. timed bisimula-
tion. We will see in subsection 4.3 how to translate a TPN into a timed bisimilar TA. Thanks
to this translation, we will use in section 5 the TA obtained to check TCTL properties of the
original TPN.

4.3. From Time Petri Nets to Timed Automata
The relationship between TPNs and TA has not been much investigated before 2000. In (Sifakis
and Yovine, 1996) J. SIFAKIS and S. YOVINE are mainly concerned with compositionality prob-
lems. They show that for a subclass of 1-safe Time Stream Petri Nets, the usual notion of
composition used for TA is not suitable to describe this type of Petri Nets as the composition
of TA. Consequently, they propose Timed Automata with Deadlines and flexible notions of
composition. In (Bornot et al., 1998) the authors consider Petri nets with deadlines (PND)
that are 1-safe Petri nets extended with clocks. A PND is a timed automaton with deadlines
(TAD) where the discrete transition structure is the corresponding marking graph. The tran-
sitions of the marking graph are subject to the same timing constraints as the transitions of
the PND. The PND and the TAD have the same number of clocks. They propose a transla-
tion of safe TPN into PND with a clock for each input arc of the initial TPN. It defines (by
transitivity) a translation of safe TPN into TAD (that can be considered as standard timed au-
tomata). In (Cortès et al., 2000) the authors consider an extension of Time Petri Nets (PRES+)
and propose a translation into hybrid automata. Correctness of the translation is not proved.
Moreover the method is defined only for 1-safe nets.
In another line of work, SAVA (Sava, 2001) considers bounded TPNs where the underlying
Petri net is not necessarily safe and proposes an algorithm to translate the TPN into a timed
automaton (one clock is needed for each transition of the original TPN). However, the author
does not give any proof that this translation is correct (i.e., it preserves some equivalence
relation between the semantics of the original TPN and the computed TA) and neither that
the algorithm terminates (even if the TPN is bounded).

From Time Petri Nets to Timed Automata 239

LIME and ROUX proposed an extension in (Lime and Roux, 2006) of the state class graph
construction that allows to build the state class graph of a bounded TPN as a timed automaton.
They prove that this timed automaton and the TPN are timed bisimilar and they also prove a
relative minimality result of the number of clocks needed in the obtained automaton.
The first two approaches are structural but are limited to Petri nets whose underlying net
is 1-safe. The last two approaches rely on the computation of the state space of the TPN
and are limited to bounded TPNs. In this section, we consider a structural translation from
TPN (not necessary bounded) to TA proposed in (Cassez and Roux, 2006). This extends the
previous results in the following directions: first, we can easily prove that our translation
is correct and terminates as it is a syntactic translation and it produces a timed automaton
that is timed bisimilar to the TPN we started with. Notice that the timed automaton contains
integer variables that correspond to the marking of the Petri net and that it may have an
unbounded number of locations. However timed bisimilarity holds even in the unbounded
case. In case the Petri net is bounded, we obtain a timed automaton with a finite number
of locations and we can check for TCTL properties of the original TPN. Second, as it is a
structural translation it does not need expensive computation (like the State Class Graph) to
obtain a timed automaton. This has a practical application as it enables one to use efficient
existing tools for TA to analyze TPNs.

4.3.1. Translating Time Petri Nets into Timed Automata
In this subsection, we build a synchronized product of timed automata from a TPN so that the
behaviors of the two are in a one-to-one correspondence.
We start with a TPN T = (P, T, •(.), (.)•, M0, (α, β)) with set of places P = {p1, · · · , pm} and
set of transitions T = {t1, · · · , tn}.

Timed Automaton Associated with a Transition
We define one timed automaton Ai for each transition ti of T (see Fig. 2.a). This timed automa-
ton has one clock xi. Also the locations of the automaton Ai give the state of the transition
ti: in location t the transition is enabled; in location t̄ it is disabled and in Firing it is being
fired. The initial location of each Ai depends on the initial marking M0 of the Petri net we
want to translate. If M0 ≥ •ti, then the initial location is t otherwise it is t̄. This automaton
updates an array of integers p (s.t. p[i] is the number of tokens in place pi) shared by all the
Ai’s. This is not covered by Definition 12,but this extended model with integer arrays is very
common (Pettersson and Larsen, 2000) and it does not affect the expressiveness of the model
when the variables are bounded.

The Supervisor
The automaton for the supervisor SU is depicted on Fig. 2.b. The locations 1 to 3 subscripted
with a “c” are assumed to be committed. Committed locations can be simulated by adding an
extra variable: see (Tripakis, 1999) Appendix A for details. This means that no time can elapse
while visiting them. We denote by Δ(T) = (SU | A1 | · · · | An) f the timed automaton associ-
ated to the TPN T . The initial location of the supervisor is 0. Let us define the synchronization
function f with n + 1 parameters (the first element of the vector refers to the supervisor move)
by:

• f (!pre, •, · · · , ?pre, •, · · ·) = prei if ?pre is the (i + 1)th argument and all the other argu-
ments are •,

• f (!post, •, · · · , ?post, •, · · ·) = posti if ?post is the (i + 1)th argument and all the other
arguments are •,

• f (!update, ?update, · · · , ?update) = update.

240 Petri Net. Theory and Applications

t
[xi ≤ β(ti)]

Firing

t̄

α(ti) ≤ xi ≤ β(ti)
?pre

p := p − •ti

p < •ti
?update

?post
p := p + ti

•

p ≥ •ti
?update

xi := 0

p ≥ •ti
?update

p < •ti
?update

?update

0 1c

2c3c

!pre

!update

!post

!update

(a) The automaton Ai for transition ti

(b) Supervisor SU

Figure 2. Automata for the Transitions and the Supervisor

In the sequel, ((s, p), q, v) is such that (s, p) ∈ {0, 1c, 2c, 3c} × Nm is the state of SU, q gives
the product location of A1 × · · · ×An, and v[i], i ∈ [1..n] gives the value of the clock xi .
We will prove in the next subsection that the semantics of Δ(T) is closely related to the se-
mantics of T . For this we have to relate the states of T to the states of Δ(T) and we define the
following equivalence:

Definition 16 (State Equivalence) Let (M, ν) and ((s, p), q, v) be, respectively, a state of ST and
a configuration. Then (M, ν) ≈ ((s, p), q, v) if:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s = 0,
∀i ∈ [1..m], p[i] = M(pi),

∀k ∈ [1..n], q[k] =

{
t if M ≥ •tk,
t̄ otherwise

∀k ∈ [1..n], v[k] = νk.

4.3.2. Soundness of the Translation
We now prove that our translation preserves the behaviors of the initial TPN in the sense
that the semantics of the TPN and its translation are timed bisimilar. Let T be a TPN and
ST = (Q, q0, T,→) its semantics. Let Ai be the automaton associated with transition ti of T
as described by Fig. 2.a, SU the supervisor automaton of Fig. 2.b and f the synchronization
function defined previously. The semantics of Δ(T) = (SU | A1 | · · · | An) f is the TTS

SΔ(T) = (QΔ(T), qΔ(T)
0 , A(Δ(T)),→).

From Time Petri Nets to Timed Automata 241

Theorem 5 (Timed Bisimilarity) For (M, ν) ∈ ST and ((0, p), q, v) ∈ SΔ(T) such that (M, ν) ≈

((0, p), q, v) the following holds:

(M, ν)
ti−→ (M′, ν′) iff

⎧⎪⎨
⎪⎩

((0, p), q, v)
wi=⇒ ((0, p′), q′, v′) with

wi = prei.update.posti.update and
(M′, ν′) ≈ ((0, p′), q′, v′)

(2)

(M, ν)
d
−→ (M′, ν′) iff

{
((0, p), q, v)

d
−→ ((0, p′), q′, v′) and

(M′, ν′) ≈ ((0, p′), q′, v′)
(3)

Proof. We first prove statement (2). Assume (M, ν) ≈ ((0, p), q, v). Then as ti can be fired
from (M, ν) we have: (i) M ≥ •ti, (ii) α(ti) ≤ νi ≤ β(ti), (iii) M′ = M − •ti + ti

•, and (iv)
ν′k = 0 if ↑enabled(tk, M, ti) and ν′k = νk otherwise. From (i) and (ii) and the state equivalence
we deduce that q[i] = t and α(ti) ≤ v[i] ≤ β(ti). Hence ?pre is enabled in Ai. In state 0 for
the supervisor, !pre is the only possible transition. As the synchronization function f allows
(!pre, •, · · · , ?pre, · · · , •) the global action prei is possible. After this move Δ(T) reaches state
((1, p1), q1, v1) such that for all k ∈ [1..n], q1[k] = q[k],∀k �= i and q1[i] = Firing. Also
p1 = p − •ti and v1 = v.
Now the only possible transition when the supervisor is in state 1 is an update transition
where all the Ai’s synchronize according to f . From ((1, p1), q1, v1) we reach ((2, p2), q2, v2)
with p2 = p1, v2 = v1. For all k ∈ [1..n], k �= i, q2[k] = t if p1 ≥ •tk and q2[k] = t̄ otherwise.
Also q2[i] = Firing. The next global transition must be a posti transition leading to ((3, p3),
q3, v3) with p3 = p2 + ti

•, v3 = v2 and for all k ∈ [1..n], q3[k] = q2[k],∀k �= i and q3[i] = t̄.
From this last state only an update transition leading to ((0, p4), q4, v4) is allowed, with p4 =
p3, v4 and q4 given by: for all k ∈ [1..n], q4[k] = t if p3 ≥ •tk and t̄ otherwise. v4[k] = 0
if q3[k] = t̄ and q4[k] = t and v4[k] = v1[k] otherwise. We then just notice that q3[k] = t̄ iff
p− •ti < •tk and q4[k] = t iff p− •ti + ti

• ≥ •tk. This entails that v4[k] = 0 iff ↑enabled(tk, p, ti)
and with (iv) gives ν′k = v4[k]. As p4 = p3 = p2 + ti

• = p1 −
•ti + ti

• = p − •ti + ti
• using

(iii) we have ∀i ∈ [1..m], M′(pi) = p4[i]. Hence we conclude that ((0, p4), q4, v4) ≈ (M′, ν′).
The converse of statement (2) is straightforward following the same steps as the previous ones.
We now focus on statement (3). According to the semantics of TPNs, a continuous transition

(M, ν)
d
−→ (M′, ν′) is allowed iff ν = ν′ + d and ∀k ∈ [1..n], (M ≥ •tk =⇒ ν′k ≤ β(tk)).

As (M, ν) ≈ ((0, p), q, v), if M ≥ •tk then q[k] = t and the continuous evolution for Ak is
constrained by the invariant xk ≤ β(tk). Otherwise q[k] = t̄ and the continuous evolution is
unconstrained for Ak. No constraints apply for the supervisor in state 0. Hence the result. �

We can now state a useful corollary which enables us to do TCTL model-checking for TPNs
in the next section. We write Δ((M, ν)) = ((0, p), q, v) if (M, ν) ≈ ((0, p), q, v), Δ(ti) =
prei .update.posti.update and also Δ(d) = d . Just notice that Δ is one-to-one and we can use

Δ−1 as well. Then we extend Δ to transitions by: Δ((M, ν)
e
−→ (M′, ν′)) = Δ((M, ν))

Δ(e)
−−−→

Δ((M′, ν′)) with e ∈ T ∪ R≥0 (as Δ(ti) is a word, this transition is a four step transition in
Δ(T)). Again we can extend Δ to runs: if ρ ∈ Runs(T) we denote Δ(ρ) the associated run
in Runs(Δ(T)). Notice that Δ−1 is only defined for runs σ of Runs(Δ(T)), the last state of
which is of the form ((0, p), q, v) where the supervisor is in state 0. We denote this property
last(σ) |= SU.0.

Corollary 2
(
ρ ∈ Runs(T) ∧ σ = Δ(ρ)

)
iff

(
σ ∈ Runs(Δ(T)) ∧ last(σ) |= SU.0

)
.

242 Petri Net. Theory and Applications

Proof. The proof is a direct consequence of Theorem 5. It suffices to notice that all the finite
runs of Δ(T) are of the form

σ = (s0, v0)
δ1−→ (s′0, v′0)

w1−→ (s1, v1) · · ·
δn−→ (s′n−1, v′n−1)

wn−→ (sn, vn)

with wi = prei.update.posti.update, δi ∈ R≥0, and using Theorem 5, if last(σ) |= SU.0, there
exists a corresponding run ρ in T s.t. σ = Δ(ρ). �

This property will be used in Section 5 when we address the problem of model-checking TCTL
for TPNs.

5. Model-Checking of TCTL on Time Petri Nets
In this section we introduce a logic to specify properties of real-time systems and show how
we can model-check this logic on bounded TPNs.
We define TCTL (Henzinger et al., 1994) for TPNs. The only difference with the versions
of (Henzinger et al., 1994) is that the atomic propositions usually associated with states are
now properties of markings. For practical applications with model-checkers, we assume that
the TPNs we check are bounded.

Definition 17 (TCTL for TPN) Assume we have a TPN with n places, and m transitions T = {t1,
t2, · · · , tm}. The temporal logic TPN-TCTL is inductively defined by:

TPN-TCTL ::= M �� V̄ | false | tk + c ≤ tj + d | ¬ϕ | ϕ → ψ | ϕ ∃U��c ψ | ϕ ∀U��c ψ (4)

where M and false are keywords, ϕ, ψ ∈ TPN-TCTL, tk, tj ∈ T, c, d ∈ Z, V̄ ∈ (N ∪ {∞})n and6

�� ∈ {<,≤, =, >,≥}.

Intuitively the meaning of M �� V̄ is that the current marking vector is in relation �� with V̄.
The meaning of the other operators is the usual one. We use the familiar shorthands:

true = ¬false

∃♦��cφ = true ∃U��c φ

∀���c = ¬∃♦��c¬φ.

The semantics of TPN-TCTL is defined on timed transition systems. Let T = (P, T, •(.), (.)•,
M0, (α, β)) be a TPN with n places and m transitions and ST = (Q, q0, T,→) the semantics of
T . Let σ = (s0, ν0) −→d1

a1 · · · −→dn
an (sn, νn) ∈ Runs(T). The truth value of a formula ϕ of

TPN-TCTL for a state (M, ν) is given in Fig. 3.
The TPN T satisfies the formula ϕ of TPN-TCTL, which is denoted by T |= ϕ, iff the first state
of ST satisfies ϕ, i.e., (M0, 0) |= ϕ.
We will see that thanks to Corollary 2, model-checking TPNs amounts to model-checking
timed automata.
Let us assume we have to model-check formula ϕ on a TPN T . Our method consists in using
the equivalent timed automaton Δ(T) defined in Section 4.3. For instance, suppose we want
to check T |= ∀�≤3(M ≥ (1, 2)). The check means that all the states reached within the next

6The use of ∞ in V̄ allows us to handle comparisons like M(p1) ≤ 2 ∧ M(p2) ≥ 3 by writing M ≤
(2, ∞) ∧ M ≥ (0, 3).

From Time Petri Nets to Timed Automata 243

(M, ν) |= M �� V̄ iff M �� V̄
(M, ν) �|= false
(M, ν) |= tk + c ≤ tj + d iff νk + c ≤ νj + d
(M, ν) |= ¬ϕ iff (M, ν) �|= ϕ
(M, ν) |= ϕ → ψ iff (M, ν) |= ϕ implies (M, ν) |= ψ
(M, ν) |= ϕ ∃U��c ψ iff ∃σ ∈ Runs(T) such that:⎧⎪⎨

⎪⎩
(s0, ν0) = (M, ν)

∀i ∈ [1..n],∀d ∈ [0, di), (si, νi + d) |= ϕ(
∑

n
i=1 di

)
�� c and (sn, vn) |= ψ

(M, ν) |= ϕ ∀U��c ψ iff ∀σ ∈ Runs(T) we have:⎧⎪⎨
⎪⎩

(s0, ν0) = (M, ν)

∀i ∈ [1..n],∀d ∈ [0, di), (si, νi + d) |= ϕ(
∑

n
i=1 di

)
�� c and (sn, vn) |= ψ

Figure 3. Semantics of TPN-TCTL

3 time units will have a marking such that p1 has more than one token and p2 more than 2.
Actually, this is equivalent to checking

∀�≤3(SU.0 → (p[1] ≥ 1 ∧ p[2] ≥ 2))

on the equivalent timed automaton. Notice that ∃♦≤3(M ≥ (1, 2)) reduces to

∃♦≤3(SU.0 ∧ (p[1] ≥ 1 ∧ p[2] ≥ 2))

We can then define the translation of a formula in TPN-TCTL to standard TCTL for timed
automata: we denote TA-TCTL the logic TCTL for timed automata.

Definition 18 (From TPN-TCTL to TA-TCTL) Let ϕ be a formula of TPN-TCTL. Then the trans-
lation Δ(ϕ) of ϕ is inductively defined by:

Δ(M �� V̄) =
n∧

i=1

(p[i] �� V̄i)

Δ(false) = false

Δ(tk + c �� tj + d) = xk + c �� xj + d

Δ(¬ϕ) = ¬Δ(ϕ)

Δ(ϕ → ψ) = SU.0 ∧ (Δ(ϕ) → Δ(ψ))

Δ(ϕ ∃U��c ψ) = (SU.0 → Δ(ϕ))∃U��c (SU.0 ∧ Δ(ψ))

Δ(ϕ ∀U��c ψ) = (SU.0 → Δ(ϕ))∀U��c (SU.0 ∧ Δ(ψ))

SU.0 means that the supervisor is in state 0 and the clocks xk are the ones associated with every
transition tk in the translation scheme.

244 Petri Net. Theory and Applications

Theorem 6 Let T be a TPN and Δ(T) the equivalent timed automaton. Let (M, ν) be a state of ST
and ((s, p), q, v) = Δ((M, ν)) the equivalent state of SΔ(T) (i.e. (M, ν) ≈ ((s, p), q, v)). Then
∀ϕ ∈ TPN-TCTL:

(M, ν) |= ϕ iff ((s, p), q, v) |= Δ(ϕ).

Proof. The proof is done by structural induction on the formula of TPN-TCTL. The cases of
M �� V̄, false, tk + c ≤ tj + d, ¬ϕ and ϕ → ψ are straightforward. We give the full proof for
ϕ ∃U��c ψ (the same proof can be carried out for ϕ ∀U��c ψ).

Only if part.
Assume (M, ν) |= ϕ ∃U��c ψ. Then by definition, there is a run ρ in Runs(T) s.t. :

ρ = (s0, ν0) −→
d1
a1

(s1, ν1) · · · −→
dn
an

(sn, νn)

and (s0, ν0) = (M, ν), ∑
n
i=1 di �� c, ∀i ∈ [1..n],∀d ∈ [0, di), (si, νi + d) |= ϕ and (sn, νn) |= ψ.

With corollary 2, we conclude that there is a run σ = Δ(ρ) in Runs(SΔ(T)) s.t.

σ = ((l0, p0), q̄0, v0)) =⇒d1
w1

((l1, p1), q̄1, v1)) · · · · · · =⇒dn
wn

((ln, pn), q̄n, vn))

and ∀i ∈ [1..n], ((li, pi), q̄i, vi)) ≈ (si, νi) (this entails that li = 0.)
Since (sn, νn) ≈ ((ln, pn), q̄n, vn)), using the induction hypothesis on ψ, we can assume that
(sn, νn) |= ψ iff ((ln, pn), q̄n, vn)) |= Δ(ψ) and thus we can conclude that ((ln, pn), q̄n, vn)) |=
Δ(ψ). Moreover as ln = 0 we have ((ln, pn), q̄n, vn)) |= SU.0 ∧ Δ(ψ). It remains to prove
that all intermediate states satisfy SU.0 → Δ(ϕ). Just notice that all the intermediate states
in σ not satisfying SU.0 between ((li, pi), q̄i, vi) and (((li+1, pi+1), ¯qi+1, vi+1)) satisfy SU.0 →
Δ(ψ). Then we just need to prove that the intermediate states satisfying SU.0, i.e., the states
((li, pi), q̄i, vi) satisfy Δ(ϕ). As for all i ∈ [1..n], we have ((li, pi), q̄i, vi)) ≈ (si, νi), with the
induction hypothesis on ϕ, we have ∀i ∈ [1..n], ((li, pi), q̄i, vi)) |= Δ(ϕ). Moreover, again
applying theorem 5, we obtain for all d ∈ [0, di): ((li, pi), q̄i, vi + d)) ≈ (si, νi + d); applying
the induction hypothesis again we conclude that for all d ∈ [0, di) ((li, pi), q̄i, vi + d)) |= Δ(ϕ).
Hence ((l0, p0), q̄0, v0)) |= (SU.0 → ϕ) ∃U��c (SU.0 ∧ ψ).

If part.
Assume ((l0, p0), q̄0, v0)) |= (SU.0 → Δ(ϕ)) ∃U��c (SU.0 ∧ Δ(ψ)). Then there is a run

σ = ((l0, p0), q̄0, v0)) =⇒d1
w1

((l1, p1), q̄1, v1)) · · · · · · =⇒dn
wn

((ln, pn), q̄n, vn))

with ((ln, pn), q̄n, vn)) |= SU.0 ∧ Δ(ψ) and:

∀i ∈ [1..n],∀d ∈ [0, di), ((li, pi), q̄i, vi)) |= (SU.0 → Δ(ϕ))

As ((ln, pn), q̄n, vn)) |= SU.0, we can use corollary 2 and we know there exists a run in
Runs(T)

ρ = Δ−1(σ) = (s0, ν0) →
d1
a1

(s1, ν1) · · · →
dn
an

(sn, νn)

with ∀i ∈ [1..n], ((li, pi), q̄i, vi)) ≈ (si, νi). The induction hypothesis on SU.0 ∧ Δ(ψ) and
((ln, pn), q̄n, vn)) |= SU.0 ∧ Δ(ψ) implies (sn, νn) |= ψ. For all the intermediate states of ρ we
also apply the induction hypothesis: each ((li, pi), q̄i, vi)) is equivalent to (si, νi) and all the
states (si, νi + d), d ∈ [0, di) satisfy ϕ. Hence (s0, ν0) |= ϕ ∃U��c ψ. �

Theorem 6 enables to reduce the model-checking of a TPN-TCTL formula ϕ against a TPN T
i.e., the problem T |= ϕ to a model-checking of TCTL against TA:

Corollary 3 T |= ϕ ⇐⇒ Δ(T) |= Δ(ϕ).

From Time Petri Nets to Timed Automata 245

1

P1_1

P1_2

1
P2_1

P2_2

1

P3_1

P3_2

1

P1
1

P2

1

P3
1

P4
1

P5

1

P4_1
1

P5_1
1

P6_1
1

P7_1

P4_2
P5_2

P6_2 P7_2

1

P6

P 21

1

P8_1

P8_2

1

P9_1

P9_2

1

P10_1

P10_2

T1_1
 [2; 4] T2_1

 [5; 8]

T3_1
 [4; 9]

T3_2

T2_2
T1_2

T4_1
 [1; 6]

T5_1
 [6; 7]

T6_1
 [2; 5] T7_2

 [6; 9]

T7_2T6_2T5_2T4_2

T1
 [10; 10]

T2
 [15; 15]

T3
 [10; 10] T4

 [15; 15]
T5
 [10; 10]

T6
 [15; 15]

T8_1
 [1; 10]

T8_2

T9_1
 [2; 2]

T9_2

T10_1
 [1; 1]

T10_2

Figure 4. A TPN for a Producer/Consumer example in ROMEO

6. Implementation

In this section, we describe some properties of our translation and important implementa-
tion details. Then we report on examples we have checked using our approach and the tool
UPPAAL.

6.1. Translation of TPNs to UPPAAL Input Format
The first step in using our approach is to translate an existing TPN into a product of TA. For
this we use the TPN tool ROMEO (Gardey et al., 2005) that has been developed for the analysis
of TPNs (state space computation and “on-the-fly” model-checking of reachability properties
with a zone-based forward method and with the State Class Graph method). ROMEO has a
GUI (see Fig. 4) to “draw” Time Petri Nets and an export to UPPAAL feature that implements
our translation of a TPN into the equivalent TA in UPPAAL input format7.
The textual input format for TPNs in ROMEO is XML and the timed automaton is given in
the “.xta” UPPAAL input format8. The translation gives one timed automaton for each tran-
sition and one automaton for the supervisor SU as described in Section 4.3. The automata
for each transition update an array of integers M[i] (which is the number of tokens9 in place
i in the original TPN). For example, the enabledness and firing conditions of a transition ti
such that •ti = (1, 0, 0) and ti

• = (0, 0, 1), are respectively implemented by M[0] ≥ 1 and
M[2] := M[2] + 1. Instead of generating one template automaton for each transition, we gen-
erate as many templates as types of transitions in the original TPN: the type of a transition is

7At least version (3.4.7) of UPPAAL is required to read the files produced by ROMEO.
8see http://www.uppaal.com for further information about UPPAAL.
9The actual meaning of M[i] is given by a table that is available in the ROMEO tool via the “Trans-

late/Indices =⇒ Place/Transition” menu; the table gives the name of the place represented by M[i] as
well as the corresponding information for transitions.

246 Petri Net. Theory and Applications

the number of input places and output places. For the example of Fig. 4, there are only three
types of transitions (one input place to one output place, one to two and two to one) and three
templates in the UPPAAL translation. Then one of these templates is instantiated for each tran-
sition of the TPN we started with. An example of a UPPAAL template for transitions having
one input place and one output place is given in Fig. 5; integers B1 and F1 give respectively
the index of the unique input place of the transition, and the index of the output place. The
timing constraints of the transition are given by dmin and dmax. We can handle as well tran-
sitions with input and output arcs with arbitrary weights (on the examples of Fig. 5 the input
and output weights are 1).

In our translation, each transition of the TPN is implemented by a TA with one clock. The
synchronized product thus contains as many clocks as the number of transitions of the TPN.
At first sight, one can think that the translation we have proposed is far too expensive w.r.t. to
the number of clocks to be of any use when using a model-checker like UPPAAL: indeed the
model-checking of TA is exponential in the number of clocks. Nevertheless we do not need to
keep track of all the clocks as many of them are not useful in many states.

6.2. Inactive Clocks
When a transition in a TPN is disabled, there is no need to store the value of the clock for
this transition: this was already used in the seminal paper (Berthomieu and Diaz, 1991). Ac-
cordingly when the TA of a transition is in location t̄ (i.e., t is not enabled) we do not need to
store the value of the clock: this means that many of the clocks can often be disregarded. In
UPPAAL, there is a corresponding notion of inactive clock:

Definition 19 (UPPAAL Inactive Clock) Let A be a timed automaton. Let x be a clock of A and �

be a location of A. If on all paths starting from (�, v) in SA, the clock x is always reset before being
tested then the clock x is inactive in location �. A clock is active if it is not inactive.

notenable

enable

x<=dmax

firing

true , M[B1]>0
update?
x:=0

true , M[B1]>0
update?

M[B1]<1

update?
M[B1]<1
update?

x>=dmin, x<=dmax
pre!
M[B1]:=M[B1]-1post!

M[F1]:=M[F1]+1

update?

Figure 5. A UPPAAL Template Obtained with the “Export to UPPAAL” Feature of ROMEO

From Time Petri Nets to Timed Automata 247

A consequence of the notion of inactive clocks in UPPAAL is that at location � the the con-
straints on the clocks will only contain the active clocks (they can be omitted in the DBM
that represents it). The next proposition (which is easy to prove on the timed automaton of a
transition) states that our translation is effective w.r.t. active clocks reduction i.e., that when a
TA of a transition is not in state t (enabled) the corresponding clock is considered inactive by
UPPAAL.

Proposition 1 Let Ai be the timed automaton associated with transition ti of a TPN T (see Fig. 2,
page 240). The clock xi of Ai is inactive in locations Firing and t̄.

The recent versions of UPPAAL (≥ 3.4.7) computes active clocks syntactically for each automa-
ton of the product. When the product automaton is computed “on-the-fly” (for verification
purposes), the set of active clocks for a product location is simply the union of the set of active
clocks of each component. Again without difficulty we obtain the following theorem:

Theorem 7 Let T be a TPN and Δ(T) the equivalent product of timed automata (see section 4.3). Let
M be a reachable marking of ST and � the equivalent10 location in SΔ(T). The number of active clocks
in � is equal to the number of enabled transitions in the marking M.

Thanks to this theorem and to the active clocks reduction feature of UPPAAL the model-checking
of TCTL properties on the network of timed automata given by our translation can be efficient.
Of course there are still examples with a huge number of transitions, all enabled at any time
that we will not be able to analyze, but those examples cannot be handled by any existing tool
for TPN.
In the next subsection we apply our translation to some recent and non trivial examples of
TPNs that can be found in (Gardey et al., 2005).

6.3. Tools for Analyzing TPNs
One feature of ROMEO is to export a TPN to UPPAAL or KRONOS but it was originally devel-
oped to analyze directly TPNs and has many built-in capabilities: we refer to ROMEO STD for
the tool ROMEO with these capabilities (Gardey et al., 2005). TINA (Berthomieu and Verna-
dat, 2006b) is another state-of-the-art tool to analyze TPNs with some more capabilities than
ROMEO STD: it allows to produce an Atomic State Class Graph (ASCG) on which CTL∗ prop-
erties can be checked. Using ROMEO STD or TINA is a matter of taste as both tools give similar
results on TPNs.
Table 2 gives a comparison in terms of the classes of property (LTL, CTL, TCTL, Liveness)
the tools can handle. The columns UPPAAL and KRONOS in ROMEO give the combined capa-
bilities obtained when using our structural translation and the corresponding (timed) model-
checker.
Regarding time performance ROMEO STD and TINA give almost the same results. Moreover
with ROMEO STD and TINA, model-checking LTL or CTL properties will usually be faster than
using ROMEO +UPPAAL: those tools implement efficient algorithms to produce the (A)SCG
needed to perform LTL or CTL model-checking. On one hand it is to be noticed that both
ROMEO STD and TINA need 1) to produce a file containing the (A)SCG; and then 2) to run a
model-checker on the obtained graph to check for the (LTL, CTL or CTL∗) property. This can
be prohibitive on very large examples (see (Cassez and Roux, 2006)).
On the other hand neither ROMEO STD nor TINA are able to check quantitative properties
such as quantitative liveness (like property of equation (5) below) and TCTL which in general

10See Definition 16.

248 Petri Net. Theory and Applications

TINA

ROMEO

ROMEO translation from TPN to TA
ROMEO STD UPPAAL KRONOS

Marking
Reachability

Compute
marking graph

ROMEO-
TCTLc UPPAAL-TCTLc TCTL

LTL SCGa + MCb

CTL (CTL∗) ASCGa + MCb

TCTL –

aSCG = Computation of the State Class Graph ; ASCG = of the atomic SCG.
bMC = requires the use of a Model-Checker on the SCG.
cCorresponds to a subset of TCTL and a special type of liveness defined by formulas of the form

∀�(ϕ =⇒ ∀♦Ψ).

Table 2. What can we do with the different tools and approaches?

cannot be encoded with an observer (when this possible we can translate such a quantitative
property into a problem of marking reachability).

P1

P2

P3

P4

T1 [0, 4]

T2 [2, 2]

T3 [4, 5]

T4 [1, 3]

• •

Figure 6. The TPN Tg

Let us consider the TPN Tg of Fig. 6. The response (liveness) property,

∀�
(
(M[1] > 0 ∧ M[3] > 0 ∧ T1.x > 3) =⇒ ∀♦(M[2] > 0 ∧ M[4] > 0) (5)

where M[i] is the marking of the place Pi, cannot be checked with TINA and can easily be
checked with our method using the translation and UPPAAL. This property means that if we
do not fire T1 before 3 t.u. then it is unavoidable that at some point in the future there is a
marking with a token in P2 and in P4. In UPPAAL we can use the response property template
P -> Q which corresponds to ∀�(P =⇒ ∀♦Q). Using our TPN-TCTL translation we obtain:

(SU.0 and M[1]>0 and M[3]>0 and T_1.x>3) --> (SU.0 and M[2]>0 and M[4]>0)

From Time Petri Nets to Timed Automata 249

6.4. Experimental Results
We just point out that our translation is syntactic and the time to translate a TPN into an
equivalent product of TA is negligible. This is in contrast with the method used in TINA and
ROMEO STD where the whole state space has to be computed in order to build some graph
(usually very large) and later on, a model-checker has to be used to check the property on
the graph. Reports on experimental results on different types of TPNs (cyclic tasks, produc-
ers/consumers and large TPNs) can be found in (Cassez and Roux, 2006).

7. Conclusion
In this chapter, we have presented time Petri Nets (TPNs) and a structural translation from
TPNs to TA. Any TPN T and its associated TA Δ(T) are timed bisimilar.
Such a translation has many theoretical implications. Most of the positive theoretical results
on TA carry over to TPNs. The class of TPNs can be extended by allowing strict constraints
(open, half-open or closed intervals) to specify the firing dates of the transitions; for this ex-
tended class, the following results follow from our translation and from Theorem 5:

• TCTL model checking is decidable for bounded TPNs. Moreover efficient algorithms
used in UPPAAL (Pettersson and Larsen, 2000) and KRONOS (Yovine, 1997) are exact for
the class of TA obtained with our translation;

• it is decidable whether a TA is non-zeno or not (Henzinger et al., 1994) and thus our
result provides a way to decide non-zenoness for bounded TPNs;

• lastly, as our translation is structural, it is possible to use a model-checker to find suffi-
cient conditions of unboundedness of the TPN.

These results enable us to use algorithms and tools developed for TA to check quantitative
properties on TPNs. For instance, it is possible to check real-time properties expressed in the
logic TCTL on bounded TPNs. The tool ROMEO (Gardey et al., 2005) that has been developed
for the analysis of TPN (state space computation and “on-the-fly” model-checking of reach-
ability properties) implements this translation of a TPN into the equivalent TA in UPPAAL

input format.
Our approach turns out to be a good alternative to existing methods for verifying TPNs:

• with our translation and UPPAAL we were able to check safety properties on very large
TPNs that cannot be handled by other existing tools;

• we also extend the class of properties that can be checked on TPNs to real-time quanti-
tative properties.

Note also that using our translation, we can take advantage of all the features of a tool like
UPPAAL: looking for counter examples is usually much faster than checking a safety property.
Moreover if a safety property is false, we will obtain a counter example even for unbounded
TPNs (if we use breadth-first search).
There are currently new features being developed for tools like ROMEO that enables one to
directly check TCTL properties on a TPN without translating it into a TA.

Aknowledgments
The authors wish to thank Didier Lime for his careful reading of this chapter and useful com-
ments to improve many parts of the text.

250 Petri Net. Theory and Applications

8. References

Abdulla, P. A. and Nylén, A. (2001). Timed Petri nets and BQOs. In 22nd International Confer-
ence on Applications and Theory of Petri Nets (ICATPN’01), volume 2075 of Lecture Notes
in Computer Science, pages 53–70, Newcastle upon Tyne, UK. Springer-Verlag.

Alur, R. and Dill, D. L. (1994). A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235.

Aura, T. and Lilius, J. (2000). A Causal Semantics for Time Petri Nets. Theoretical Computer
Science, 243(2):409–447.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2005a). Comparison of the
Expressiveness of Timed Automata and Time Petri Nets. In 3rd International Confer-
ence on Formal Modelling and Analysis of Timed Systems (FORMATS’05), volume 3829
of Lecture Notes in Computer Science, Uppsala, Sweden. Springer-Verlag.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2005b). When are Timed Au-
tomata Weakly Timed Bisimilar to Time Petri Nets? In 25th Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS(05), volume 3821 of
Lecture Notes in Computer Science, Hyderabad, India. Springer-Verlag.

Bérard, B., Cassez, F., Haddad, S., Roux, O., and Lime, D. (2005c). Comparison of Different
Semantics for Time Petri Nets. In Xiaoyu, M., Cardoso, J., and Valette, R., editors,
Proceedings of the Third International Symposium on Automated Technology for Verification
and Analysis (ATVA’2005), volume 3707 of Lecture Notes in Computer Science, pages
293–307, Taipei, Taiwan. Springer-Verlag.

Berthomieu, B. and Diaz, M. (1991). Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Transactions on Software Engineering, 17(3):259–273.

Berthomieu, B. and Menasche, M. (1983). An Enumerative Approach for Analyzing Time Petri
Nets. In Mason, R. E. A., editor, Information Processing: proceedings of the IFIP congress
1983, volume 9 of IFIP congress series, pages 41–46.

Berthomieu, B. and Vernadat, F. (2003). State Class Constructions for Branching Analysis of
Time Petri Nets. In Proc. 9th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’03), volume 2619 of Lecture Notes in Computer Science,
pages 442–457. Springer-Verlag.

Berthomieu, B. and Vernadat, F. (2006a). TINA. http://www.laas.fr/tina.

Berthomieu, B. and Vernadat, F. (2006b). Time Petri Nets Analysis with TINA. In Third Interna-
tional Conference on the Quantitative Evaluation of Systems (QEST 2006), pages 123–124,
Riverside, California, USA. IEEE Computer Society.

Bornot, S., Sifakis, J., and Tripakis, S. (1998). Modeling Urgency in Timed Systems. In de
Roever, W. P., Langmaack, H., and Pnueli, A., editors, International Symposium on
Compositionality: The Significant Difference (COMPOS’97), volume 1536 of Lecture Notes
in Computer Science, pages 103–129, Bad Malente, Germany. Springer-Verlag.

Bouyer, P. (2003). Untamable Timed Automata! In 20th Annual Symposium on Theoretical As-
pects of Computer Science (STACS’03), volume 2607 of Lecture Notes in Computer Science,
pages 620–631, Berlin, Germany. Springer-Verlag.

From Time Petri Nets to Timed Automata 251

Bouyer, P. (2004). Forward Analysis of Updatable Timed Automata. Formal Methods in System
Design, 24(3):281–320.

Bouyer, P., Dufourd, C., Fleury, E., and Petit, A. (2000). Are Timed Automata Updatable?
In Proc. 12th International Conference on Computer Aided Verification (CAV’00), volume
1855 of Lecture Notes in Computer Science, pages 464–479. Springer-Verlag.

Cassez, F. and Roux, O. H. (2006). Structural Translation from Time Petri Nets to Timed Au-
tomata – Model-Checking Time Petri Nets via Timed Automata. The journal of Systems
and Software, 79(10):1456–1468.

Cortès, L. A., Eles, P., and Peng, Z. (2000). Verification of Embedded Systems Using a Petri
Net based Representation. In 13th International Symposium on System Synthesis (ISSS
2000), pages 149–155, Madrid, Spain.

de Frutos Escrig, D., Ruiz, V. V., and Alonso, O. M. (2000). Decidability of Properties of
Timed-Arc Petri Nets. In 21st International Conference on Applications and Theory of
Petri Nets (ICATPN’00), volume 1825 of Lecture Notes in Computer Science, pages 187–
206, Aarhus, Denmark. Springer-Verlag.

Diaz, M. and Senac, P. (1994). Time Stream Petri Nets: A Model for Timed Multime-
dia Information. In 15th International Conference on Applications and Theory of Petri
Nets (ICATPN’94), volume 815 of Lecture Notes in Computer Science, pages 219–238,
Zaragoza, Spain. Springer-Verlag.

Emerson, E. A. (1990). Temporal and Modal Logic. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics (B), pages 995–1072. Elsevier.

Gardey, G., Lime, D., Magnin, M., and Roux, O. H. (2005). ROMEO: A Tool for Analyzing
Time Petri Nets. In Proc. 17th International Conference on Computer Aided Verification
(CAV’05), volume 3576 of Lecture Notes in Computer Science, pages 418–423, Edin-
burgh, Scotland, UK. Springer-Verlag. http://romeo.rts-software.org.

Gardey, G., Roux, O. H., and Roux, O. F. (2003). Using Zone Graph Method for Computing
the State Space of a Time Petri Net. In International Conference on Formal Modelling and
Analysis of Timed Systems (FORMATS’03), volume 2791 of Lecture Notes in Computer
Science, Marseille, France. Springer-Verlag.

Gardey, G., Roux, O. H., and Roux, O. F. (2006). State Space Computation and Analysis of
Time Petri Nets. Theory and Practice of Logic Programming (TPLP). Special Issue on
Specification Analysis and Verification of Reactive Systems, 6(3):301–320.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Symbolic Model Checking for
Real-Time Systems. Information and Computation, 111(2):193–244.

Jones, N. D., Landweber, L. H., and Lien, Y. E. (1977). Complexity of some problems in Petri
nets. Theoretical Computer Science, 4:277–299.

Khansa, W., Denat, J.-P., and Collart-Dutilleul, S. (1996). P-Time Petri Nets for Manufacturing
Systems. In International Workshop on Discrete Event Systems (WODES’96), pages 94–
102, England. IEEE Computer Society.

Laroussinie, F. and Larsen, K. G. (1998). CMC: A Tool for Compositional Model-Checking of
Real-Time Systems. In Budkowski, S., Cavalli, A. R., and Najm, E., editors, Proceed-
ings of IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques

252 Petri Net. Theory and Applications

for Distributed Systems and Communication Protocols (FORTE’XI) and Protocol Specifica-
tion, Testing and Verification (PSTV’XVIII), volume 135 of IFIP Conference Proceedings,
pages 439–456, Paris, France. Kluwer Academic Publishers.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). UPPAAL in a Nutshell. International Journal of
Software Tools for Technology Transfer, 1(1–2):134–152. http://www.uppaal.com/.

Lilius, J. (1998). Efficient State Space Search for Time Petri Nets. Electronic Notes in Theoretical
Computer Science, 18.

Lime, D. and Roux, O. H. (2006). Model Checking of Time Petri Nets Using the State Class
Timed Automaton. Journal of Discrete Events Dynamic Systems - Theory and Applica-
tions, 16(2):179–205.

Merlin, P. M. (1974). A Study of the Recoverability of Computing Systems. PhD thesis, Dep. of
Information and Computer Science, Univ. of California, Irvine, CA.

Pettersson, P. and Larsen, K. G. (2000). UPPAAL2k. Bulletin of the European Association for
Theoretical Computer Science, 70:40–44.

Pezzè, M. (1999). Time Petri Nets: A Primer Introduction. Tutorial presented at the
Multi-Workshop on Formal Methods in Performance Evaluation and Applications,
Zaragoza, Spain.

Popova, L. (1991). On Time Petri Nets. Journal of Information Processing and Cybernetics, EIK,
27(4):227–244.

Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Timed Petri Nets. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA. Project MAC Report
MAC-TR-120.

Rokicki, T. G. (1993). Representing and Modeling Circuits. PhD thesis, Stanford University.

Sava, A. T. (2001). Sur la synthèse de la commande des systèmes à évènements discrets temporisés.
PhD thesis, Institut National polytechnique de Grenoble, Grenoble, France.

Sifakis, J. (1980). Performance Evaluation of Systems using Nets. In Brauer, W., editor, Net
theory and applications : Proceedings of the advanced course on general net theory, processes
and systems, volume 84 of Lecture Notes in Computer Science, pages 307–319, Hamburg,
Germany. Springer-Verlag.

Sifakis, J. and Yovine, S. (1996). Compositional specification of timed systems. In Puech, C.
and Reischuk, R., editors, 13th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’96), volume 1046 of Lecture Notes in Computer Science, pages 347–359,
Grenoble, France. Springer-Verlag.

Tripakis, S. (1999). Timed Diagnostics for Reachability Properties. In Cleaveland, R., editor,
Proc. 5th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), volume 1579 of Lecture Notes in Computer Science, pages 59–73, Amster-
dam, The Netherlands. Springer-Verlag.

Yovine, S. (1997). KRONOS: A Verification Tool for Real-Time Systems. International Journal of
Software Tools for Technology Transfer, 1(1–2):123–133.

12

Timed Hierarchical Object-Oriented Petri Net
Hua Xu

State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084,

P. R. China

1. Introduction
Petri nets (Murata, 1989) (Peterson, 1991) have been widely used to model various discrete
event systems (Moody & Antsaklis, 1998). Characterized as concurrent, asynchronous,
distributed, parallel, nondeterministic, and/or stochastic (Murata, 1989), Petri nets have
gained more and more applications. However, when they are used to analyze and model
systems of different domains, the shortages of this kind of formal method still exist. Basic
Petri nets lack temporal knowledge description, so they have failed to describe the temporal
constraints in time critical or time dependent systems. The introduction of temporal
knowledge into Petri nets has increased not only the modeling power but also the model
complexity (Wang et al. 2000). The improved models of Petri nets (Wang, 1998) include
Timed Petri Net (Ramchandi, 1974), Stochastic Timed Petri Net (Florin etc al., 1991) and
Time Petri Net (TPNs) (Merlin & Farber, 1976). In TPNs (Merlin & Farber, 1976), each bar
has two times specified. The first time denotes the minimal time that must elapse from the
time that all the input conditions of a bar are enabled until this bar can fire. The other time
denotes the maximum time that the input conditions can be enabled and the bar does not
fire. After this time, the bar must fire. In general, these two times give some measures of
minimal and maximal execution times of the bars.
The reachability (coverability) analysis is one of the main analysis methods for Petri nets
(Murata, 1989), in which the coverability tree is always used. It permits the automatic
translation of behavioral specification models into a state transition graph made up of a set
of states, a set of actions, and a succession relation associating states through actions (Bucci
& Vivario, 1995). That is to say, it involves essentially the enumeration of all reachable
markings or their coverable markings. This representation makes such properties as
deadlock and reachability (Zhou, 1995) explicit, and allows the automatic verification of
ordering relationships among task execution times (Tsai et al., 1995).
Although the reachability analysis method can be used for all nets, it is only limited to
“small” nets due to the complexity of the state-space explosion. The same thing also
happens in the analysis of TPN models. Sloan et al. (Sloan & Buy, 1996) developed several
reduction rules for TPN analysis that work at an individual transition level. These reduction
rules help to reduce the complexity of TPN analysis to some extent. However, it is not a
trivial work to automatically search the preconditions of applying these reduction rules for a

Petri Net: Theory and Applications 254

complex TPN. Wang et al. proposed the compositional time Petri nets and the
corresponding component-level reduction rules (Wang et al. 2000). Each of the reduction
rules transforms a TPN component to a small one while maintaining the net’s external
observable timing properties. The application of these rules will dramatically reduce the size
of a TPN. However, all of the methods or models only reduce the complexity after the
model becomes complex. It can not avoid the complexity to the best of its ability according
to the analysis requirements when it is modeled.
These years, the usefulness of the object-oriented concepts has been recognized, because it
allows us to describe systems easily, intuitively and naturally. These years, the object-
oriented formal methods such as object Petri nets (OPN) (Bastide, 1995), VDM++ (Harel &
Gery , 1996), Object-Z (Schuman, 1997), etc are suggested. Among the studies, the research
on OPN has been focused on the extending Petri net formalism to OPN such as HOONet
(Hong & Bae, 2000), OBJSA (Battiston et al. 1988), COOPN/2 (Biberstein & Buchs, 1994) and
LOOPN++ (Lakos & Keen, 1994), which are suggested on the base of colored Petri Net
(CPN) (Jensen, 1992). Object-oriented Petri net (OPN) can model different systems easily,
intuitively and naturally. Abstraction is one of OPN characters compared with basic Petri
nets. OPN can model various systems hierarchically and the models can be analyzed even if
they have not been completed. So the complexity of OPN models can be simplified at the
beginning of modeling stage according to the analysis requirements. Although the results of
such studies have shown promise, these nets do not fully support time critical (time
dependent) system modeling and analysis, which may be complex, midsize or even small.
When time critical systems with any sizes are modeled, it requires formal modeling and
analysis method to support temporal description and object-oriented concepts. That is to
say, TPN and OPN need to be combined.
Firstly, this chapter formally proposes a high-level Petri net called timed hierarchical object-
oriented Petri net (TOPN) (Xu & Jia, 2006) (Xu & Jia, 2005-2), which supports not only
temporal description but also OO concepts. On one hand, TOPN has extended a model of
Object-Oriented Petri Nets to allow modeling and analyzing complex time critical systems.
Modeling features in TOPN support abstracting complex systems, so the corresponding
models can be simplified effectively. In the proposed TOPN, a duration is also attached to
each object accounting for the minimal and maximal amount of time between which that the
behavior of the object can be completed once fired. On the other hand, this chapter also
addresses the problem of the state analysis of TOPN models, what makes it possible to
judge the model consistency at a given moment of time. On the base of Yao’s extended state
graph (ESG) (Yao, 1994), TOPN extended state graph (TESG) is presented for incremental
reachability analysis for temporal behavior analysis. In particular, a new way is investigated
to represent and deal with the objects with temporal knowledge.
 Secondly, in order to extend a model of TOPN to allow modeling and analyzing dynamic

systems with timing effect on system information, fuzzy concept is introduced into TOPN
and fuzzy timed object-oriented Petri net (FTOPN) (Xu & Jia, 2005-1) is proposed. Temporal
fuzzy sets are attached to each transition objects in TOPN accounting for the aging of
information. In particular, a new way is investigated to represent and deal with timing effect
in dynamic systems. FTOPN also supports learning similar to that in fuzzy timed Petri net
(Pedryz & Camargo, 2007). FTOPN is also used to model a real decision making procedure
of one cooperative multiple robot system (CMRS) to demonstrate its following benefits:

Timed Hierarchical Object-Oriented Petri Net 255

independent training for its supporting object abstraction and size reconfiguration for its
object granularity control function.
 Finally, in order to model CMRS, a CMRS modeling method called fuzzy timed agent
based Petri nets (FTAPN) (Xu & Jia, 2007) is proposed on the base of FTOPN, because it can
be regarded as a kind of multi-agent system (MAS) and the agent is also a special kind of
object. FTAPN can be used to model and illustrate both the structural and dynamic aspects
of CMRS. Supervised learning is supported in FTAPN. As a special type of high-level object,
agent is introduced, which is used as a common modeling object in FTAPN models. The
proposed FTAPN can not only be used to model CMRS and represent system aging effect,
but also be refined into the object-oriented implementation easily. At the same time, it can
also be regarded as a conceptual and practical artificial intelligence (AI) tool for multi-agent
system (MAS) into the mainstream practice of software development.
This chapter has just been arranged as the following. Section 1 makes a quick review of the
relative study of Petri Nets. In section 2 of this chapter, it justifies the need for defining
TOPN through interpreting how to combine the time restricting information with HOONet.
An informal and intuitive behavior semantics of TOPN has been introduced in section 3.
Then, in section 4, the constructing algorithm of reachability tree is presented, which can
support most of the property analysis of TOPN. In section 5, FTOPN is proposed on the base
of TOPN, and FTOPN has been used to model and analyze the decision procedure of one
CMRS. Then, FTAPN is presented on the base of FTOPN and it is used to model and
analyze one CMRS to demonstrate its effectiveness in section 6. Section 7 concludes the
work in this chapter and suggests further research issues in the future.

2. The basic concepts of TOPN
In this section, some important basic concepts of Petri nets are firstly reviewed. Then the
definitions of TOPN are presented. At the same time, the enabling rules and the firing rules
of TOPN are presented.

2.1 A brief review of basic Petri nets
In this subsection, we will quickly review some key definitions. A more general discussion
on Petri nets can be found in Peterson’s book (Peterson, 1991) and in the excellent survey
article by Murata (Murata, 1989).
A Petri net is a five-tuple PN= (P, T, F, W, M0) where P and T are the node sets and F is the

edge set of a directed bipartite graph, and M0: P N is called the initial marking (or initial

state) of PN. (We use N to denote the set {0, 1, 2…}.) We call P the set of places of PN and T
the set of transitions of PN. In diagrams, we will show places as circles and transitions as
bars. Formally,)()(PTTPF and F is called the flow relation (or edges) of PN.

W: F {1, 2, 3…} and it is called the weight of a flow. In general, a marking of PN associates

a nonnegative integer number of markers or tokens with each place.
For net PN= (P, T, F, W, M0), we use the following symbols and notations for the sets of

predecessors and successors of a place p P and transition t T.

•t={p| (p, t) F} =the set of input places of t,

t•={p| (t, p) F}=the set of output places of t,

Petri Net: Theory and Applications 256

•p={t| (t, p) F}=the set of input transitions of p,

p•= {t| (p, t) F} =the set of output transitions of p.

A transition is enabled when all its input places have at least one token. When an enabled
transition t is fired, a token is removed from each input place of t and a token is added to
each output place; this gives a new marking. For net PN= (P, T, F, W, M0), the language of

PN, denoted as L (PN), is the set of all legal sequences T* of transition firings starting

from marking M0.

Petri net PN= (P, T, F, W, M0) is safe if M0 : P {0, 1}, and if all markings reachable by legal

sequences of transition firings from the initial marking have either zero or more tokens in
every place.

2.2 High-level Petri nets
There are different definitions and terminology of TPN and OPN. In this chapter, our work
is based on the Merlin’s TPN and Hong’s OPN which is called HOONet (Hong & Bae, 2000).
A time Petri net is also a tuple TPN=(PN, SI). PN is a basic Petri net. And SI is a mapping

called a static interval, SI: T Q* Q*), where Q* is a set of nonnegative rational numbers.

HOONet is a high-level Petri net supporting the representation scheme of object-oriented
concepts. A HOONet model is represented as Petri-net form for an object and has
components to represent a unique name, attributes and its behaviors (methods) of an object.
Definition 1: HOONet is defined with a tuple HOONet= (OIP, ION, DD), where

1. OIP (object identification place) is a special place which is defined as a tuple,

OIP=(oip,pid,M0,status), where

oip is a unique name of a HOONet model.

pid is a unique process identifier that distinguishes the multiple instances of an

object.

M0 is an initial marking function.

status is a flag variable (either pre value or post value) to represent the specific

states of OIP.

2. ION (internal object net) is a variant of CPN (colored Petri nets) that represents the

internal behaviors of an object, which is defined as a tuple ION=(P,T,A,C,N,G,E,F,M0),

where

P, T and A are finite sets of places, transitions and arcs respectively.

C, N, G and E mean the functions of a color set, a node, a guard and an arc
expression, respectively. They are the same as defined in (Jensen, 1992).

F is a special arc from transitions to OIP, and depicted as those a rim of ION,
and

M0 is a function giving initial marking to specific places.
3. DD (data dictionary) contains the declarations of variable, token types, and functions

per a HOONet model using standard CPN ML (Jensen, 1992).

Definition 2: A set of place types in HOONet, P=(Pi,Pa), where
1. Primitive place Pi is a basic type of places that represent the local states of a system, the

same as in general CPN (Jensen, 1992).

Timed Hierarchical Object-Oriented Petri Net 257

2. Abstract place Pa= (pn, refine_state, action) is a place type which represents abstract
states, where

pn is the name of an abstract place.

refine_state is a flag variable denoting the refinement of an abstract place.

action is a static reaction that imitates the internal behaviors of an abstract

place.

Definition 3: A set of transition types in HOONet, T={Ti, Ta, Tc},where
1. Primitive transition Ti is a basic transition type in general CPN
2. Abstract transition Ta = (tn, refine_state, action), where

tn is the name of an abstract transition.

refine_sate and action have the same meanings as in the definition of the
abstract place.

3. Communicative transition Tc =(tn, target, ctype, action) is a transition type that represents
calling a method, where

tn is the name of a communicative transition.

target is a flag variable denoting whether the method called from Tc, is
modeled (a “yes” value) or not (a “no” value).

ctype is also a flag variable denoting whether the interaction of Tc is
synchronous (a “SYNC” value) or asynshronous (an “ASYN” value).

action is the static reaction that reflects the execution results of the called
method.

The variable ctype with its “SYNC” value denotes that the caller waits for the result from the
called method. With “ASYN” value, the token is duplicated. Each of the duplicated tokens is
transferred to the called object and the next place in its net, respectively.

2.3 Timed hierarchical object-oriented Petri net
The purpose of designing timed hierarchical object-oriented Petri net (TOPN) is to aid in the
modeling and analysis of real time systems and bridge the gap between the formal
treatment of object-oriented Petri nets and temporal reduction approach for the modeling,
analysis, and prototyping of complex time critical systems.
A TOPN model is a variant HOONet representation that corresponds to the class with
temporal property in object-oriented paradigm. Like the HOONet, TOPN is composed of
four parts: object identification place (OIP) is a unique identifier of a class; internal timed
object net (ION) is a net to depict the behaviors (methods) of a class; data dictionary (DD)
declares the attributes of a class in TOPN; and static time interval function (SI) binds the
temporal knowledge of a class in TOPN.
Definition 4: TOPN is a four-tuple: TOPN= P (OIP, ION, DD, SI), where:
1. OIP=(oip, pid, M0, status), oip, pid, M0 and status are the same as those in HOONet.

oip is a variable for the unique name of a TOPN.

pid is a unique process identifier to distinguish multiple instances of a class,
which contains return address.

M0 is the function that gives initial token distributions of this specific value to
OIP.

status is a flag variable to specify the state of OIP.

Petri Net: Theory and Applications 258

2. ION is the internal net structure of TOPN to be defined in the following. It is a variant
CPN that describes the changes in the values of attributes and the behaviors of methods
in TOPN.

3. DD formally defines the variables, token types and functions (methods) just like those
in HOONet (Hong & Bae, 2000).

4. SI is a static time interval binding function, SI: {OIP} Q*, where Q* is a set of time
intervals.

According to the definition 4, the general structure of TOPN is shown in Fig.1. In time critical
systems, time relates to events. While in Petri net, events occur and originate from system
behaviors. And system behaviors stem from the behavior properties of objects in TOPN.
These objects include transitions, abstract places and other TOPN objects. So not only
transitions, but also all TOPN objects including abstract places, etc need to be restricted by
time condition.

Fig. 1. The General Structure of TOPN

An event in a time critical system can be thought of as an interval [s, t] on the time line

where s is its starting endpoint and t is its terminating endpoint, having a duration given by

t-s 0. The special case of time interval where t=s is a point event. Otherwise, it is an interval
event. In the corresponding time interval [s, t] of event firing, s is the earliest firing time

(EFT) and t is the latest firing time (LFT). In the changes of TOPN behavior, events are

regarded as interval events. The temporal knowledge in TOPN is represented as time

intervals.

Similar to HOONet, TOPN is also a kind of hierarchical net. In TOPN, the whole TOPN

model is also an object, and it is always regarded as an abstract place object. Its realizing

details are depicted in ION. Inside the ION, abstract objects may also be included. The

realizing details of these objects can also be depicted as a TOPN. The definition of ION is

just like the following.

Definition 5: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached

respectively.
2. A is a finite set of arcs such that P T=P A=T A= .
3. K is a function mapping from P to a set of token types declared in DD.

Timed Hierarchical Object-Oriented Petri Net 259

4. N, G, and E mean the functions of nodes, guards, and arc expressions, respectively. The
results of these functions are the additional condition to restrict the firing of transitions.
So they are also called additional restricting conditions.

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION.
6. M0 is a function giving an initial marking to any place the same as those in HOONet

(Hong & Bae, 2000).
Similar to common OPNs, basic OPN components and additional restricting conditions are
included in the detailed ION structure. The basic OPN components may include common
components (transition and place) and abstract components. If the model needs to be
analyzed in details, the abstract components in ION should be refined. At the same time, the
ION is unfolded. The following definitions of abstract components in TOPN are the base of
refining abstract component. The abstract components in TOPN include timed abstract
transitions, timed abstract communication transitions and timed abstract places.

Definition 6: A set of places in TOPN is defined as P=PIP TABP, where

1. PIP is the set of primitive places similar to those in PNs (Murata, 1989) (Peterson, 1991).
2. Timed abstract place (TABP) is a four-tuple: TABP= TABP(pnTABP, refine stateTABP,

actionTABP, SITABP), where

pnTABP is the identifier of the abstract timed place.

refine stateTABP is a flag variable denoting whether this abstract place has been
refined or not.

actionTABP is the static reaction imitating the internal behavior of this abstract
place.

SITABP is also a static time interval binding function from a set of TABPs to a set
of static time intervals.

There are two kinds of places in TOPN. They are common places (represented as circles
with thin prim) and abstract places (represented as circles with bold prim) described in
Fig.2. Abstract places are also associated with a static time interval. Because at this situation,
abstract places represent not only firing conditions, but also the objects with their own
behaviors. So, abstract places in TOPN also need to be associated with time intervals.
Generally, the abstract place—TABP is always represented as a kind of abstract form in
higher layers in TOPN models. At this time, “refine state” dedicates that it is in abstract
form. However, if “refine state” denotes that it is in the refined state, TABP will have been
refined into the corresponding TOPN which is defined in lower layers.

Fig. 2. Places and Transitions in TOPN

Definition 7: A set of transitions in TOPN can be defined as T= TPIT TABT TCOT, where

1. Timed primitive transition TPIT = TPIT (BAT, SITPIT), where

BAT is the set of common transitions.

Petri Net: Theory and Applications 260

SITPIT is a static time interval binding function, SI: {TPIT} Q*, where Q* is a set
of time intervals.

4. Timed abstract transition TABT= TABT (tnTABT, refine stateTABT, actionTABT, SITABT),
where

tnTABT is the name of this TABT.

refine stateTABT is a flag variable denotes whether this TABT has been refined or
not.

actionTABT is the static reaction imitating the internal behavior of the TABT.

SITABT is a static time interval binding function, SI: {TABT} Q*, where Q* is a set
of time intervals.

5. Timed communication transition TCOT=TCOT (TnTCOT, targetTCOT, comm typeTCOT,
actionTCOT, SITCOT).

TnTCOT is the name of TCOT.

targetTCOT is a flag variable denoting whether the behavior of this TCOT has
been modeled or not. If targetTCOT =”Yes”, it has been modeled. Otherwise, if
targetTCOT =”No”, it has not been modeled yet.

comm typeTCOT is a flag variable denoting the communication type. If comm
typeTCOT =”SYNC”, then the communication transition is synchronous one.
Otherwise, if comm typeTCOT =”ASYN”, it is an asynchronous communication
transition.

actionTCOT is the static reaction imitating the internal behavior of this TCOT.

SITCOT is a static time interval binding function, SI: {TCOT} Q*, where Q* is a set
of time intervals.

Just like those in HOONet, there are three kinds of transitions in TOPN. The timed primitive
transition (represented as rectangles with thin prim), timed abstract transition (represented
as rectangles with bold prim) and timed communication transition (represented as
rectangles with double thin prim). They are depicted in Fig.2. Different transitions represent
different system behaviors. So, temporal intervals are associated with all of these transitions
in TOPN. Abstract transitions are also TOPN objects. They can be refined in lower layers.
The definition of abstract transitions mentioned above is also a kind of abstract form in
higher layers of TOPN models, when “refine state” indicates it is in the abstract form. While,
if “refine state” denotes it is in refined state, the corresponding abstract transition should be
refined into the corresponding TOPN which is defined in lower layers.
From the definitions mentioned above, TOPN are hierarchical just like the structure of object
models. In the higher levels of the model, its components may be in abstract form and the
model is simple. In the unfolded model where the abstract components are refined, the
TOPN model may be complex, but the realizing details are clear. So, according to the
analysis requirements, users can analyze the TOPN models in different layers, even if the
detailed realization in lower layers have not been completed yet.

3. Behavior semantics of TOPN
3.1 Execution paths
State changes relate to the events in TOPN. However, events may stem from transition firing
or TABP behaviors. The state changes in TOPN relate to the schedule and the associated

Timed Hierarchical Object-Oriented Petri Net 261

temporal interval tightly. In order to analyze the dynamics of TOPN, the definition of
schedule and path is given in the following.
Definition 8: In Petri net N, if the state Mn is reachable from the initial state M0, then there
exists a sequence of fired transitions from M0 to Mn. This sequence is called a path or a

schedule from M0 to Mn. It can be represented as:

Path = {M0,t1,M1,…,tn,Mn} or = {M0,t1,M1,…,tn,Mn}

ti N.T; 1 i n

And the schedule set of Petri net N with initial marking M0 is represented as L(N,M0).

Just like those in TPN (Merlin & Farber, 1976) (Harel & Gery, 1996), if the number of solid
tokens residing in the input place equals or exceeds the weight of the input arc, the forward
transition is enabled. However, when one TABP is marked by enough hollow tokens
compared with the weight of internal arcs in its refined TOPN, it is also enabled at this time.
After its internal behaviors have completed, the color of tokens residing in it become from
hollow to solid, which are similar to those in common places. So TABPs also manifest
actions in TOPN. An extended definition of path in TOPN is given in the following, in
which TABP is extended into the schedule.
Definition 9: If the state Mn is reachable from the initial state M0, then there exists a sequence
of marked abstract places and fired transitions from M0 to Mn. This sequence is called a path

or a schedule from M0 to Mn. It can be represented as:

Path = {PA1, PA2, … , PAn} or = {PA1, PA2, … , PAn}

where PAi T TABP and 1 i n.

Definition 10: Let t be a TOPN transition and let {PA1, PA2, … ,PAn} be a path, add ti into the
path is expressed as {PA1, PA2, … ,PAn} + t = { PA1, PA2, … ,PAn, t}.
Let p be an abstract place and let { PA1, PA2, … ,PAn} be a path, add p into the path is

expressed as { PA1, PA2, … , PAn} + p = { PA1, PA2, … , PAn, p}, where PAi T TABP and

1 i n .

Definition 11: For a TOPN N with schedule , we denote the state reached by starting in N’s

initial state and firing each transition in at its associated time (N,). The time of (N,)

is the global firing time of the last transition in .

When the relative time belongs to the time interval attached to the transition or the TABP
and the corresponding object is also enabled, then it can be fired. If a transition has been
fired, the marking may change like that in PN (Wang, 1998). If a TABP is fired, then the
hollow token(s) change into solid token(s), and the tokens still reside in the primary place.
At this time, the new relative time intervals of every object are calculated like those in (Harel
& Gery, 1996).

3.2 Enabling rules and firing rules
State changes in TOPN stem from the behavior executions in TOPN. The execution of a
TOPN depends on two main factors. Firstly, it is the number and distribution of tokens in

Petri Net: Theory and Applications 262

the TOPN. Tokens reside in the places and control the execution of the transition. Secondly,
its execution depends on the definition of execution time represented as time intervals. A
TOPN executes by firing transitions.
The dynamic behavior can be studied by analyzing the distribution of tokens (markings) in
TOPN. So the enabling rule and firing rule of a transition in TOPN are introduced in the
following, which govern the flow of tokens.
Enabling Rule:
1. A transition t in TOPN is said to be enabled if each input place p of t contains at

least the number of solid tokens equal to the weight of the directed arcs connecting
p to t:
M(p) I(t, p) for any p in P, the same as in ordinary Petri nets, where M(p) is the
marking of the place p and I(t, p) is the weight of the input arc from the place p to
the transition t.

2. If the place is TABP, it will be marked with a hollow token and TABP is enabled. At
this time, the ION of the TABP is enabled. After the ION is executed, the tokens in
TABP are changed into solid ones.

Firing Rule:
1. For a transition:

a. An enabled transition in TOPN may or may not fire depending on the additional

interpretation (Merlin & Farber, 1976) (Bucci & Vivario, 1995) (Harel & Gery,

1996), and

b. The relative time , relative to the absolute enabling time , is not smaller than

the earliest firing time (EFT) of transition ti, and not greater than the smallest of

the latest firing time (LFT) of all the transitions enabled by marking M (Hong &

Bae, 2000):

 EFT of ti min (LFT of tk)

 where k ranges over the set of transitions enabled by M, the same as (Hong &

Bae, 2000).

c. After a transition ti (common one or abstract one) in TOPN is fired at a time ,

TOPN changes to a new state. The new states can be computed as the following:

The new marking M’ (token distributions) can be computed as the following:

 If the output place of ti is TABP,

 then M’(p)= attach (*, (M(p)-I(ti,p)+O(ti,p)));

 else M’(p)=M(p)-I(ti,p)+O(ti,p);

 The symbol “*” attached to the markings of TABP represents as hollow tokens

in TABP.

The computation of the new firing interval I’ is the same as those in (Harel & Gery,

1996), (Yao, 1994), as

I’=(max(0,EFTk- k) , (LFTk- k))

 where EFTk and LFTk represents the lower and upper bound of interval in I

corresponding to tk in TOPN, respectively.

The new path can be computed as path’ = path + ti .

2. For a TABP
a. The relative time should satisfy the following conditions:
 EFT of ti min (LFT of tk)

Timed Hierarchical Object-Oriented Petri Net 263

 where tk belongs to the set of the places and transitions which have been
enabled by M.

b. After a TABP p in TOPN is executed at a time , TOPN states change. The new
marking can be computed as the following.

The new markings are changed for the corresponding TABP p, as
 M’(p)= remove_attach (*, M(p))

 The symbol “*” is removed from the marking of TABP. Then the marking is the
same as those of common places. The change represents that the internal actions of
TABP have been finished. Tokens of TABP have been changed into solid ones.
To compute the new time intervals is the same as that mentioned above.

The new path can be decided by path’ = path + p.
When the number of tokens satisfies the conditions of enabling rule, the corresponding
transitions or TABPs are enabled. Only if the corresponding objects are enabled and the
relative time is in the time interval, can the objects be fired. The relative firing time may
be stochastic, but it is after EFT and before LFT. In TOPN, the firing procedures are
considered to be instantaneous and their execution delay can be considered in the time
interval of execution conditions.

4. Reachability analysis
4.1 Analysis algorithm
The purpose of TOPN is to aid in modeling and analysis of complex time critical systems.
From the point of TOPN definition, TOPN can describe the temporal constraints in time
critical systems. Then the model analysis method especially reachability analysis, need to be
discussed. In order to analyze TPN (Yao, 1994) models, Yao has presented extended state
graph (ESG) to analyze TPN models. On the base of ESG, an extended TOPN state graph has
been presented in this section, into which temporal reasoning has also been introduced.
In a TOPN model, an extended state representation “ES” is 3-tuple, where ES=(M, I, path)
consisting of a marking M, a firing interval vector I and an execution path. According to the
initial marking M0 and the firing rules mentioned above, the following marking at any time
can be calculated. The vector--“I” is composed of the temporal intervals of enabled
transitions and TABPs, which are to be fired in the following state. The dimension of I
equals to the number of enabled transitions and TABPs at the current state. The firing
interval of every enabled transition or TABP can be got according to the formula of I’.
Definition 12: A TOPN extended state graph (TESG) is a directed graph. In TESG, nodes
represent TOPN model states. In TESG, there is an initial node, which represents the TOPN
model initial state. Arcs denote the events, which make model state change. There are two
kinds of arcs from one state ES to another one ES’ in TESG.
1. The state change from ES to ES’ stems from the firing of the transition ti.

Correspondingly, there is a directed arc from ES to ES’, which is marked by ti.
2. If the internal behavior of the TABP—“pi” makes the TOPN model state change from ES

to ES’, then in TESG there is also a directed arc from ES to ES’. It is marked by pi.
On the base of Petri net analysis method (PN and TPN) and the definition of TESG, the
TESG of one TOPN model can be constructed by the following step:
 Step 1) Use the initial state ES1 as the beginning node of TESG, where ES1=(M0,
 [0,0],).

Step 2) Mark the initial state “New”.

Petri Net: Theory and Applications 264

Step 3) While (there exist nodes marked with “new”) do
 Step 3.1) Choose a state marked with “new”.
 Step 3.2) According to the enabling rule, find the enabled TOPN objects at the
current state and mark them “enabled”.
 Step 3.3) While (there exist objects marked with “enabled”) do
 Step 3.3.1) Choose an object marked with “enabled”.
 Step 3.3.2) Fire this object and get the new state ES2.
 Step 3.3.3) Mark the fired object “fired” and mark the new state ES2 “new”.
 Step 3.3.4) Draw a directed arc from the current state ES1 to the new state ES2 and
mark the arc with the name of the fired object and relative firing temporal
constraint.
 // The internal “while” cycle ends.
 Step 3.4) Mark the state ES1 with “old”.
 // The external “while” cycle ends.

TESG describes state changes in TOPN models. In TESG, not only state changing sequence,

but also dynamic temporal constraints and execution paths related to state changes have all

been described in TESG. TESG constructing procedure is also a TOPN model reachability

analysis procedure. So if the TESG of one TOPN model has been depicted, the

corresponding reachability has also been analyzed.

Similar to the state analysis in TPN, when the TESG of one TOPN model has been

completed, the TPN consistency determination theorem can be used to judge the consistency

of TOPN models. So the consistency of time critical system can be checked. The theorem can

be referenced to Yao’s paper (Yao, 1994).

4.2 A modeling and analysis example

Fig. 3. The TOPN Model

Var +CT = boolean; /* Transferring Tag */
/*CT is set to “T” in the transition--
“DataFusion” */
Var +Time=Integer; /* Current Relative
Time*/
TT C = with hollow | solid;
TCOT (ComTransf)={

Fun(CT= =F � (a Time b)):
 ComTransf () � CT=F � Mark(p1,C);
};

/* Mark(P,C): Mark the place P with C */
TABT (StateCol)={

Fun(CT= = F � (a Time b)):
 OwnStateCol()� M(p5,C);

 };
/* M(P,C): Mark the place P with C */
Mark(Place,C)={
 Fun(Place is a TABP � (p Time p)):
 OIP(Place) � M(Place,C);
 Fun(Place is not in N.TABP): M(Place,C);
};/*mark different places*/

 t1 [0,0]

 p2

 t2 [a,b] t5

 p3 [0,0]

 t3 [a,b]

 p4

 t4 [a,b]

P1

Timed Hierarchical Object-Oriented Petri Net 265

t4: =[0,50]

t5: =[0,50]

t3: =[0,50]

t1: =[0,0]

t2: =[0,50]

M1:P1
l1:t1[0,0]
path1

M2:P2
l2:t2[0,50]
Path2:p1

M3:P3
l3:t3[0,50]
Path3:p1,p2

M4:P4
l4:t4[0,50], t5[0,50]
Path4:p1,p2,p3

M5:P1
l5:[0,0]
Path5:p1,p2,p3,p4

Fig. 4. The TESG of the Decision Model

In distributed cooperative multiple robot systems (CMRS), every robot makes control and
schedule decisions according to different system information such as other robot states, its
own states and task assignment. The decision making procedure can be divided into 3 main
phases. In the first phase, the decision making module collects the above information. For
the information mentioned above, every kind of information may include different detailed
information. For example, velocity, movement direction and location need to be considered
in its and other robot’s states. The task to be completed in the future is considered in the task
assignment. As the information may not be available from all sensors or sources at the same
time moment, the temporal constraint about the information collection is needed. This
collection procedure should be completed in 50 unit time. In the second phase, information
fusion based method is used to make control and schedule decisions of every robot. To
complete the information fusion aim, every kind of information is required simultaneously.
It may last for about 50 unit time. Finally, the decision results are transformed to other
system modules. The transferring procedure will last for about 50 unit times. In this control
procedure, the decision conditions and temporal constraints need to be considered
simultaneously, so TOPN is chosen to model this decision making module. Fig.3 has shown
the TOPN model of CMRS decision model and its data dictionary respectively. Then Fig.4
has given the state analysis by means of TESG. From the TESG, the design logical errors can
be excluded. According to the Yao’s consistency judging theorem and the TESG, the TOPN
model in Fig.3 is consistent.

5. Fuzzy timed object-oriented Petri net
Although Petri nets can be used to model and analyze different systems, they fail to model
the timing effects in dynamic systems. Fuzzy timed Petri net (FTPN) (Pedrycz & Camargo,
2003) has been presented and it has solved this modeling problem, which is on the base of
temporal fuzzy sets and Petri nets. However, similar to the general Petri Nets, FTPN may
also meet with the complexity problem, when it is used to model complex dynamic systems.
In this section, fuzzy timed object-oriented Petri net (FTOPN) is proposed on the base of

Petri Net: Theory and Applications 266

TOPN and FTPN, whose aim is to solve the timing effects and other modeling problems of
dynamic systems.

5.1 Basic Concept
Similar to FTPN (Pedrycz & Camargo, 2003), fuzzy set concepts are introduced into TOPN
(Xu & Jia, 2005-2) (Xu & Jia, 2006). Then FTOPN is proposed, which can describe fuzzy
timing effect in dynamic systems.
Definition 13: FTOPN is a six-tuple, FTOPN= (OIP, ION, DD, SI, R, I) where
1. Suppose OIP=(oip, pid, M0, status), where oip, pid, M0 and status are the same as those

in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

oip is a variable for the unique name of a FTOPN.

pid is a unique process identifier to distinguish multiple instances of a class,
which contains return address.

M0 is the function that gives initial token distributions of this specific value to
OIP.

status is a flag variable to specify the state of OIP.
2. ION is the internal net structure of FTOPN to be defined in the following. It is a variant

CPN that describes the changes in the values of attributes and the behaviors of methods
in FTOPN.

3. DD formally defines the variables, token types and functions (methods) just like those
in HOONet (Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

4. SI is a static time interval binding function, SI: {OIP} Q*, where Q* is a set of time
intervals.

5. R: {OIP} r, where r is a specific threshold.
6. I is a function of the time v. It evaluates the resulting degree of the abstract object firing.
Definition 13: An internal object net structure of TOPN, ION = (P,T,A,K,N,G,E,F,M0)
1. P and T are finite sets of places and transitions with time restricting conditions attached

respectively.

2. A is a finite set of arcs such that P T=P A=T A= .

3. K is a function mapping from P to a set of token types declared in DD.

4. N, G, and E mean the functions of nodes, guards and arc expressions, respectively. The

results of these functions are the additional conditions to restrict the firing of

transitions. So they are also called additional restricting conditions.

5. F is a special arc from any transitions to OIP, and notated as a body frame of ION.

6. M0 is a function giving an initial marking to any place the same as those in HOONet

(Hong & Bae, 2000) and TOPN (Xu & Jia, 2006).

Definition 14: A set of places in TOPN is defined as P=PIP TABP, where

1. Primary place PIP is a three-tuple: PIP =(P,R,I), where

P is the set of common places similar to those in PN (Murata, 1989) (Peterson,

1991).

2. Timed abstract place (TABP) is a six-tuple: TABP= TABP(pn, refine state, action, SI, R, I),
where

pn is the identifier of the abstract timed place.

Timed Hierarchical Object-Oriented Petri Net 267

refine state is a flag variable denoting whether this abstract place has been
refined or not.

action is the static reaction imitating the internal behavior of this abstract
place.

3. SI, R and I are the same as those in Definition 1.

Definition 15: A set of transitions in TOPN can be defined as T= TPIT TABT TCOT, where

1. Timed primitive transition TPIT = TPIT (BAT, SI), where

BAT is the set of common transitions.
2. Timed abstract transition TABT= TABT (tn, refine state, action, SI), where

tn is the name of this TABT.
3. Timed communication transition TCOT=TCOT (tn, target, comm type, action, SI).

tn is the name of TCOT.

target is a flag variable denoting whether the behavior of this TCOT has been
modeled or not. If target = ”Yes”, it has been modeled. Otherwise, if target =
”No”, it has not been modeled yet.

comm type is a flag variable denoting the communication type. If comm type
=”SYNC”, then the communication transition is a synchronous one.
Otherwise, if comm type=”ASYN”, it is an asynchronous communication
transition.

4. SI is the same as that in Definition 1.
5. refine state and action are the same as those in Definition 3.
Similar to those in FTPN (Pedrycz & Camargo, 2003), the object t fires if the foregoing

objects come with a nonzero marking of the tokens; the level of firing is inherently

continuous. The level of firing (z(v)) assuming values in the unit interval is governed by the

following expression:

)()))((()(
1

vtswvxrTvz iii

n

i
 (1)

where T (or t) denotes a t-norm while “s” stands for any s-norm. “v” is the time instant

immediately following v’. More specifically, xi(v) denotes a level of marking of the ith place.

The weight wi is used to quantify an input coming from the ith place. The threshold ri

expresses an extent to which the corresponding place’s marking contributes to the firing of

the transition. The implication operator () expresses a requirement that a transition fires if

the level of tokens exceeds a specific threshold (quantified here by ri).

Once the transition has been fired, the input places involved in this firing modify their

markings that is governed by the expression

 xi(v)=xi(v’)t(1-z(v)) (2)

(Note that the reduction in the level of marking depends upon the intensity of the firing of

the corresponding transition, z(v).) Owing to the t-norm being used in the above expression,

the marking of the input place gets lowered. The output place increases its level of tokens

following the expression:

 y(v)=y(v’)sz(v) (3)

Petri Net: Theory and Applications 268

The s-norm is used to aggregate the level of firing of the transition with the actual level of

tokens at this output place. This way of aggregation makes the marking of the output place

increase.

The FTOPN model directly generalizes the Boolean case of TOPN and OPN. In other words,

if xi(v) and wi assume values in {0, 1} then the rules governing the behavior of the net are the

same as those encountered in TOPN.

5.2 Learning in FTOPN
The parameters of FTOPN are always given beforehand. In general, however, these

parameters may not be available and need to be estimated just like those in FTPN(Pedrycz &

Camargo, 2003). The estimation is conducted on the base of some experimental data

concerning marking of input and output places. The marking of the places is provided as a

discrete time series. More specifically we consider that the marking of the output place(s) is

treated as a collection of target values to be followed during the training process. As a

matter of fact, the learning is carried in a supervised mode returning to these target data.

The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time

decay factors i are optimized (or trained) so that a given performance index Q becomes

minimized. The training data set consists of (a) initial marking of the input places

xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a

sequence of discrete time moments, that is target(0), target(1),…, target(K).

In our FTOPN, the performance index Q under discussion assumes the form of the

following sum:

 Q=
K

k
kykett

1

2))()(arg((4)

where the summation is taken over all time instants (k =1, 2,… , K).
The crux of the training in FTOPN models follows the general update formula being applied

to the parameters:

 param(iter+1)=param(iter)- paramQ (5)

where is a learning rate and paramQ denotes a gradient of the performance index taken

with respect to all parameters of the net (here we use a notation param to embrace all

parameters in FTOPN to be trained).

In the training of FTOPN models, marking of the input places is updated according to the

following form:

)()0(~ kTxx iii (6)

where Ti(k) is the temporal decay. And Ti(k) complies with the following form. In what

follows, the temporal decay is modeled by an exponential function,

others
kkifkk

kT iii
i 0

,))(exp(
)((7)

Timed Hierarchical Object-Oriented Petri Net 269

The level of firing of the place can be computed as the following:

)))(((~

1 iii

n

i
swxrTz (8)

The successive level of tokens at the output places and input places can be calculated as:

 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (9)

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The

derivatives of the weights wi are computed as follows:

))()()(arg(2))()(arg(2

ii w
kykykettkykett

w
 (10)

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

5.3 A modeling example
In cooperative multiple robot systems (CMRS), every robot is controlled according to

different system information such as other robot states, its own states and task assignment.

As the information may not be available from all sensors or sources at the same time

moment, the one that occurs earlier needs to be discounted over time as becoming less

relevant. That is to say, information timing effects exist in this kind of dynamic systems.

However, in the control of every robot system, every kind of information is required

simultaneously. As the information readings could come at different time instants and be

collected at different sampling frequency, we encounter an inevitable timing effect of

information collected by the system and sensors. It becomes apparent that its relevance is

the highest at the time moment when the system sensor captures it but then its relevance has

to be discounted over the passage of time. This is an effect of aging that has to be viewed as

an integral part of the model. So FTOPN is used to model our CMRS. At the same time,

FTOPN can reduce the model complexity and can model complex decision making

processes in different levels, because of the OO abstraction concept supported in FTOPN. It

triggers interest in the class of the FTOPN.

5.3.1 CMRS example
In our experiment, there are two cooperative robots. FTOPN is used to model the

information fusion process in the decision making of scheduling robot in every robot.

Because the model is hierarchical, only the highest level of the model is depicted in Fig.5.

In the model of Fig.5, 3 place objects are used to represent 3 kinds of information to be

fused. Each kind of information may include different detailed contents. For example,

“other robot state” may include other robots’ working state, location, speed, movement

direction, etc al. So every kind of information is also an abstract object. On the other hand,

the relative firing temporal interval is [a, b] of the object. The information should be

sampled and processed in this relative interval. So does command sending. If the relative

time exceeds it, the information should be sampled again and task should be reassigned. In

the model, one transaction object represents the information fusion process. The timing

Petri Net: Theory and Applications 270

effect on the fusion is depicted in Fig.6. The information “other robot state” and “own state”

complies with the rule in Fig.6 (1). The other information complies with Fig.6 (2). After the

fusion, a new command will be sent in this relative interval. The command to be sent is also

a place object, which includes robot schedule and control commands.

Info
Fusion

1
r1

1 r2 Command

Task Info

Own State

Other
Robot State

[a,b][a,b]

[a,b]

[a,b]

[a,b]

Fig. 5. The FTOPN Model

Fig. 6. The Relevance

What’s more, all the objects in Fig.5 can also be depicted in details by FTOPN. For example,

the object—“Other Robot State” in Fig.5 can also be modeled concretely with FTOPN. The

detailed model of the object is depicted in Fig.7. It is also an independent fuzzy reduction

process. According to the modeling and analysis requirements, the detailed model can be

unfolded directly in the model of Fig.5. At the same time, its training can be conducted

independently. It can also be reduced independently and the reduction results will be used

Timed Hierarchical Object-Oriented Petri Net 271

as the believing effect of the corresponding object in the higher level of the FTOPN model in

Fig.5.

After completing the FTOPN model, the learning algorithm of FTOPN can be used to train

the model and adjust it to fulfill the practical requirements.

Fig. 7. The Object-“Other Robot State” Model

5.3.2 Application analysis
From the view of the former FTOPN modeling example, objects in FTOPN model can be

abstracted. They can be modeled and represented in other levels independently. At the same

time, the training and fuzzy reduction can also be conducted independently. So for the

abstraction concepts supported, the model complexity has been reduced effectively because

of the abstraction concepts in FTOPN. And the fuzzy reduction procedures have been

simplified. Essentially, hierarchical modeling idea in FTOPN is to the control model size by

abstracting objects in FTOPN model. In nature, OO abstraction concepts are used to control

fuzzy knowledge granularity in FTOPN. Because OO concepts are supported in FTOPN, the

abstract objects can be unfolded or abstracted in FTOPN model flexibly. Our modeling focus

can also be paid upon the important parts.

A comparative analysis between FPN, PN and neural network is conducted in (Pedrycz,

1999). Table.1 summarizes the main features of the fuzzy timed Object-oriented Petri nets

and contrasts these with the structures with which the proposed constructs have a lot in

common, namely FPN and TFPN. It becomes apparent that FTOPN combine the advantages

of both FPN in terms of their learning abilities and the glass-style of processing (and

architectures) of Petri nets with the abstraction of OO concepts.

Petri Net: Theory and Applications 272

Characteristics
Object Petri

nets
Fuzzy Petri Nets

Fuzzy Timed Object
Oriented Petri nets

Learning Aspects

From non-
existent to

significantly
limited (the

same as those
of common
Petri nets).

Significant learning
abilities parametric
optimization of the

connections of the net.
Structural

optimization can be
exercised through a
variable number of

the transitions
utilized in the

network.

Significant learning
abilities as well as
FPN. Distributed

learning (training)
abilities are supported

in different
independent objects
on various system

model levels.

Knowledge
Representation

Aspects

Glass Box or
black box style

knowledge
representation
supporting as a

result of
abstracting a

given problem
(problem

specification)
onto the

structure of the
net in different

levels. Well-
defined

semantics of
places and
transitions

Transparent
knowledge

representation (glass
box processing style)

the problem (its
specification) is

mapped directly onto
the topology of the

fuzzy Petri net.
Additionally, fuzzy

sets deliver an
essential feature of

continuity required to
cope with continuous

phenomena
encountered in a vast

array of problems
(including

classification tasks)

Glass Box Style
(Transparent
Knowledge

Representation) and
Black Box Processing
are supported at the

same time. The
problem (its

specification) is
mapped directly onto

the topology of
FTOPN. Knowledge

representation
granularity

reconfiguration reacts
on the reduction of

model size and
complexity.

Table.1 Object Petri nets, Fuzzy Petri nets and Fuzzy Time Object-oriented Petri nets: a
comparative analysis

6. Fuzzy timed agent based Petri net
As a typical multi-agent system (MAS) in distributed artificial intelligence (Jennings et al.,

1998), when CMRS is modeled, some difficulties are met with. For modeling this kind of

MAS, object-oriented methodology has been tried and some typical agent objects have been

proposed, such as active object, etc (Guessoum & Briot, 1999). However, agent based object

models still can not depict its structure and dynamic aspects, such as cooperation, learning,

temporal constraints, etc(Jennings et al., 1998). This section proposes a high level PN called

fuzzy timed agent based Petri net (FTAPN) on the base of FTOPN (Xu & Jia, 2005-1)

Timed Hierarchical Object-Oriented Petri Net 273

6.1 Agent object and FTAPN
The active object concept (Guessoum & Briot, 1999) has been proposed to describe a set of

entities that cooperate and communicate through message passing. To facilitate

implementing active object systems, several frameworks have been proposed. ACTALK is

one of the typical examples. ACTALK is a framework for implementing and computing

various active object models into one object-oriented language realization. ACTALK

implements asynchronism, a basic principle of active object languages, by queuing the

received messages into a mailbox, thus dissociating message reception from interpretation.

In ACTALK, an active object is composed of three component classes: address, activity and

activeObject (Guessoum & Briot, 1999).

Fig. 8. The FTOPN Model of ACTALK

ACTALK model is the base of constructing active object models. However, active object model

is the base of constructing multi-agent system model or agent system model. So, as the

modeling basis, ACTALK has been extended to different kinds of high-level agent models.

Because of this, ACTALK is modeled in Fig.8 by FTOPN.

In Fig.8, OIP is the describer of the ACTALK model and also represents as the

communication address. One communication transition is used to represent as the behavior

of message reception. According to the communication requirements, it may be

synchronous or asynchronous. If the message has been received, it will be stored in the

corresponding mail box, which is one first in and first out queue. If the message has been

received, the next transition will be enabled immediately. So mail box is modeled as abstract

place object in FTAPN. If there are messages in the mail box, the following transition will be

enabled and fired. After the following responding activity completes, some active behavior
will be conducted according to the message.

Fig.8 has described the ACTALK model based on FTOPN on the macroscopical level. The

detailed definition or realization of the object “Activity” and “Behavior” can be defined by

FTOPN in its parent objects in the lower level. The FTOPN model of ACTALK can be used

as the basic agent object to model agent based systems. That is to say, if the agent based

model—ACTALK model is used in the usual FTOPN modeling procedure, FTOPN has been

Petri Net: Theory and Applications 274

extended to agent based modeling methodology. So it is called fuzzy timed agent based Petri net
(FTAPN).

6.2 Learning in FTAPN
The parameters of FTAPN are always given beforehand. In general, however, these

parameters may not be available and need to be estimated just like those in FTPN (Pedrycz

& Camargo, 2003). The estimation is conducted on the base of some experimental data

concerning marking of input and output places. The marking of the places is provided as a

discrete time series. More specifically we consider that the marking of the output place(s) is

treated as a collection of target values to be followed during the training process. As a

matter of fact, the learning is carried out in a supervised mode returning to these target
data.

The connections of the FTOPN (namely weights wi and thresholds ri) as well as the time

decay factors i are optimized (or trained) so that a given performance index Q becomes

minimized. The training data set consists of (a) initial marking of the input places

xi(0),…,xn(0) and (b) target values—markings of the output place that are given in a

sequence of discrete time moments, that is target(0), target(1),…, target(K).

In FTAPN, the performance index Q under discussion assumes the following form.

 Q=
K

k
kykett

1

2))()(arg((11)

where the summation is taken over all time instants (k =1, 2,… , K).
The crux of the training in FTOPN models follows the general update formula in the
following equation being applied to the parameters:

 param(iter+1)=param(iter)- paramQ (12)

where is a learning rate and paramQ denotes a gradient of the performance index taken
with respect to all parameters of the net (here we use a notation param to embrace all
parameters in FTOPN to be trained).
In the training of FTOPN models, marking of the input places is updated according to the
following equation:

)()0(~ kTxx iii
 (13)

where Ti(k) is the temporal decay. And Ti(k) complies with the form in the following
equation. In what follows, the temporal decay is modeled by an exponential function,

others
kkifkk

kT iii
i 0

,))(exp(
)((14)

The level of firing of the place can be computed as the following equation:

)))(((~

1 iii

n

i
swxrTz (15)

The successive level of tokens at the output place and input places can be calculated as that
in the following equation:

Timed Hierarchical Object-Oriented Petri Net 275

 y(k) = y(k-1)sz, xi(k) = xi(k-1)t(1-z) (16)

We assume that the initial marking of the output place y(0) is equal to zero, y(0)=0. The
derivatives of the weights wi are computed as the form in the following equation:

))()()(arg(2))()(arg(2

ii w
kykykettkykett

w
 (17)

where i=1,2,…, n. Note that y(k+1)=y(k)sz(k).

6.3 A Modeling example
In manufacturing integrated circuits, usually there is a Brooks Marathon Express (MX)
CMRS platform made up of two transferring robots. These two cooperative robots are up to
complete transferring one unprocessed wafer from the input lock to the chamber and fetch
the processed wafer to the output lock. Any robot can be used to complete the transferring
task at any time. If one robot is up to transfer one new wafer, the other will conduct the
other fetching task. They will not conflict with each other. Fig. 9 depicts this CMRS FTAPN
model, where two agent objects (ACTALK) is used to represent these two cooperative
robots.

(a) The Agent Based FTAPN Model (b) The Behavior Model in Every Agent

Fig. 9. The FTAPN Model

Fig. 10. The Relevance

Petri Net: Theory and Applications 276

Fig. 9 (a) has depicted the whole FTAPN model. The agent object—“ACTALK” is used to

represent every robot model. Different thresholds are used to represent the firing level of the

behavior conducted by the corresponding robot (agent). They also satisfy the unitary

requirements and change according to the fuzzy decision in the behavior of every agent in

Fig. 9 (b). In the model of Fig. 9 (b), three communication transition objects are used to

represent the behavior for getting different kinds of system states. These states include the

state of the other robot, its own goal and its current state, which can be required by the

conductions of the communication transitions tA1, tA2 and tA3. When one condition has been

got, the following place will be marked. In order to make control decisions (transition object

tA4) in time, all of these state parameters are required in the prescriptive time interval.

However, the parameters of the arrival times comply with the rule in Fig. 10 (a). The other

two kinds of information comply with that in Fig. 10 (b). After the decision, a new decision

command with the conduction probability will be sent in this relative interval and it also

affects which behavior will be conducted by updating the threshold in Fig. 10 (a).

6.4 Application aspects of FTAPN
Owing to the nature of the facet of temporal knowledge, fuzzy sets and object-oriented

concepts in this extension of PN, they become viable models in a wide range of engineering

problem augmenting the already existing high level Petri nets, cf. (Hong & Bae, 2000)

(Wang, 1998). Two main and commonly categories of models are worth elaborating here.

6.4.1 Models of multi-agent systems
The multi-agent paradigm and subsequently a variety of models are omnipresent in a

number of areas. In a nutshell, in spite of the existing variety of improved models, it still

lacks a powerful modeling method, which can bridge the gap between model and practical

implementations. Petri nets come with objects, temporal knowledge and fuzzy sets can use

active objects to model generic agents with situatedness, autonomy and flexible. This helps

us to use the object to reduce the complexity of MAS systems and the dynamic learning and

decision to support the autonomy of agents.

6.4.2 Models of complex real-time systems
In models of complex real-time systems as usually encountered in industrial practice, the

scale of the system module may be too complicated to be analyzed and the readings of

different system state or sensors may be available at different time. The former may lead to

the state explosion, while the latter needs adjustment of relevance of the information

gathered at different time scales. The object models with temporal information degradation

(aging) help to abstract complicated model and quantify the confidence of the inferred

results.

7. Conclusion
Firstly, a high-level Petri net called timed hierarchical object-oriented Petri net (TOPN) is

studied deeply in this chapter.

Timed Hierarchical Object-Oriented Petri Net 277

For modeling complex time critical systems and analyzing states, TOPN is proposed firstly.

The work is based on the following work: Hong’s hierarchical object-oriented Petri net

(HOONet) (Hong & Bae, 2000), Marlin’s timed Petri net (Merlin & Farber, 1976)) and Yao’s

extended state graph (Yao, 1994).With the introduction of temporal knowledge in TOPN, the
temporal constraints need to be considered in state analysis. A state analysis method—“TOPN
extended state graph (TESG)” for TOPN has also been presented in this chapter. Not only state
analysis, but also consistency can be analyzed by means of TESG. On the other hand, TOPN can

model complex time critical systems hierarchically. So analysis of properties and state

change becomes much easier. A decision making example modeled by TOPN has been used

to illustrate the usefulness of TOPN.

In the future research of TOPN, temporal reasoning and TOPN reduction rules will be

studied, which can be used to refine and abstract TOPN models with preserving timing

property.

Secondly, fuzzy timed object-oriented Petri net (FTOPN) is presented on the base of TOPN.
Timing effect is also a usual phenomenon in dynamic systems especially in time critical

systems. In order to model, analyze and simulate this kind of systems, this paper proposes

fuzzy timed object-oriented Petri net (FTOPN) on the base of TOPN (Xu & Jia, 2006) and

FTPN (Pedrycz & Camargo, 2003). Temporal fuzzy sets are used in FTOPN to describe the

timing effect and evaluation levels can be got according to the information arriving time and

specific fuzzy relevance function. What’s more, compared with FTPN (or FPN) models, the

model size and reduction complexity of FTOPN models can be reduced by controlling object

granularity because of supporting OO concept in FTOPN. Every abstract object in FTOPN

can be trained and reduced independently according to the modeling and analysis

requirements for OO concepts supported in FTOPN. The validity of this modeling method

has been demonstrated by using it in the simulation of the decision information fusion

process in our CMRS.

State analysis which can analyze the FTOPN and FTAPN models, needs to be studied in the

future research. With the temporal fuzzy sets introduced into TOPN, the certainty factor

about object firing (state changing) needs to be considered in the state analysis.

Finally, agent concepts are introduced into FTOPN and fuzzy timed agent based Petri net

(FTAPN) is proposed in this chapter.

Cooperative multi robot system is a kind of usual manufacturing equipments in

manufacturing industries. In order to model, analyze and simulate this kind of systems, this

paper proposes fuzzy timed agent based Petri net (FTAPN) on the base of FTOPN (Xu & Jia,

2005-1) and FTPN (Pedrycz & Camargo, 2003). In FTAPN, one of the active objects—

ACTALK is introduced and used as the basic agent object to model CMRS, which is a typical

multi-agent system. Every abstract object in FTOPN can be trained and reduced

independently according to the modeling and analysis requirements for OO concepts

supported in FTOPN. The validity of this modeling method has been used to model Brooks

CMRS platform in manufacturing IC. The FTAPN can not only model complex MAS, but

also be refined into the object-oriented implementation easily. It has provided a

methodology to overcome the development problems in agent-oriented software

engineering. At the same time, it can also be regarded as a conceptual and practical artificial

Petri Net: Theory and Applications 278

intelligence (AI) tool for integrating MAS into the mainstream practice of software

development.

State analysis needs to be studied in the future. An extended State Graph (Xu & Jia, 2006)

has been proposed to analyze the state change of TOPN models. With the temporal fuzzy

sets introduced into FTAPN, the certainty factor about object firing (state changing) needs to

be considered in the state analysis.

8. Acknowledgement
This work is jointly supported by the National Nature Science Foundation (Grant No:

60405011, 60575057) and the China Postdoctoral Foundation for China Postdoctoral Science

Fund (Grant No: 20040350078) in China.

9. References
Bastide, R.(1995). Approaches in unifying Petri nets and the object-oriented approach,

Proceedings of the 1st International Workshop on Object-oriented

Programming and Models of Concurrency,

http://wrcm.dsi.unimi.it/PetriLab/ws95/home.html, Turin, Italy, June, 1995

Battiston, E., Cindio, F.D., Mauri, G.(1988). OBJSA Nets: a class of high-level nets having
objects as domains, Proceedings of APN’88, Lecture Notes in Computer Science,

Vol.340, pp.20-43

Biberstein, O., Buchs, D.(1994). An object-oriented specification language based on
hierarchical algebraic Petri nets, Proceedings of the IS-CORE Workshop,

Amsterdam, Holland, September 1994

Bucci, G., Vivario, E.(1995). Compositional validation of time-critical systems using
communicating time Petri nets, IEEE Transactions on Software Engineering,

Vol.21, No.12, pp.969-992

Florin, G., Fraize, C., Natkin, S.(1991). Stochastic Petri nets: Properties, applications and
tools, Microelectron. Reliab., Vol. 31, No. 4, pp. 669–697

Guessoum, Z., Briot, J.P.(1999). From active objects to autonomous agents, IEEE

Concurrency, Vol.7, No.3, pp. 68 – 76

Harel, D., Gery, E.(1996). Executable object modeling with statechart, Proceedings of the

18th International Conference on Software Engineering, Germany, March 1996,

pp. 246±257.
Hong, J.E., Bae, D.H.(2000). Software Modeling And Analysis Using a Hierarchical Object-

oriented Petri net, Information Sciences, Vol.130, pp.133-164

Jennings, N.R., Sycara, K., Wooldridge, M.(1998). A Roadmap of Agent Research and
Development, Autonomous Agents and Multi-Agent Systems, Vol.1, pp.7–38

Jensen, K.(1992). Coloured Petri Nets: Basic Concepts, Analysis methods and Practical Use,
Springer, ISBN : 3-540-60943-1, Berlin, German

Lakos, C., Keen, C.(1994). LOOPN++: a new language for object-oriented Perti nets,
Technical Report R94-4, Networking Research Group, Univesity of Tasmania,

Australia, April 1994

Timed Hierarchical Object-Oriented Petri Net 279

Merlin, P., Farber, D.(1976). Recoverability of communication protocols—Implication of a
theoretical study IEEE Transactions on Communications, Vol.COM-24, pp.1036-

1043

Moody, J.O., Antsaklis, P.J. (1998). Supervisory Control of Discrete Event Systems Using
Petri Nets, Kluwer Academic Publishers, ISBN-10: 0792381998, MA, USA

Murata, T.(1989). Petri Nets: Properties, Analysis and Applications. Proceedings of IEEE,
Vol.77, No.4, (April 1989) pp.541-580

Pedrycz, W.(1999). Generalized fuzzy Petri nets as pattern classifiers, Pattern Recognition

Letters, Vol.20 pp.1489-1498

Pedrycz, W., Camargo, H.(2003). Fuzzy timed Petri nets, Fuzzy Sets and Systems, Vol.140,

No. 2, pp. 301-330

Peterson, J.L.(1991). Petri Net Theory and the Modeling of Systems, Prentice-Hall, ISBN:0-

13-661983-5, N.J., USA

Ramchandani, C.(1974). Analysis of Asynchronous Concurrent Systems by Timed Petri nets,

Massachusetts Institute of Technology, Project MAC, Technology Report 120,

1974

Schuman, S.A.(1997). Formal Object-oriented Development, Springer, ISBN-10: 3540199780,

Berlin, German.

Sloan, R., Buy, U.(1996). Reduction Rules for Time Petri Nets, Acta Inform, Vol.33, pp.687-

706

Tsai, J., Yang, S., Chang, Y.(1995). Timing constraint Petri nets and their application to
schedulability analysis of real-time system specifications, IEEE Transactions On

Software Engineering, Vol.21, No.1, pp.32-49

Wang, J.(1998). Timed Petri Nets—Theory and Application, Kluwer Academic Publishers,

ISBN : 0-7923-8270-6, Boston , USA

Wang, J. ; Deng, Y., Zhou, M.(2000). Compositional time Petri nets and reduction rules, IEEE

Transactions on Systems, Man and Cybernetics (Part B), Vol. 30, No.4, (Aug.

2000) pp. 562 -572

Xu, H., Jia, P.F.(2005-1). Fuzzy Timed Object-Oriented Petri Net, Artificial Intelligence

Applications and Innovations (Proceedings of AIAI2005), Springer, pp.148-160,

N.Y., USA

Xu, H., Jia, P.F.(2005-2). Timed Hierarchical Object-oriented Petri Net, GESTS International

Transaction on Computer Science and Engineering, Vol.24, No.1, pp.65-76

Xu, H., Jia, P.F.(2006). Timed Hierarchical Object-Oriented Petri Net-Part I: Basic Concepts
and Reachability Analysis, Lecture Notes In Artificial Intelligence (Proceedings of

RSKT2006), Vol. 4062, pp.727-734

Xu, H., Jia, P.F.(2007). A Novel Modeling Method for Cooperative Multi-Robot Systems Using
Fuzzy Timed Agent Based Petri Nets, LNCS (Proceedings of ICCS2007), Vol.4488,

pp.956-959

Yao, Y.L.(1994). A Petri Net Model for Temporal Knowledge Representation and Reasoning,
IEEE Transactions On Systems, Man and Cybernetics, Vol.24, pp.1374-1382

Petri Net: Theory and Applications 280

Zhou, M.C.(1995). Petri Nets in Flexible and Agile Automation, Kluwer Academic

Publishers, ISBN : 0792395573 , MA, USA

13

Scheduling Analysis of FMS
Using the Unfolding Time Petri Nets

Jong kun Lee1 and Ouajdi Korbaa2

Changwon National University1, Changwon
Ecole Centrale de Lille2, Lille

Korea1

France2

1. Introduction
FMS (flexible manufacturing system) is composed of a set of versatile machines, zig and
fixture, and automatic transport system for moving parts between each job. In FMS, one of
the important subjects is to formulate the general cyclic state-scheduling problem to
minimize the WIP in order to satisfy economical constraints. Various methods have been
proposed by researchers (Zuberek, 1987; Korbaa, 1997; Richard, 1998; Murata,1989;
Kondratyev, 1996; Hwang, 1997; Liu, 1999; Lee, 2004)) to solve this problem. Hillion
(Hillion, 1987) proposed a heuristic algorithm based on the computation of the degree of
feasibility after giving a Petri net (PN) model of the system. Also, Valentin (Valentin, 1994)
improved this algorithm by using Timed hybrid Petri nets and by introducing available
intervals concept. The problem was that this algorithm could not guarantee the feasibility of
the solution in one run. Korbaa (Korbaa, 1997) developed an algorithm to find near-optimal
solution using the regrouping algorithm. Korbaa tried to get near-optimal solution and to
minimize the WIP. For getting an optimal solution long computational time has been
required. This means that all these methods have the problem of complexity and
computational time. To simplify the calculation process in the scheduling problem and to
make shorter computational time for getting many feasible solutions, we consider unfolding
Petri nets to analyze the sequence process and to explain the reduced process. We call
“unfolding” a PN unfolding, which has the reachability properties of the original net.
Structural analysis on “unfolding” is much easier than on the initial model. The advantage
of unfolding is that the state space explosion can be avoided since it is based on partial order
semantics. To reduce the processing time, we consider an algorithm to select an
environment of a shared resource, which has priority over the other ones, using the
transitive matrix. In our case, the system has been analyzed to get the best possible solutions
based on this environment of shared resource. The model has been divided into slices and
create PN slice using this concept. The properties of a PN can be classified into categories:
behavioral and structural properties. The behavioral properties are investigated in
association with the marking of PN, e.g., reachability, boundness and liveness (Liu, 1999).
Both transition and place invariants belong to structural properties in PN. If the behavioral

Petri Net: Theory and Applications 282

properties used by the transitive matrix are exhibited, it could be easier to analyze the
system after slicing off some subnets.
This paper is organized as follows: some definitions of Time Petri Nets(TPN) and unfolding
are given in Section 2, and time Petri net slice is presented in Section 3, The scheduling
objectives and outline the problems arising during the transformation of the initial model
into an unfolding TPN are described in Section 4. In section 5, we introduce an illustration
model for FMS, and specially emphasize the different ways of obtaining a closed loop
model. In section 6, we are showing the benchmarking resultants after analyze using the
performance evaluation factors. A conclusion and some perspectives will end this paper.

2. Basic notions of time Petri nets and slices
In this section certain terms that are often used in this paper are defined (Best,1990; Carlier,
1988; Camus, 1997; Esparza, 1996; Julia, 1995; Lee, 1995; Lee, 2004; Lee, 2006; Liu,1999;
Murata, 19875; Taubin, 1997).

Let N=<P, T, I, O, Mo, >be a Time Petri Nets, where P is the set of places (m elements), T is

the set of transitions (n elements), and P T = , I: T->P is the input function, O: T->P is

the output function. N},P:M|{M=MM o Mo is an initial marking, N is the set of

positive integers. : T N is a time function which associate to each transition of T a
deterministic rational.

A transition t T is enabled at a marking M’ = M – t + t , where t represents the incoming

weights of the fired transition and t the outgoing weights of the fired transition.
We denote by M (t>M’. The set of reachable marking of N is the smallest set (Mo>

containing Mo and such that if M (Mo> and M (t>M’ (for some t T) then M’ (t>Mo. A

Time Petri Nets N is safe if for every reachable marking M, M(P) {0,1}; and bounded if

there is k N such that M(P) {0,…,k}, for every reachable marking M. The set of successors

of a node x P T is x ={y P T;(x,y) F: I O}, and the set of its predecessors is x={y P

T; (y,x) F: I O}.

A Time Petri nets NS=<PS,TS,FS,MS, S>,where PS P, TS T, FS F ,MS (Mo> and S then
we can say that NS is sub-net of N.
The number of occurrences of an input place Pi in a transition tj is given by #(Pi,I(tj)), and the
number of occurrences of an output place Pi in a transition tj is given by #(Pi,O(tj)).
The matrix of the PN structure, S is S=<P,T,C-,C+>, where P,T are the finite set of places and
transitions, respectively. C- and C+ are matrices of m rows (one for each place) by n columns
(one for each transition) defined by:

C- =[I,j] = #(Pi,I(tj)), matrix of input function,

C+ =[I,j] = #(Pi,O(tj)), matrix of output function.

And the incidence matrix C is given by C=C+-C-.

3. Invariant and transitive matrix
3.1 Invariant
For completeness, we recall the terminologies which were used in (Lee, 2001; Lee,2004;
Lee,2006; Liu,1999).

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 283

(Def. 3.1): Invariant

A row vector X = (x1,x2,…,xn) 0 is called a P-invariant if and only if X •C = 0, where x 0 and
•denotes the vector product.

A column-vector Y=(y1,y2,…,yn)T 0 is called a T-invariant, if and only if C •Y = 0, where Y
is an integer solution of the homogeneous matrix equation and Y 0.
(Def.3.2): Place transitive and Transition matrix
The place transitive and transition matrix are defined, respectively as follows:

CP = C-(C+)T

CT = (C+)T C-

(Example):

t1 p1
t2

p2

p3
t1 p1

t2

p2

p3

001
001
110

110
001

01
01
10

CP

 Fig. 1. A Petri net

This matrix allows representing the relation between places in terms of output and input.
For previous example, we can find that p2 and p3 receive a token after p1 and that p1
receives one token from p2 and another from p3 (Fig.1).
(Def. 3.3): Labeled place transitive matrix

 Let CPL be the labeled place transitive matrix:

T
n21CP))(Ct,...,t,diag(tCL

The elements of CPL describe the direct transferring relation that is from one place to

another one through one or more transitions.

 (Def. 3.4): Let CPL be the m m place transitive matrix. If a transition kt appears s times in

the same column of CPL , then we replace kt in CPL by stk / in CP
*L .

Through introducing the m m place transitive matrix, we can evaluate the transition
enabling firing, and calculate the Quantity and the Sequence of Transition enabling Firing.

Petri Net: Theory and Applications 284

(Def.3.5): Let a reachable marking)1(KM R from)(kM be an m-vector of

nonnegative integer. The transformation is defined by:

CP
*TT

R LM(k)1)(kM

Fig. 2. Illustrative example

(Example):

This example net explained like that
TkPkPkPkM)](),(),([)(321 , then we can obtain

(Fig. 2):

000
t00
t00

2

1

BPL

 and
T

R kPtkPtM))](())((,0,0[2211 .

3.2 Algorithm and properties
A basic Unit of Concurrency (BUC) is a subnet corresponding to a resource. It contains the

incoming transitions of the resource and also the outgoing transitions. We chose the BUC

based on the place transitive matrix; in this paragraph we propose an algorithm to

determine the BUC.

Algorithm: BUC construction algorithm

Input: N = <P, T, I,O, Mo, >

Output: BUC of N, NS=<PS, TS, IS, OS,MoS, s>

Define CPL and consider one shared resource (machine)

p1

p2

p3

t1

t2

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 285

1. Find the all-relational places, of the shared resource, in each column and row CPL and

make an element of own BUC with this initial marking place.
2. Find the relational place of selected place in (1).
3. Link all selected places and transitions with existing arcs on the initial Petri net.
The method of partitioning the model divides the system into BUC. The obtained BUC is

defined as follows:

 (Def.3.6): BUC

In Time Petri net N= <P, T, I,O, Mo, >, when the places set is divided by the previous

algorithm, the BUCs are defined by (BUCi | i=1,…,n), and each BUCi = (Pi,Ti,Fi,Mi, i,)

satisfies the following conditions.

Pi = P_BUCi,

Ti = {t T | s Pi, (s, t) F or (t, s) F},

Fi = {(p, t) F, (t, p) F | p Pi, t Ti},

 i , i (t) = (t) and p Mi, Mi (p) = M(p).

We can say that the flow of control in the Petri nets is based on the tokens flow. If the token

is divided into some tokens after firing a transition, the flow of control divides to several

flows. Accordingly, we define that the BUC is a set of the executed flow of control based on

the functional properties of the net. In the Time Petri net model, the behavioral condition of

transition t are all predecessors’ places (t), which are connected with transition t. Petri net

Slices are subnets based on BUC at the transition level, and a functional condition is defined

according to the following conditions.

When transition t is not shared : satisfy the precondition of transition t only.

When several slices share transition t: satisfy the preconditions in all BUC, which have
transition t.

(Theorem. 3.1) Let N be a Time Petri net and Ns be a set of Time Petri net slices that is

produced by the slice algorithm. If Ns satisfied the functional conditions, N and Ns are

behavioral equivalent (N Ns).

(Proof) (We prove this theorem based on the Ti tptp).

() Since the p is an element of Pi, ti Ti, such that p ti. And by the BUC definition, Pi =
P_BUCi, P_BUCi is a set of place which is obtained by the BUC algorithm, such that P_BUCi

 P. So, we say that if p ti is then p tT is true.
() Consider if p P and p P_BUCi then P P_BUCi. If p P, t T such that p t. And

tp
iTt

, in this case, we can say that i1iTt
Pt

i

 but by the definition of BUC, Pi is a

set of places which is obtained by the BUC algorithm, such that Pi P. So if p P and p
P_BUCi then P P_BUCi is not true.

4. Unfolding time Petri nets (UTPN)
Unfolding technique, originally proposed by McMillan(McMillian,1995), is a method used to
avoid the state explosion problem in the verification of concurrent systems modeled with
finite-state Petri nets. The technique is based on the concept of net unfolding; well-

Petri Net: Theory and Applications 286

unknown partial order semantics of Petri nets (Hwang, 1997; Kondratyev, 1996; Lee,2001;
McMillian,1995).

4.1 Occurrence Nets
An occurrence net is a net, which represents clearly causal relations between places,
especially transitions, of the original net. In this section, we briefly recall the main
definitions (Fig. 3 and 4).

Fig. 3. Cyclic Petri net

Fig. 4. Occurrence net of Fig. 3.

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 287

(Def.4.1) (OCN (Occurrence net)). An occurrence net is an acyclic Time Petri net

N=<P,T,F,Mo, > in which every place p P has at most one input transition (| p| 1, F (P

x T) (T x P)) is the flow relations.
An OCN algorithm is summarized as follows (Hwang, 1997; McMillian,1995):
Algorithm: (Occurrence net construction)

Input: N=<P,T,F,Mo, >

Output: the OCN of N, N’=<P’,T’,F’,Mo’, ’>.
1. Make a copy of the place in to the OCN and labeled as p’.
Repeats (2)-(6) until the transitions set becomes empty.

2. Choose a transition t T

3. For each place in t, find a copy in the OCN, and if not found then go back to (2).
Do not choose same subnet in OCN twice for a given t.
4. If any pair of chosen places is not concurrent, go to (1).
5. Make a copy of t in OCN and labeled as t’. Draw an arc from every places which was

chosen to t’.

6. For each place in t , make a copy in the OCN.
Also, we can see a relationship between OCN and cyclic nets as following definition.

(Def.4.2) Let N’ =<P’,T’,F’,Mo’, ’> be an OCN and N=<P,T,F,Mo, > be a cyclic net, and

labeling function L’:P ’P and T’ T then OCN satisfying follows conditions:

1. { s’ s’ T’,F’* (P’ x T’) (T’ x P’)}

2. p P’, p t1 and p t2 implies t1 =t2.

3. t1,t2,t3 T’,t1F’*t3 and t2F’*t3 and t1 t2 implies t1 =t2.

4. t1,t2 T’, L’(t1)=L’(t2) and t1= t2 implies t1 =t2.

4.2 Unfolding
Unfolding is used to verify the occurrence net after cut or truncate, based on local
configuration and basic marking (Kondratyev, 1996; McMillian,1995).

(Def.4.3)(Configuration). A set of transitions C’ T’ is a configuration in an OCN if:

1. for each t’ C’ the configuration C’ contains t’ together with all its predecessors;
2. C’ contains no transitions in mutual conflict.
(Def.4.4) Let C’ be a configuration of an occurrence net. A final marking of C’, denoted by
FM (C’), is a marking reachable from the initial marking after all transitions of C’ and only
those transitions are fired. A final marking of a local configuration of t’ is called a basic
marking of t’ and denoted BM (t’). The set of predecessor transitions of t’ of the C’ is called

the local configuration of t’ and is denoted as t’.
(Def.4.5) (Cut off). A transition ti’ of an occurrence net is a cut off transition, if there exists

another transition tj’ such that BM (ti’)=BM (tj’) and | ti’| | tj’|, where | ti’| is the

cardinality of { ti’}. An unfolding is the greatest backward closed subnet of an occurrence
net containing no nodes after cut-off transition.

(Def.4.6) An unfolding time Petri net UTPN=<P’,T’,F’,Mo, ’> is obtained from the

occurrence net by removing all the places and transitions, which succeed the cut-off (Fig. 5).

Petri Net: Theory and Applications 288

Fig. 5. Unfolding net of Fig. 3.

Let UTPN be a unfolding Time Petri net, Mo be the initial marking and FM be a final

marking, find a sequence x such that: BM (x>FM, and the reachability delay is minimal

(Richanrd,1998):

Tt
ixzMin

Subject to BM (x>FM where X=(xt) is the characteristic vector of the sequence x.

5. Modeling of UTPN
An important sub-class (sliced net) of Time Petri nets is a net in which has an independent

control flow and for which all weights associated to arcs are equal to one. In this works, we

select an independent control flow based on the machines operations. This Time Petri net

can perfectly model the command we want to implement. At the end of the optimization

approach we obtained a model where all the operating sequence are linear and the next step

is to compute the best schedule.

5.1 Computing the optimal schedule
The schedule of a sliced net can be easily computed by playing the token and firing

transition as soon as possible. We can compute firing dates of transitions by computing

potentials on the sliced net after unfolding. In the unfolding net UTPN, it has one function

for compute the makespan time, as f (UTPN). The function f (UTPN) is the necessary time to

go from the initial marking Mo to the object marking. f (UTPN) is composed of h(ti) and g(ti),

where h(ti) is an operating time of transition ti, and g(ti) is an operating time of the next

transition ti (we call it minimum waiting time to fire transition ti). Then, the schedule

duration can be computed by the following recurrent formula:

f(UTPN) = h(ti) + g(ti)
and

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 289

)}(t))(t{(Max(UTPN) j
j

1i inj1
ghf

The best schedule of the UTPN is obtained by minimizing the function f(UTPN). We can say

that if we find a minimized unfolding net, the schedule of marking is an optimized

schedule. So let UTPN be the makespan time of the optimized unfolding schedule. Then the

time can be computed using the unfolding net as follows:

Optimize UTPN = min (f(UTPNi))

To apply our method continuously, we consider some notations about degree of operation

time in the machine and minimized WIP. The deciding order is one of the important things

in the scheduling problem. We consider a throughput of the operation time in the machine,

based on the number of tokens (number of resource share), and the operating time of

machine.

Let d(mi) be the degree of operation time in the machine, then

)(

i
i

im
mm

)(
)(d

where, (mi) is total operation time of the machine i, and (mi) is number of token (resource

share transition) in machine i.

So, this degree of d(mi) is one parameter to choice the select an order to apply in Unfolding

net

In the linear cyclic scheduling problem, the minimization of the number of pallets is one of

the important factors.

(Def. 5.1) Let CT be an optimal cyclic time based on the machines work, then WIP lower

bound is:

CT

imeOperatingt
WIP i iedbyiOStobecarr

5.2 Dispatching rules
We consider a system with two machines such as M1, M2 and two jobs such as OP1 and

OP2 in (Camus, 1996). Let us assume that the production ratio corresponds to the

production of 50% of OP1, 50% of OP2(Fig. 6).

Now, we show the transitive matrix of the example as shown in Table 1. For simplicity

reason, we ignore two places w1, w2 and one transition tw. In this table, initial tokens exist

in M1 and M2. The cycle time of OP1 and Op2 are 11 and 9, and the working time of

machine M1 and M2 are both 10, respectively. So the cycle time CT is 10. The minimized

WIP is:

2
10

911WIP

Also, about the degree of the feasibility time of the machine, M1 and M2 have same priority,

Petri Net: Theory and Applications 290

3.3
3

10d(M2)

3.3
3

10)1M(d

These machines have same operating time (i.e. 10) for three operations showing that it is not
important to give the priority for first approach. So we select M1 to start with.

p1

t1

t2

t3

p2

p3

M1

M2

p5

p6

t4

t5

t6p1

t1

t2

t3

p2

p3

M1

M2

p5

p6

t4

t5

t6

Fig. 6. A two shared resources example

24t
22t
26t

0024t22t026t

0
25t
23t
21t

25t0021t23t

26t0000026t
025t25t0000
023t000023t

22t00022t00
24t21t024t021t0

/
/
/

///

/
/
/

///

//
//
//

//
////

CPL

Table 1. Transitive matrix of the illustration example

Now, we select row and column of p1, p3, p5, and M1 in (Table 1), and make one slice net
based on the selected places and transitions.
1. Slice BUC of M1 and its unfolding nets
Machine M1 involved two tasks (OP1and OP2) in three processes (t1, t3, t5)(Fig. 7 and 8).

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 291

p1

t1

t2

t3

p2

p3

M1

M2

p4

p5

t4

t5

t6p1

t1

t2

t3

p2

p3

M1

M2

p4

p5

t4

t5

t6

Fig. 7. The five BUCs of M1

M1’
p1

p3

p4

p1

p2

p5

M1
p4

p3

p1

p5

p2

M1’
p3

p4

p1

p6

p1

p2

(a) A1-A3-B2 (b)A3-B2-A1 (c)B2-A3-A1

p1

M1’
p1

p3

p4

p1

p2

p5

M1
p4

p3

p1

p5

p2

M1’
p3

p4

p1

p6

p1

p2

(a) A1-A3-B2 (b)A3-B2-A1 (c)B2-A3-A1

p1

Fig. 8. Example of the unfolding of M1

Petri Net: Theory and Applications 292

In this net, we can find the 6 processes of M1 are as follows (Fig. 9):
Suf1 = t1 t5t3 (15), Suf2 = t5t1t3 (15), Suf3 = t1t3t5 (12),
Suf4 = t3t1t5 (12), Suf5 = t3t5t1 (15), Suf6 = t5t3t1 (15),
where () is an operation time of Sufi.

temps

Suf1

Suf2

Suf3

Suf4

2010
temps

Suf5

Suf6

2010
temps

Suf1

Suf2

Suf3

Suf4

temps

Suf1

Suf2

Suf3

Suf4

2010
temps

Suf5

Suf6

2010

Fig. 9. Results of the permutations of BUC in M1

In M1, we can choose two schedules as transitions sequences: t3-t1-t5 and t1-t3-t5.
2. Modeling of M2 and its unfolding nets
Machine M2 involved two tasks (OP1 and OP2) in three processes (t2, t4 and t6) (Fig. 10,11).

p1

t1

t2

t3

p2

p3

M1

M2

p4

p5

t4

t5

t6
p1

t1

t2

t3

p2

p3

M1

M2

p4

p5

t4

t5

t6

Fig. 10. The BUC of M2

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 293

M2’
p1

p2

p5

p3

p4

p1

M2’
p5

p2

p4

p1

p1

M2’
p2

p1

p5
p4

p3

p1

(a) B1-A2-B3 (b)A2-B1-B3 (c)B3-A2-B1

p3

M2’
p1

p2

p5

p3

p4

p1

M2’
p5

p2

p4

p1

p1

M2’
p2

p1

p5
p4

p3

p1

(a) B1-A2-B3 (b)A2-B1-B3 (c)B3-A2-B1

p3

Fig. 11. Example of unfolding of M2

We can show the six processes like as follows (Fig. 12) :
 Suf1 = t2t4t6 (13), Suf2 = t2t6t4 (14), Suf3 = t4t6t2 (11),
 Suf4 = t4t2t6 (13), Suf5 = t6t4t2 (11), Suf6 = t6t2t4 (13).

temps

Suf1

Suf2

Suf3

Suf4

2010
temps

Suf5

Suf6

2010
temps

Suf1

Suf2

Suf3

Suf4

temps

Suf1

Suf2

Suf3

Suf4

2010
temps

Suf5

Suf6

2010

Fig. 12. Results of permutations of BUC in M2

Petri Net: Theory and Applications 294

In M2, we can find two solutions like as Suf3 and Suf5. Now, we apply the selected solutions
of BUC of M2: {Suf3 and Suf5} to obtain the solution BUC on M1: {Suf3 and Suf4}, then we
obtained two solutions. The optimal schedules of two cycles are in Fig. 13 and 14.

Bs1: A3A1B2 (M1) B3B1A2 (M2)

Bs2: A1A3B2 (M1) B3B1A2 (M2)

time
machines

opA1

opA2

opB3

W1

W2

W3

M1

M2

time

opB1

opA1

opB1opB3

W.I.P.

A

B

opA2

opB2

CT 10 t. u.
0 t+10

opA3

opB2

opA1

opA2

opB3 opB1 opB2

opA1

opB1opB3 opA2

opB2

opA3

CT 10 t. u.

t+20

opA3

opA3

time
machines

opA1

opA2

opB3

W1

W2

W3

M1

M2

time

opB1

opA1

opB1opB3

W.I.P.

A

B

opA2

opB2

CT 10 t. u.
0 t+10

opA3

opB2

opA1

opA2

opB3 opB1 opB2

opA1

opB1opB3 opA2

opB2

opA3

CT 10 t. u.

t+20

opA3

opA3

Fig. 13. Optimal schedule of Bs1

time
machines

opA1 opA2

opB3

W1

W2

W3

M1

M2

time

opB1

opA1

opB1opB3

W.I.P.

A

B

opA2

opB2

CT 10 t. u.
0 t+10

opA3

opB2

opA1 opA2

opB3 opB1 opB2

opA1

opB1opB3 opA2

opB2opA3

CT 10 t. u.

t+20

time
machines

opA1 opA2

opB3

W1

W2

W3

M1

M2

time

opB1

opA1

opB1opB3

W.I.P.

A

B

opA2

opB2

CT 10 t. u.
0 t+10

opA3

opB2

opA1 opA2

opB3 opB1 opB2

opA1

opB1opB3 opA2

opB2opA3

CT 10 t. u.

t+20

Fig.14. Optimal schedule of Bs2

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 295

temps
t + 10

p3

p4

p5

p6

cycle

p2

p1

M1
M2

p1

t1

t2

t3

p2

p3
M1 M2

p4

p5

p6

t4

t5

t6

temps
t + 10

p3

p4

p5

p6

cycle

p2

p1

M1
M2

temps
t + 10

p3

p4

p5

p6

cycle

p2

p1

M1
M2

p1

t1

t2

t3

p2

p3
M1 M2

p4

p5

p6

t4

t5

t6

p1

t1

t2

t3

p2

p3
M1 M2

p4

p5

p6

t4

t5

t6

(a) Linear schedule (b) The flow of marking of (a)
Fig. 15. Linear schedule of Bs1

temps
t + 10

p3

p4

p5

p6

cycle

p2

p1

M1
M2

p1

t1

t2

t3

p2

p3

M1

M2

p4

p5

p6

t4

t5

t6

temps
t + 10

p3

p4

p5

p6

cycle

p2

p1

M1
M2

p1

t1

t2

t3

p2

p3

M1

M2

p4

p5

p6

t4

t5

t6

 (a) Linear schedule (b) The flow of marking of (a)
Fig. 16. Linear schedule of Bs2

Petri Net: Theory and Applications 296

Finally, we get three pallets rather than two, which is lower bound WIP. Indeed in this
model, it is impossible to optimize CT with two pallets, as proved in (Camus,1997). So, we
can say that this solution is best possible one(Fig. 15,16).

6. Benchmark
6.1 Notations
In this section, one example taken from the literature is analyzed in order to apply three
cyclic scheduling analysis methods such as Hillion (Hillion, 1987), Korbaa (Korbaa, 1997),
and the previously presented approach. The definitions and the assumptions for this work
have been summarized (Korbaa,1997).
The formulations for our works, we can summarize as follows:

t
tD)()(

,

the sum of all transition timings of

M() (=Mo()), the (constant) number of tokens in ,

C() = ()/M(), the cycle time of ,

Where is a circuit.

C* =Max(C()) for all circuits of the net,
CT the minimal cycle time associated to the maximal throughput of the system:

CT =Max(C()) for all resource circuits = C*
Let CT be the optimal cycle time based on the machines work, then WIP is (Korbaa,1997):

i
pe ipallets ty

 icarried by
OS to be

timeOperating

CT
WIP

We introduce an illustrative example in Camus(Camus, 1997), two part types (P1 and P2)
have to be produced on three machines U1, M1 and M2. P1 contains three operations: u1(2
t.u.) then M1(3 t.u.) and M2(3 t.u.) P2 contains two operations: M1(1 t.u.) and U1(2 t.u.). The
production horizon is fixed and equalized to E={3P1, 2P2}. Hence five parts with the
production ratio 3/5 and 2/5 should be produced in each cycle. We suppose that there are
two kinds of pallets: each pallet will be dedicated to the part type P1 and the part type P2.
Each transport resource can carry only one part type. The operating sequences of each part
type are indicated as OS1 and OS2. In this case, the cycle time of OP11, OS12 and OS13 are
all 7 and Op21 and OS22 all 3, also the machines working time of U1 is 10, M1 is 11 and M2
is 6. So the cycle time CT is 10. The minimization WIP is:

CT
OSofTimesperatingO

WIP 1p

CT
OSofTimesperatingO 2p

3
11

33
11

777

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 297

e2e1

U1

M1

M2

1/5

(2)

(3)

t11

t12

(2)

t13

U1

M1

M2

(2)

(3)

t11

t12

(2)

t13

1/5

e0

(2)

M1

U1
t11

t12

M2

(2)

t13

1/5

(3)

tf
Ptr(P1) Ptr(P2)

M1 M2U1

1/5

M1

U1

t21

t22

(1)

(2)

(1)

U1

M1
t21

t22

1/5

(2)

OS1 OS1 OS1 OS2 OS2

e2e1

U1

M1

M2

1/5

(2)

(3)

t11

t12

(2)

t13

U1

M1

M2

(2)

(3)

t11

t12

(2)

t13

1/5

e0

(2)

M1

U1
t11

t12

M2

(2)

t13

1/5

(3)

tf
Ptr(P1) Ptr(P2)

M1 M2U1

1/5

M1

U1

t21

t22

(1)

(2)

(1)

U1

M1
t21

t22

1/5

(2)

OS1 OS1 OS1 OS2 OS2

Fig. 17. Illustrative example

6.2 Benchmark
By the example, we can obtain some results like as the following figures (Fig. 18-20).

1. Optimization
The Hillion’s schedule (Hillion, 1987) has 6 pallets, the Korbaa’s schedule (Korbaa, 1997) 3

ones, and the proposed schedule 4 ones. This solution showed that the good optimization of

Korbaa’s schedule could be obtained and the result of the proposed schedule could be better

than that of the Hillion’s.
Also, the solutions of the proposed approach are quite similar to (a) and (c) in Fig. 20

without the different position.

2. Effect
It’s very difficult problem to solve a complexity value in the scheduling algorithm for

evaluation. In this works, an effect values was to be considered as the total sum of the

numbers of permutation and of calculation in the scheduling algorithm to obtain a good

solution. An effected value of the proposed method is 744, i.e. including all permutation

available in each BUC, and selecting optimal solution for approach to next BUC. An effect

value to obtain a good solution is 95 in the Korbaa’s method; 9 times for partitions, 34 times

Petri Net: Theory and Applications 298

for regrouping, and 52 times for calculation cycle time. In the Hillion’s method, an effected

value is 260; 20 times for machine’s operation schedule and 240 times for the job’s operation

schedule.

time

W.I.P.

op11

W1

W2

W3

W4

W5

W6

P1

Part type
op12 op13 op11

op12 op13

op13 op11 op12

op22 op21

op22

op21

P1

P1

P2

P2

0 11
time

W.I.P.

op11

W1

W2

W3

W4

W5

W6

P1

Part type
op12 op13 op11

op12 op13

op13 op11 op12

op22 op21

op22

op21

P1

P1

P2

P2

0 11

Fig. 18. Hillion’s schedule

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W3

op12

op13

op11

op13

op13

op11

op12

op22 op21op22 op21

machines

op12

M1
1

M1
2

0 11

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W3

op12

op13

op11

op13

op13

op11

op12

op22 op21op22 op21

machines

op12

M1
1

M1
2

0 11

Fig. 19. Korbaa’s schedule

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22 op21op22 op21

machines

op12M1
1

M1
2

0 11

W3

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22 op21op22 op21

machines

op12M1
1

M1
2

0 11

W3

(a)

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 299

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22op21op22op21

machines

op12M1
1

M1
2

0 11

W3

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22op21op22op21

machines

op12M1
1

M1
2

0 11

W3

(b)

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13

op13

op11

op12

op22

op21

op22

op21

time

W.I.P.
op11W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22 op21

op22

op21

machines

op12

M1
1

M1
2

0 11

W3

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13

op13

op11

op12

op22

op21

op22

op21

time

W.I.P.
op11W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22 op21

op22

op21

machines

op12

M1
1

M1
2

0 11

W3

(c)

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13 op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11W1

W2

W4

op12

op13

op11op13

op13 op11

op12

op22op21op22op21

machines

op12

M1
1

M1
2

0 11

W3

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13 op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11W1

W2

W4

op12

op13

op11op13

op13 op11

op12

op22op21op22op21

machines

op12

M1
1

M1
2

0 11

W3

 (d)

Petri Net: Theory and Applications 300

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22 op21op22 op21

machines

op12M1
1

M1
2

0 11

W3

regrouping
process

time

op11U1

M1

M2

op12

op13

op11

op12

op13op13

op11

op12

op22

op21

op22

op21

time

W.I.P.

op11

W1

W2

W4

op12

op13

op11

op13

op13

op11 op12

op22 op21op22 op21

machines

op12M1
1

M1
2

0 11

W3

(e)
Fig. 20. Proposed schedule

Fig. 21. Total relation graph

3. Time
Based on the three algorithms, we can get time results for obtaining the good solution. Since
this example model is simple, they need very small calculation times; 1 sec for the Korbaa’s
approach and 1.30sec for both of the Hillion’s and the proposed approaches. The Korbaa’s
approach has minimum 1 minute and maximum 23 hours in the 9 machines and 7
operations case in Camus (Camus, 1997), while the proposed approach 3 minutes.
Meanwhile the Hillion’s and the Korbaa’s approaches belong to the number of the operation
and the machines, the proposed method to the number of resource shares machines. This
means that the Hillion’s and the Korbaa’s approaches analyzing times are longer than the
proposed one in the large model. As the characteristic resultants of these approaches are
shown in Fig. 21, the Korbaa approach is found out to be good and the Hillion approach is

Chapter Scheduling Analysis of FMS Using the Unfolding Time Petri Nets 301

to be effectiveness in the time. And on the effort point, the proposed approach is proved to
be good.

7. Conclusion and future study
In this paper, we focused on the analysis of a cyclic schedule for the determination of the
optimal cycle time and minimization of WIP (Work In Process). Especially, this paper
product ratio-driven FMS cyclic scheduling problem with each other products and ratios has
been dealt. We proposed a model that has two jobs and two machines. And TPN slice and
unfolding are applied to analyze this FMS model. We can divide original system into
subsystem using TPN slice and change iterated cycle module into acyclic module without
any other behavior properties.
Specially, we simulated our approach with IBM PC windows 2000 using Visual C++, then
our approach is faster than Korbaa’s approach in the many resource shared. This means that
the new approach is more useful to the model that has many resource share machines in any
case. If the model has small resource share machines and short operation depths, then it’s
useful to approach Korbaa’s.
We are sure that proposed method is very useful to analyze all Petri net models. This
proposed method is available to apply to a complex computer simulation, a parallel
computer design and analysis, and a distributed control system, etc.

8. References
Best E., Cherkasova L., Desel J. & Esparza J.(1990). Characterization of Home States in Free

Choice Systems, Hildesheimer Informatik-Berichte Vol.9/90, Universitat Hildesheim
Carlier J. & Chretienne P.(1988). Timed Petri nets Schedules, In: Advanced in PN, G.

Rozenberg(Ed.), vol.340 of LNCS, pp.62-84, ISBN 0-387-50580-6,Springer-
Verlag,Berlin, Germany

Camus H.(1997). Conduite de Systèmes Flexibles de Production Manufacturière Par
Composition de Régimes Permanents Cycliques:Modélisation et Evaluation de
Performances à l’Aide des Réseaux de Petri, Thèse doctorat USTL

Esparza J., Lomer S. & Vogler W.(1996). An Improvement of McMillans unfolding
Algorithms, IN: LNCS 1055, pp.87-106

Hwang CH. & Lee DI.(1997). A Concurrency Characteristic in Petri net Unfolding,”
Proceeding of SMC’97, pp. 4266-4273

Hillion H., Proth J-M. & Xie X-L.(1987). A Heuristic Algorithm for Scheduling and Sequence
Job-Shop problem, Proceeding of 26th CDC 1987, pp.612-617

Julia S., Valette R. & Tazza M.(1995). Computing a feasible Schedule Under A Set of Cyclic
Constraints, Proceeding of 2nd International Conference on Industrial Automation,
pp.141-146, Nancy 7-9, Juin, 1995

Kondratyev A., Kishinevsky M., Taubin A. & Ten S.(1998). Analysis of Petri nets by
Ordering Relations in Reduced Unfolding, Formal Methods in System Design, Vol. 12,
No.1, pp. 5-38

Korbaa O., Camus H. & Gentina J-C.(1997). FMS Cyclic Scheduling with Overlapping
production cycles, Proceeding of ICATPN’97, pp.35-52

Petri Net: Theory and Applications 302

Lee DY. & DiCesare F.(1995). Petri Net-based heuristic Scheduling for Flexible
Manufacturing, In: Petri Nets in Flexible and Agile Automation, Zhou MC.(Ed.),
pp.149-187, Kluwer Aca. Pub., USA

Lee J.K. & Korbaa O. (2006). Scheduling Analysis in FMS Using the Unfolding Time Petri
nets, Mathematics and Computer in Simulation, Vol.70, pp. 419-432,

Lee J.K., Korbaa O., & Gentina J-C.(2001). Slice Analysis Method of Petri nets in FMS Using
the Transitive Matrix, Proceeding of INCOM01, ISBN:0-08-043246-
8,Vienna,Austria,Control Problem in Manufacturing, Elsevier Science

Lee J.K. & Korbaa O. (2004). Modeling and analysis of radio-driven FMS using unfolding
time Petri Nets , Computer Ind. Eng.(CIE), Vol.46,No.4, pp. 639-653

Liu J., Itoh Y., Miyazawa I. & Seikiguchi T.(1999) A Research on Petri nets Properties using
Transitive matrix”, Proceeding of IEEE SMC99, pp.888-893,

Murata T.(1989) Petri Nets: Properties, Analysis an Applications, Proceedings of the IEEE, vol.
77, No. 4, April 1989, pp. 541-580.

McMillan. K.(1995). A technique of state space search based on unfolding, Formal Methods in
System Design Vol. 6, No.1, pp. 45-65

Ohl H., Camus H., Castelain E. & Gentina JC.(1995). Petri nets Modeling of Ratio-driven
FMS and Implication on the WIP for Cyclic Schedules, Proceeding of SMC’95,
pp.3081-3086

Richard P.(1998). Scheduling timed marked graphs with resources : a serial method,
Proceeding of INCOM’98

Taubin A., Kondratyev A. & Kishnevsky M.(1997). Application of Petri Nets unfolding to
Asynchronous Design, Proceeding of IEEE-SMC 1997, pp.4279-4284

Valentin C.(1994). Modeling and Analysis methods for a class of Hybrid Dynamic Systems”,
Proceeding of Symposium ADPM’94,pp.221-226

Zuberek W., Kubiah W.(1993). Throughput Analysis of Manufacturing Cells Using Timed
Petri nets, Proceeding of ICSYMC 1993, pp.1328-1333

14

Error Recovery in Production Systems:
A Petri Net Based Intelligent System Approach

Nicholas G. Odrey
Department of Industrial and Systems Engineering, Lehigh University

USA

1. Introduction
Leading-edge companies require flexible, reliable and robust systems with capabilities
to adapt quickly to changes and/or disturbances. In order to be adaptable a flexible
manufacturing systems must possess the ability to (i) reconfigure the existing shop
floor and (ii) automatically recover from expected and unexpected errors. One of the
major problems in flexible manufacturing systems is how to effectively recover from
such anticipated and unanticipated faults. Traditional techniques have addressed the
error recovery problem from the point of view of defining a set of actions for a pre-
specified set of errors. The main disadvantage of this approach is that not only a huge
amount of coding is required but also that two undesirable situations still may occur:
(i) some errors may not occur in a prespecified set during the lifetime of the system
and (ii) there may be errors that cannot be anticipated. Pre-enumerating a large
number of error occurrences will not guarantee that the system will not encounter a
new error situation. Our intent here is to show the genesis of work into intelligent
control of discrete event dynamic systems to overcome (ii) as exemplified by a Petri
Net based model for large scale production systems. Petri Nets have been successfully
used for modeling and controlling the dynamics of flexible manufacturing systems
(Hilton & Proth, 1989; Zhou & DiCesare, 1993). Generally, in a Petri net, the
operations required on a part are modeled with combinations of places and transitions.
The movement of tokens throughout the net models the execution of the required
operations. The content of this chapter is multi-faceted. Topics include Petri Net
modeling, state space representation and associated solution techniques, hierarchical
decomposition and control, hybrid modeling, multiple agent systems, and, in general,
issues pertaining to our work on intelligent control of manufacturing systems.
Our focus here is on the characteristics of physical error occurrences which impose
difficult challenges to discrete event control. The majority of our effort has been on
workstation/cell control within the hierarchical system originally proposed by the
National Institute of Standards and Technology (NIST) e.g. (Albus, 1997). The
controller must first handle simultaneously production and recovery activities, and
second, treat unexpected errors in real-time to avoid a dramatic decrease in the
performance of the system. In the following sections we follow the modeling approach
previously presented by (Odrey& Ma, 1995) which had its origins in the work of (Liu,

Petri Net: Theory and Applications 304

1993). This previous work included modeling, optimization, and control within the
framework of hierarchical systems. In particular, the research was focused on efforts
towards the foundations of a multilevel multi-layer hierarchical system for
manufacturing control. The Petri Net formalism can handle the complexities of the
highly detailed activities of a manufacturing workstation such as parallel machines,
buffers of finite capacity, dual resources (multiple resources required simultaneously
on one operation), alternative routings, and material handling devices to name a few.
Details on the mathematical structure and definitions pertaining to Petri nets can be
found in numerous sources e.g., (Zhou & Dicesare, 1993; Murata, 1989). The reader is
referred to this literature for detailed underlying mathematical models. A further
thrust of our work has been to enhance a multilevel multi-layer model by the
incorporation of intelligent agents with the purpose of adding flexibility and agility.
Thus, one objective of our effort is to determine whether it is possible to integrate
Petri Nets constructs with object-oriented formalisms and have an “all in one”
modeling and implementation tool for intelligent agent-based manufacturing systems.
Several researchers have attempted to combine these techniques. One of the first
approaches was Object Oriented Petri Nets (Lee and Park, 1993).
More recent work pertains to addressing the issue of monitoring, diagnostics, and
error recovery within the context of a hierarchical multi-agent system (Odrey & Mejia,
2003). The system consists of production, mediator, and error recovery agents.
Production agents contain both planner and control agents to optimize tasks and direct
material flow, respectively. Here we address the error recovery agent within a
hierarchical system at the workstation level in more detail. It is assumed that raw
sensory information has been processed and is available. When an error is detected,
the control agent requests the action of a recovery agent through a mediator agent. In
return, the recovery agent devises a plan to bring the system out of the error state.
Such an error recovery plan consists of a trajectory having the detailed recovery steps
that are incorporated into the logic of the control agent. In the context of Petri Nets, a
recovery trajectory corresponds to a Petri subnet which models the sequence of steps
required to reinstate the system back to a normal state. After being generated, the
recovery subnet is incorporated into the workstation activities net (the Petri Net of the
multi-agent system environment). In this research, we follow the designation of others
(Zhou & DiCesare, 1993) and denote the incorporation of a recovery subnet into the
activities net as net augmentation. The terms “original net” or “activities net” refer to
the Petri Net representing the workstation activities (within a multi-agent
environment) during the normal operation of the system. The net augmentation brings
several problems that require careful handling to avoid undesirable situations such as
the occurrence of state explosions or deadlocks. Intelligent agents seem to be a
promising approach to deal with the unpredictable nature of errors due to their
inherent ability to react to unexpected situations. Research on intelligent agents in the
context of manufacturing have been mostly concentrated on the “production activities”
e.g. scheduling, planning, processing and material handling (Gou, et al., 1998; Sousa &
Ramos, 1999; Sun, et al., 1999) However the activities related to exception handling
such as diagnostics and error recovery have received little attention. Our research aims
to provide some evidence as to how the performance of a manufacturing system can be
improved by using intelligent agents modeled with Petri Nets.

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 305

1.1 Statement of the problem
The focus in this chapter is on physical error occurrences and is directed towards supporting
effective procedures for error recovery in an attempt to arrive at a reconfigurable, adaptive,
and “intelligent “manufacturing system. As such, a hybridization of Petri Nets and
intelligent agents seem to be a promising approach to deal with the unpredictable nature of
errors due to their inherent ability to react to unexpected situations. Within this context, we
investigate system learning with a hybrid Petri net-neural net structure. The following
sections of this chapter first discuss the background on architectures for reconfigurable and
adaptable manufacturing control. Subsequent discussions will be based on the genesis of
work at Lehigh University on Petri nets from initial modeling and solution approaches to
more recent work on embedding intelligent agents with Petri Nets. A hybrid nets consisting
of a Petri Net with a Neural Net approach for the purpose of intelligent control is also
discussed.

2. Architectures
Even though our focus in this chapter is on Petri Net modeling and error recovery , we
would be remiss to not mention the underlying architecture of the systems being
investigated, While some performance tests (Brennan, 2000; Van Brussel, et al.,1998) suggest
that intelligent agent architectures for manufacturing systems outperform other
architectures, the lack of standards on design methodologies, communication protocols and
task distribution among the agents makes difficult their introduction to real-life
applications. Opposed to intelligent agent-based architectures, hierarchical architectures
have been conceived with the standardization issues in mind. A hierarchical architecture
groups the elements of the manufacturing system into hierarchical levels, e.g. enterprise,
factory, shop, cell, manufacturing workstation and equipment levels, with the purpose of
coping with complexity. The major drawback of hierarchical architectures is that their
structure is overly rigid and consequently difficult to adapt to unanticipated disturbances
(Van Brussel, et al., 1998). To increase the functionality of the system, components at the
same level may be linked. The purpose was to loosen the strict master-slave relationship of
the proper hierarchical form. This resulted in the so termed, modified hierarchical form.
Higher flexibility was reported with this architecture; however some problems arose in the
communication links between entities of the same level mostly caused by the lack of
development of the technology available at that time (Dilts et al., 1991).
To overcome the difficulties of the hierarchical architectures a heterarchical (distributed)
form was proposed (Duffie et al., 1988). In this architecture a single entity did not exist at the
top level as in the hierarchical scheme. In this architecture there existed a number of parts or
components which “negotiate” the utilization of scarce resources. As such, a feedback signal
did not have to go one level up in the hierarchy to find a response and a corrective action. A
system failure in the context of this architecture meant “lack of communication” between
two entities. As one communication link failed other resources were capable of establishing
the linkage. There was not a single information source as the information was distributed
throughout the system. Ideally the system would have been very flexible and adaptable as
new elements (software or hardware) could have been “attached” to the existing ones
without major disruptions. The heterarchical control architectures coped very well with
disturbances and reacted quickly to changes but the lack of hierarchy led to unpredictability
in the system. Consequently global optimization was almost impossible because there was

Petri Net: Theory and Applications 306

neither global information nor a higher-level entity that controlled the overall performance
of the system. Responses to perturbations that could be assimilated to “quick fixes” or
expediting could have caused further disturbances. Further developments led to the concept
of holonic manufacturing (Van Brussel et al., 1999; Valckernaers et al., 1994). The Holonic
paradigm considers three primary (basic) types of agents: Order agents, product agents and
resource agents, each with different goals and functionality. The basic agents are assisted by
other specialized agents namely staff agents which take the role of higher-level controllers in
a hierarchy (Van Brussel et al., 1999). These staff agents are at fact in a higher level of the
hierarchy but their role is only to provide expert advice to the basic agents instead of
enforcing rules. To tackle with complexity and to avoid a large number of low-level agents
trying to interact, agents are grouped and classified into categories. An agent is dual entity
that is both a part and an autonomous entity. Related agents form aggregated agents as in a
hierarchical structure but that structure differs from the traditional approach which aims for
a fixed structure. The holonic hierarchy is loosely connected. This means that the
configuration of the system can be changed to adapt to new conditions (Bongaerts, 1999).
The ease of adaptation implies a high degree of compatibility and ex-changeability between
the software and hardware elements of the system. The following figure depicts the
structure of different control architectures. Notice that in the Holonic model, the modules
can be reconnected and form new hierarchies. The basic elemental structure of the discussed
architectures is sketched in Figure 1.

a) Hierarchical b) Heterarchcal c) Holonic
Fig. 1. Basic Control Architectures

The architecture adopted in our research consists of a multi-agent system inspired by the
holonic architecture developed in Europe (Van Brussel et al., 1999) and the elementary loop
function (ELF) modified from the work at NIST for intelligent systems (Meystel & Albus
2002; Albus & Barbera, 2005). It has been noted that the ELF architecture is common to most
intelligent systems (Meystel & Messina, 2000). In essence we are attempting to capture and
implement the flexibility, adaptability, and reconfigurability required for an environment
(production systems modeled via Petri nets) subject to various disturbances. A later section
provides more detail as to the status of this work.

3. Workstation modeling
3.1 Workstation modeling with alternative routing
Earlier research on Petri Net modeling and analysis at Lehigh University was focused on a
hierarchical structure for automated planning and control of a cellular-based shop. (Liu et
al., 1997; Odrey and Ma, 1995) The adopted architecture was a hierarchical structure that
followed a model developed by Saleh (1988) that was based on the hierarchical model of the
National Institute of Standards and Technology (NIST) (Jones and McLean, 1986). Saleh’s
model incorporated both multi-levels and multi-layers. Multi-levels were designed to

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 307

partition the complex structure of the shop into smaller decision and control units such as
shop, cell, workstation and equipment levels. In this research we developed three different
layers of control, namely the optimization, regulation and adaptation layers. The purpose
was to develop a near-optimal steady state schedule along with the corresponding
regulatory actions in the event of disturbances.
Following Saleh’s work, Liu (1993) constructed a Timed Colored Petri Net (TCPN) model for
a manufacturing cell. A three attribute coloring scheme was used and is described later. One
example of a cell contained two workstations; the first workstation was a material handling
device and the other described a loading/unloading station. This is shown in Figure 2 on
the next page. For brevity, only a partial description of all places is given. The objectives
here were (i) the construction of a PN model with rerouting capabilities, and (ii) the
development a state-space representation to predict and optimize the dynamics of this
system. To model a flexible manufacturing cell a machine oriented approach was
undertaken and was based on modular constructs. This approach provided a construct such
that a sudden addition or reduction of system resources (e.g., machines) required a minimal
restructuring of the workflow within the production system. It should be noted that it can
still take a great amount of effort for modeling of a PN based system. The TCPN cell model
in this earlier research was determined by the system capacity of the cell and the production
workload. The system capacity included the number of workstation types, the number of
parallel resources in a workstation, and the material handling system (MHS). The
production workload included job types, the processing times, and the routing of jobs.
From a Petri net viewpoint the system capacity dictated the configuration of the cell model
whereas the production workload determined the number of job tokens and operational
circuits in the workstation subnets. Figure 2 depicts a TCPN for the system but note that the
recovery from machine breakdowns is not included in this figure. Two job types were
modeled in the cell. The two workstation subnets and the load/unload (L/UL) subnet are
connected in parallel through the MHS subnet. The parallel subconnections subnets fulfilled
a requirement of a random direction material flow. The interface between cell entities are
the two sets of places {P4, P7, and P15} and {P27, P25, and P26} which represent the input
queues and output queues to the L/UL station and workstations W1 and W2, respectively.
In this model the number of tokens in each closed-loop subnet represented the total
availability of a particular resource in a cell entity. For example, two tokens in place P9
represent two identical machine resources in workstation W1, whereas a single token in
places P6 and P12 represent a single space for the input and output buffer, respectively, of
workstation W1. In a TCPN cell model, token colors are useful for both visual identification
and mathematical representation. Consider place p1 in Figure 2. Two job types identified by
their different token colors (one black dot and a white circle pattern). In the case of parallel
resources, i.e., two parallel machine tokens in P9, distinctive colors would be used for
individual resource identification.
In this modeling approach, a three-attribute coloring scheme (part number, workstation
number, resource number), was used to differentiate token colors. Part number (pt#)
represents the job number; Workstation numbers (wks#) indicates the workstation where a
part is currently being processed or is to be processed; a resource number refers to either a
buffer number (b#) or a machine number (m#) in a particular workstation, an equipment
number (e#) in a load/unload station, or a device number (d#) for material handling
systems. These resource attributes provide a tracking record for the resource assignment
decisions. Hence, a token color, (i, j, m), indicates that the token is the ith job which uses the

Petri Net: Theory and Applications 308

mth resource in the jth workstation. The coloring scheme is embedded in the matrix
representation of the TCPN cell model used in the system dynamic equations.

 Fig. 2. Time Colored Petri Net for Two Workstations a load/Unload station, and a Material
Handling System (Liu, et al. 1997; Liu, 1992)

In this research, the modular construct was a convenient restructuring method proved
adaptable to changes in the production environment. The possible system configuration
changes were categorized into two types: changes in a physical entity or changes affecting
jobs. In the event of adding or deleting a physical entity (e.g., a workstation), the
workstation subnet was connected or disconnected to/from the MHS subnet. In this earlier
work, if machine breakdowns occurred the corresponding machine resource token was
simply stopped from circulating in the subnet until recovery. For entity disruption, the
overall model structure remained relatively the same. Any changes affecting jobs consisted
of a cancellation of jobs or changes in the job routing information. Job routing changes
involved the deletion of operation circuits from previous stations and the addition of
operation circuits to the new stations. Furthermore, in this research, for each physical entity
considered in a cell there existed a 1-to-1 representation in the TCPN model. As such, each
operation performed had a corresponding processing time associated with the operation
circuit in the processing workstation and each system resource corresponding token
representation. Parallel resources were represented by multiple resource tokens of the same
color in the cell model. The total number of token types represented the total number of that
resource types available in the system. This TCPN development methodology provided a
safe, bounded, and live model.

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 309

Naturally, an important consideration was the representation of a disruption (error)
occurring and a possible rerouting strategy. This was approached by noting that machine
breakdowns can be satisfied by regarding a machine breakdown as an external input (the
firing of a transition in a Petri net model). This additional structure provided an immediate
transfer of tokens from a place (which represents processing) without waiting for the elapse
of processing time. Figure 3 depicts a TCPN workstation which can be used to represent an
alternative routing logic for machine breakdowns.

Fig. 3. A Workstation Petri Net Representation with an Alternative Routing Logic (Liu, 1993)

Firing transition Tb represents the fact that a machine breakdown has occurred. The token in
place P1 is released to Pul. In such an instance the remaining processing time (t1) is set to
zero. This unload place may have a queue and waits for an output buffer to unload the part
from the breakdown machine. In this representation 3 tokens are generated once an output
buffer is generated. A machine token passes to a repair process Prp whereas a token in place
Pr signals a service request for the material handling system (MHS). Simultaneously a job
token is outputted to place Pob (place signifying an output buffer). Other transitions noted
in Figure 3 consist of Talt (initiate re-rote mechanism to alternative machines) and Tc (to
indicate recovery of machine from the breakdown). The firing of transition Tc causes the
machine token to be returned to the common queue (place PQ) and stops the firing of the
alternate machine transition Talt. At the time this scheme was developed to overcome

Petri Net: Theory and Applications 310

drawbacks associated with 1) an inhibitor arc approach (Teng & Black, 1990) and, 2) a timed
Petri net representation by (Barad & Sipper, 1998). An inhibitor arc approach cannot provide
a systematic mathematical representation in the event of changes in transition firing rules.
The work here was a modification of the latter TPN approach.

3.2 Workstation analysis
The state space representation used to analyze the workstation Petri nets was a modification
of the traditional state equation (Murata, 1989) with the incorporation of equations for the
remaining processing times of every timed place. The conventional state space
representation can be written as:

M(k+1) = M(k) + L u(k)(1)

where M(k) is the marking of the Petri Nets in time k, L is the incidence matrix and u(k) is the
vector of transition firings. The reader is referred to Murata (1989) and Al-Jaar and
Desrochers (1995) for details on this equation.
The state space representation developed by Liu (1993) considers operational, precondition,
post-condition and resource places. Only operational places (those where actions are carried
out) have associated processing times. The other places, as
their name suggest, represent conditions (e.g. idle, ready) (Liu et al., 1997). The modified
structure contains two different “marking” vectors: the first marking vector (Mp(k)) is the
conventional marking vector (Murata, 1989) that accounts for the number of tokens in each
place; the second one (Mr(k)) is the remaining processing time vector i.e. a vector containing
the remaining time for the next transition firing for each place.
The state space equation is stated as follows (the dimensions of these matrices are omitted
for simplicity):

 X(k+1) = A(k) X(k) + B(k)u(k) (2)

u(k) is a control vector that determines which transitions fire at time k. Define uj(k) as the jth
position of u at time k. uj(k) = { 1 if transition j fires, 0 if it does not } Mp(k) is the marking
vector at after k transition firings; Mr(k) is the remaining processing time vector after k
transition firings; A(k) is the system matrix and it is partitioned as follows:

[0] Zero matrix;
[I] Identity matrix

(k) Time for the next transition firing.
[P] Diagonal matrix that serves to distinguish operational places from resource,
precondition and post-condition places.
Pii = {1 if place pi is an operational place; 0 otherwise}

Pij = 0 when i j

 Mp(k)
X(k)= (3)
 Mr(k)

 [I] [0]
A(k)= (4)

 - (k)[P] [I]

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 311

B(k) is the distribution matrix that transforms the control action u(k) into token evolution i.e.
addition and removal of tokens when firing a transition represented in vector u(k).

[W] = Processing time matrix for operational places.
[L]= Incidence matrix [L] =[L]+ - [L]-
[L]+ = Incidence output matrix that accounts for the addition of tokens in output places.
[L]- = Incidence input matrix that accounts for the removal of tokens from input places.
The dimension of these matrices is determined by the number of places, transitions and
colors in the system. For a detailed discussion and explanation see (Liu, 1993; Liu et al.,
1997). This representation was the basis for an optimal control formulation for scheduling
optimization. A near-optimal solution was found by using forward dynamic programming
on the sequence of states (markings) generated by the state equations.

3.3 Petri Net Decomposition
In the process of establishing a hierarchical Petri net-based workstation model, issues can be
categorized into different classes where each class occurs at different levels of the hierarchy.

Fig. 4. An example of decomposition of a multi-layer Petri net model for an assembly station
(Ma & Odrey, 1996)

At the Petri net modeling level two decision classes were identified, namely, generation of
conflict-free sequences and the determination of process steps sequences. In order to
facilitate the decision-making and performance evaluation processes, a hierarchical system

 [L]
B(k)= (5)

 [W] [L]+

Petri Net: Theory and Applications 312

of state equations for the Petri nets based model was studied. The general form of the
hierarchical state equations have previously been state in equations 2 through 5. An
example of the net decomposition for an assembly workstation is indicated in Figure 4. For
the top level TCPN model (termed sublevel 1), the state dimension depends on three values:
(1) the sum of all colors on tokens associated with places which represent the process of
manufacturing individual parts, (2) the sum of all colors on tokens associated with places
which represent the process of handling assembled final products, and (3) the sum of all
colors on tokens associated with the resource places. When decomposing the TCPN model
to a sublevel 2 TPN model the system can be viewed as a two-level hierarchical Petri net
with one discolored TPN at the upper level and several subnets, which are also modeled by
TPNs, at the lower level. Between upper and lower levels, interface places are added that
serve as connectors between two levels. For a state space representation, the discolored
TPN at the upper level and each detailed subnet at the lower level can be individually
represented using TPN state equations. Thus, the system state equations for the sublevel 2
TPN workstation model are obtained by combining all the TPNs and augmented to
incorporate the interface places, i.e. all the vectors/matrices in the subnets are become the
subvectors/submatrices in the sublevel 2 TPN workstation state equation. For example, the
distribution matrix for the sublevel 2 TPN model would have the form of the matrix given

below. Li is a distribution submatrix of TPNi .The bottom row denotes the distribution
submatrices of the interface places and the input/output transitions associated with TPNi.
Details of this work can be found in (Odrey & Ma, 2001). This multi-level, multi-layer Petri
net framework establishes layers to provide the linkage between high-level abstract
information for discrete systems and

1

2

3

1 2 3

0 0 0
0 0 0
0 0 0

0 0 0 J

J
c c c c

L
L

L
L

L
L L L L

 (6)

low-level numeric data for continuous systems. Different nets are used to represent different
levels of complexity. Three functional distinct subnets which are the basic building blocks
for the Petri net workstation model were proposed to represent higher level abstract
commands such as “move,” “process,” and “assemble”. These subnets allow basic routing
information to be incorporated in the model through a bottom-up approach in a systematic
manner. The process task can then be decomposed into a Petri net representation of process
steps which follow a feature-based process plan. Alternative sequences and resources are
incorporated in the process task model to provide flexible operation instructions. Dynamic
state space equations correspond to each sub-level in the hierarchical Petri net graphical
representation. These state equations are used in current research to evaluate various
control strategies and performance workstation operations in a unifying way.

4. Intelligent system approaches using Petri nets
4.1 Intelligent agent approaches
 Current efforts are directed towards the aspects of error recovery associated with intelligent
agent-based manufacturing systems and has been motivated by the work done at Lehigh

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 313

University. As noted above, previous work included modeling and optimization and control
of hierarchical systems. Our focus is to enhance this multilevel multi-layer model with the
in-corporation of intelligent agents with the purpose of adding flexibility and agility. This
on-going effort investigates (i) architecture reconfigurations with enhanced capabilities of
flexibility and adaptability, (ii) the adoption of adequate model-ing techniques and their
mathematical representation (in particular, modifications to the previous Timed Colored
Petri Net models developed), (iii) modeling the aforementioned intelligent agents with
Petri Nets, and (iv) model testing.
Our motivation has its origins in the research mentioned in the previous sections in addition
to models incorporating intelligent agents for manufacturing operations which appeared in
the eighties and nineties as an alternative to the shortcoming of hierarchical and
heterarchical architectures. Some of these additional approaches include Bionic
Manufacturing (Okino, 1993), Fractal methods (Warnecke, 1993), the MetaMorph
Architecture (Wang et al., 1998; Maturana et al., 1998). These approaches preserve a
hierarchy that controls the autonomy of individual agents, but unlike the hierarchical
architectures, the relation-ship between low and high level controllers (agents) does not
follow the master-slave scheme. The low level agents have a high degree of autonomy as in
the heterarchical approach but still have “loose” links with higher-level agents. An
intelligent agent based approach attempts to preserve the advantages of both hierarchical
and heterarchical approaches but at the same time avoids their drawbacks. The
architectures mentioned present differences primarily in the definitions of the intelligent
agents, the degree of reactivity versus long-term planning, the degree of adaptation and
reconfiguration, and the communication methods between agents. For example, in the
Holonic, Bionic, MetaMorph and Fractal approaches the intelligent agents are loosely
connected and their structure can evolve over time; the RCS resembles a hierarchical
architecture whose structure is primarily fixed. In the Holonic, MetaMorph and RCS
approaches the system has a set of fixed predefined goals. In the Fractal approach the agents
negotiate their goals (Tharumarajah et al., 1996). Bionic architectures (Okino, 1993) do not
set long-term goals but seek essentially adaptation to the environment. In the Holonic
manufacturing approach parts, computers and resources are considered as intelligent
agents. The other approaches regard schedulers, planners, controllers and resources as
agents, but exclude parts.
It should be noted that the concept of Intelligent Agents was built around the Object-
Oriented Programming (OOP) paradigm (Tharumarajah et al., 1996). The underlying
principle of OOP is the encapsulation of attributes and methods into code units called
classes. The code embedded in a class defines its internal actions and the relationships with
other classes (Wyns and Langer, 1998). In the intelligent agent approach, each agent
becomes an object with clearly defined functionality and attributes. Thus these concepts of
OOP such as instantiation, inheritance, and polymorphism can be applied directly to the
theory of intelligent agents (Venkatesh and Zhou, 1998). To date OOP platforms are the
preferred choice for control software development (Gou et al., 1998). Some of its advantages
over conventional programming include reusability, portability and expandability. OOP
seems to be the natural approach to implement the control software for intelligent agent-
based architectures (Gou et al., 1998). Venkatesh and Zhou (1998) have pointed out need for
integration of control and simulation and modeling software to expedite the system
development. In other words, the control software should not be exclusively dedicated to
issue commands to the components of the manufacturing systems but to optimize the
system performance. It should also be noted that all agents are objects but not all objects are

Petri Net: Theory and Applications 314

agents. Agents are autonomous entities that have choices and control on their behavior;
objects may be totally obedient (Jennings, 2000).

4.2 Multi-agent systems with embedded Petri nets
Our more recent work presents an architecture for control of flexible manufacturing systems
which is a synthesis of hierarchical and intelligent agent-based systems (Odrey & Mejia,
2003). The approach undertaken provides responsive and adaptive capabilities for error
recovery in the control of large scale discrete event production systems. A major advantage
of this is the ability to reconfigure the system. The communication links between agents can
be re-directed in order to form temporary clusters of agents without modifying the internal
structure of the agent. At the same time, having the hierarchical structure greatly facilitates
the organization of new groups of agents. In our approach, agents possess the freedom to
move within their hierarchical level but cannot move out to another level. The approach,
based on Petri Net constructs is expected to improve the performance of agent-based
systems because (i) it decentralizes the control activity for complex and unusual failure
scenarios (ii) provides basic autonomy to resource agents (iii) follows a proved design
hierarchical design methodology and, (iv) defines clearly the responsibilities of control and
resource agents. A thrust of this effort was to determine whether it is possible to integrate
Petri Nets constructs with object-oriented formalisms and have an “all in one” modeling and
implementation tool for intelligent agent-based manufacturing systems.
At the time of this investigation the major focus was on the diagnostics and error recovery
activities in the context of intelligent agent-based architectures for semi-automated or
autonomous manufacturing systems. Our approach addressed the issue of combining the
discipline of hierarchical systems with the agility of multi-agent systems. We adopted in-
part the holonic paradigm (Van Brussel et al., 1999) for description of the three primary
(basic) types of agents: Order agents, product agents and resource agents, each with
different goals and functionality. The basic agents are assisted by other specialized agents
namely staff agents which take the role of higher-level controllers in a hierarchy. In
particular, the focus was on the construction of a re-configurable system having production
agents, error recovery agents, and a classifier/coordinator/ mediator agent structure
connecting production and recovery agent hierarchies. In addition, the relationship to the
previous work at Lehigh University pertaining to a multi-level, multi-layer hierarchy
control was established. This latter hierarchy, based on Petri net constructs, serves, in one
sense, as a retrieval based resource for process planning and generation of re -cover plans to
the production and recovery agents within the proposed multi-agent system. An objective of
this effort was to provide a test-bed for comparison of purely hierarchical systems, non-
hierarchical but highly re-configurable multi-agent systems, and a hybrid combination
which was the focus of the investigation presented here. Our primary efforts are on a
hierarchical intelligent agent-based system linked to a structure of agents dedicated
exclusively to diagnosis and error recovery tasks. Our work has focused primarily on error
recovery strategies at the workstation level in an intelligent-agent based system and is still
on-going.
Unlike the traditional structure (Albus, 1997) in which the control function is exerted top
down, our approach provides the agents basic control capabilities that allow them to react to
common and local disturbances. In addition, specialized control and recovery agents assist
these production agents on complex diagnostics and recovery tasks. This approach is
expected to combine the discipline of hierarchical systems, but with the inherent ability to
react as would be congruent with intelligent agent-based systems. Here we adapt the

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 315

intelligent agent principles to hierarchical control models. The most significant difference
lies in the definitions of a workstation controller and a workstation agent. In a broader
scope, a workstation agent comprises a workstation controller, a number of resources
(conveyors, machines, tools, fixtures, etc.) and their respective controllers [Van Brussel,
1998]. The workstation agent acts as a single decision unit when negotiating with higher-
level agents. At the same time a workstation agent is considered as a system when
controlling and coordinating its components (equipment agents and error recovery agents).

4.2.1 System structure
Our approach is based on prior work on hierarchical architectures as outlined in previous
sections. As such our model shares a number of features with the prior work, namely,
hierarchical decomposition of activities, sensor strategies, methods for diagnosis and error
recovery, and modeling techniques. The reader is referred to (Odrey & Mejia, 2003) for a
more detailed explanation of this section. A sketch of the integrated control architecture is
shown in Figure 5. The architecture is partitioned into three segments. A mediator agents
structure is positioned between and separates a production agents architecture and a
recovery agents architecture. Each of these structures follows a hierarchy and
communication can be at and among different levels within the hierarchy. To-date, we
distinguish between cell level and workstation level production agents which communicate
through mediator agents. In the schema adopted if an error occurs at the shop floor and the
workstation agent cannot produce a satisfactory recovery plan by itself, such an agent
requests the actions of the workstation mediator agent. The workstation agent provides all
the available information pertaining to the error which should include sensor readings,
location, priority, etc. The mediator agent classifies the error and matches the error with a
recovery agent at the same hierarchical level. The recovery agent attempts to produce a
recovery plan and if it succeeds the plan is communicated back to the mediator. At the same
time, if the error exceeds a pre-determined time threshold, the workstation agent sends a
message to the cell agent (higher level) informing of the abnormality. The cell agent takes
this new input and determines whether or not rescheduling pending jobs is necessary. In
order to keep the system running, the workstation agent adopts a temporary measure e.g.,
dispatching rules. At this point, this is the maximum the workstation agent can do since it
lacks of the information and methods to perform global optimization. When a new schedule,
generated by the cell agent, is available, the workstation agent attempts to adapt the new
plan to the current conditions. In this way, each agent contributes independently to the
overall optimization of the system.
The workstation agent requires additional techniques to optimize the realization of the
process plan of all the current jobs that have been allocated to it. In our approach, the
workstation agent itself constructs a Petri Net model of the sequence of coordinated
activities for all current jobs using a multi-level multi-layer Petri Net approach [14]. In this
approach the sequence of activities at the workstation level and the required resources are
modeled using several “layers” which represent degrees of modeling abstraction (from
generic activities to highly specific tasks). As noted in the previous section the highest layer
is modeled with a Timed Colored Petri Net (TCPN). The TCPN layer is then “unfolded” in
several layers with different degrees of detail. Lower levels are represented by Timed Petri
Nets and Ordinary Petri Nets. For each of these nets in order to track the system status state
equations can be developed. These equations serve to determine the flow of tokens and the
remaining process times for each operation place provided by a sequence of transition
firings.

Petri Net: Theory and Applications 316

Fig. 5. Error recovery agents within an intelligent agent hierarchical architecture (Odrey&
Mejia, 2003)

The BRIC (Block-like Representation of Interactive Components) was chosen as our initial
modeling tool in that adoption serves very well to develop control software in that it
provides the most important features of OOP (Object Oriented Programming). Additionally,
BRIC provides a graphical representation of the behavior of a multi-agent system. In the
BRIC approach each agent is modeled by a Petri subnet that comprises an internal net
representing the agent’s methods and a set of “communication” places. Agents are linked
together by through external transitions and arcs. Tokens flowing between communication
places serve as message between agents. The complex data structure is embedded in the
colored token coloring scheme. For example, a token in an input message interpreted as a
work order could include several different labels such as sender id, job priority, job
constraints , etc. Conventional token rules of Colored Petri Nets (CPN) apply to the
communication places. A token can go from a conventional place to a communication place
and vice-versa. For further details the reader is referred to (Odrey & Mejia, 2003). It should
be noted that the agent interaction/communication structure is an on-going investigation.
Other techniques are currently being investigated.

4.2.2 Mediator agent
Mediator agents are the link that connects the production structure with the recovery
structure. Their function is to facilitate the communication between production and
recovery agents. The primary functions of mediator agents are: 1) filtering/processing
sensory information from production agents, 2) classifying errors and performing
preliminary diagnostics based on feedback information, 3) matching errors that occur on the
shop floor with error recovery agents, and 4) communicate recovery plans to production
agents. A BRIC model of the structure of a mediator agent is shown in Figure 6. Places are
as defined. In this schema, a mediator agent first receives a request (P11) and classifies the
error (P12) according to a set of corrective preliminary actions. We adopt here the approach
of our previous work (Ma, 2000) in which error classification was performed using a Petri
Net embedded in a neural network linked to an expert system. Next, a matching module
embedded in the recovery agent attempts to match the error with recovery agents capable of
generating a recovery plan for the error that occurred (P13). The issue of matching errors

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 317

with recovery agents is a subject of further research. If a suitable recovery agent is found, the
mediator sends it a request for recovery (P14). A token in P15 represents that a recovery
plan (or a failure to generating a plan) has been received. The mediator agent evaluates the
received plan (P16) and communicates it to the corresponding production agent (P19).
Provisions are made should the mediator agents require aid from other mediators (places
P17 and P18).

P11: Receiving recovery request message

P12: classifying errors

P13: Matching classified error with recovery agents

P14: Sending request messages

P15: Receiving responses from recover agents

P16: Evaluating responses

P17: Receiving responses

P18: Sending messages to mediators

P19: Communicating recovery plans

Fig. 6. A BRIC model of Workstation Mediator Agent (adapted from Odrey & Mejia, 2003)

4.2.3 Error recovery agents
The recovery agents at the workstation level are responsible of three major tasks: (i)
screening recovery requests sent by mediators, (ii) performing in-depth diagnosis, and (iii)
generate recovery plans for expected and unexpected errors. The BRIC model of a
workstation recovery agent and place definitions are shown in Figure 7. Once an error is
classified a token is placed in P20 and further diagnosis is performed when a marking

P19

P14

Mediator agent

P12

P13

P11

P17

P18

P16

Petri Net: Theory and Applications 318

reaches P21. When a root cause is known and classified, a plan can be generated (P22) and
sent to the appropriate agent via P23 and P24.
Our current efforts here focus on developing an automated reasoning technique for
generating recovery plans. The recovery plan generation primarily depends on whether or
not the error has been anticipated. Anticipated and unanticipated errors require two
different strategies: In the case of anticipated errors, a recovery plan is generated by
matching the error with a recovery task in a lookup table (Odrey & Ma, 1995). Unexpected
errors require more complicated (deep) reasoning that implies finding and matching error
patterns with gross recovery plans or searching alternative paths to return or advance the
system to an error-free state. Previous work at Lehigh University (Ma, 2000) was
concentrated on generation of gross recovery plans using Neural Networks. The last stage of
modeling our proposed architecture consists of linking the agents to form a Petri Net model
of the control structure and can be found in (Odrey & Mejia, 2003).

Fig. 7. Workstation Recovery Agent Structure (Odrey & Mejia, 2003)

5. Error recovery approaches
Error recovery is the set of actions that must be performed in order to return the system to

its normal state (Odrey and Ma, 1995; Seabra-Lopes and Camarinha-Matos, 1996). The key

concept is that there should exist at least one sequence of actions to bring the system to its

normal operation. The purpose of error recovery is to find the best actions that minimally

disrupt the system while down-time is minimized. Our work presented here follows 2

approaches: 1) the first section used an augmented Petri Net approach and 2) a subsequent

section was an attempt to provide a hybrid net by joining Neural Nets with Petri Nets. This

was done for a workstation level controller with in a hierarchical system following the work

done at NIST. Both of these approaches are discussed in subsequent sections.

P20: Evaluating classified error

P21:Diagnosing errors (in-depth Diagnosis)

P22: Generating recovery plan

P23: Sending recovery plan to mediator agents

P24: Receiving recovery requests messages

 P23

Recovery agent

P20
P21

P24

P22

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 319

5.1 Definitions for diagnostics and error recovery
An error occurs when the observed behavior conflicts with the desired behavior of the

system (Odrey and Ma, 1995; Seabra-Lopes and Camarinha-Matos, 1996). Similarly, (Chang

et al. 1991) defined that an error occurs when a resource reaches an undesired state.

(Kokkinaki & Valavani, 1996) define errors as manifestations of faults. A fault is the cause of

an error (Chang et al., 1991). As long as the error is not detected or does not produce a

failure, it remains latent. A failure occurs when a re-source does not deliver a service. For

example a worn gear in an automated fixture prevented a part to be accurately positioned

on a machine tool. Because of this, the part could not be correctly machined and resulted in

a bad assembly. The worn gear is the fault that generated the errors and failures. The error is

a positional error (the undesired state) and the failure is the wrong assembly (a service that

could not be delivered). Diagnostics is the activity in which the source fault(s) is (are)

determined and isolated (Odrey and Ma, 1995). When a failure is detected, the operation

that failed is not necessarily the source of the failure. A source fault is propagated through

the system generating errors and failures. Diagnostics involves backtracking the failed

operations to the source fault. The failure propagation tree is the tool that serves the

backtracking actions by linking operations until the one that failed is found (Chang et al.,

1991). In our research incorporating a multi-agent approach faults are considered as

inconsistencies in the behavior or status of an agent or inconsistent interactions between

agents and between agents and the environment. The environment is everything outside the

boundaries of the intelligent agents. For example, a broken gear that produces paralysis in

the machine spindle is an abnormal behavior of a resource agent; an out-of-tolerance part is

an abnormal state of a part agent; failure to grasp a part is an inconsistent interaction

between the robot agent and the part agent and blocking a robot agent by an external entity

is an undesired interaction between the robot agent and the environment. When faults occur

the workstation controller agents and the low level agents that depend on the workstation

controller, namely machine and part, investigate the reasons of the failure. The low level

agents investigate their own internal failures and the workstation controller investigates its

own internal faults and the interactions between the part and machine agents and between

those two and the environment. For now, the work has been focused on Petri net

approaches.

5.2 Augmented Petri net approach for error recovery
The approach taken here was based on integrating Petri subnet models within a general

Petri net model for a manufacturing system environment, and, in particular, a workstation

controller. In essence, the error recovery plan consists of a trajectory (Petri subnet) having

the detailed recovery steps that are then incorporated into the workstation control logic. The

logic was based on a Timed Petri Net (TPN) model of the total production system. The Petri

subset models consist of a sequence of steps required to reinstate the system back to a

normal state. Once generated, the recovery subnet is incorporated into the Petri net model of

the original expected (error free) model. The workstation controller is the entity responsible

for the coordination, execution and regulation of the activities at the physical workstation.

The workstation controller receives a higher level command, generally form a higher level

controller that issues a set of operations to be performed by the workstation with desired

Petri Net: Theory and Applications 320

start and finish times. The workstation controller decomposes such a command into a lower

level set of coordinated activities. In addition to executing activities, the workstation

controller should also provide a reactive and adaptive response to errors and other

disturbances (Odrey and Ma, 1995). In this work we followed the modeling approach

discussed in previous sections. The following discussion is a summary of (Odrey and Mejia,

2005).

5.2.1 Relationship to previous work
The characteristics of physical error occurrence impose difficult challenges to the

workstation controller. The controller must first handle simultaneously production and

recovery activities, and second, errors that appear unexpectedly must be treated in real-time

to avoid a sudden decrease of performance. Examples of automated reasoning systems for

error recovery procedures, such as neural nets include the work of (Seabra-Lopes et al.,

1996; Kokkinati and Valavanis, 1996) and our work discussed in section 5.3. As previously

discussed (section 4), work addressing the issue of monitoring, diagnostics, and error

recovery within the context of a hierarchical multi-agent system consisted of production,

mediator, and error recovery agents. Production agents contain both planner (scheduler)

and control agents. In this section we address the error recovery agent within the

hierarchical system at the workstation level in more detail. It is assumed that raw sensory

information has been processed and is available. When an error is detected, the control

agent diagnoses the error and requests the action of a recovery agent via mediator agents

discussed in section 4.2.2. In return, the recovery agent devises a plan to bring the system

out of the error state. Such an error recovery plan consists of a trajectory having the detailed

recovery steps that are incorporated into the control agent logic. A forward trajectory is the

most desirable, but at the same time it is the most difficult to implement with automated

reasoning systems (Fielding, et al., 1987). In the context of Petri Nets, a recovery trajectory

corresponds to a Petri subnet which models the sequence of recovery steps required to

reinstate the system back to a normal state. A schematic of error recovery trajectories is

given in Figure 8 as follows:

Fig. 8. Error recovery trajectories from a disrupted state (Odrey and Mejia, 2005)

Figure 8 illustrates a view of the issue of “match-up” state in a manufacturing system and

shows a desired “trajectory” constructed out of normal states, a disrupted state and the

Final state

Initial state

State Space

Steady-state trajectory
Normal (planned) states
Error recovery trajectory

Normal (planned) states
Disrupted states

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 321

possible transient trajectories (dotted lines) to return to the original trajectory. The disrupted

state is reached involuntarily. After being generated, the recovery subnet is incorporated

into the workstation activities net (the Petri Net of the multi-agent system environment). In

this research, we followed the designation of others (Zhou and DiCesare, 1993), and denoted

the incorporation of a recovery subnet into the activities net as net augmentation. Zhou and

DiCesare developed a formal description of these three possible trajectories in terms of Petri

net constructs, namely input conditioning, backward error recovery, and forward error

recovery. This prior work on error recovery strategies was intended to model the specifics of

low level control typified by the equipment level of a hierarchical control system. The terms

“original net” or “activities net” refer to the Petri Net representing the workstation activities

(within a multi-agent environment) during the normal operation of the system. In the work

presented here, the three recovery trajectories are applied to the workstation level within a

hierarchical model. The enormous number of errors and the corresponding ways to recover

that can occur at the physical workstation implies unlimited possibilities for constructing

recovery subnets. The important issue is that any error and the corresponding recovery

steps can be modeled with any of the three strategies mentioned above. Without loss of

generality, this research limited the types of errors handled by the control agent to errors

resulting from physical interactions between parts and resources (e.g. machines and

material handling devices). The reason for this assumption was to facilitate the simulation of

generic recovery subnets. Backward recovery suggests that a faulty state can become a

normal state if an early stage in the original trajectory can be reached. The forward recovery

trajectory consists of reaching a later state which is reachable from where the error occurred.

5.2.2 State equations and recovery subnets
The state space mathematical description was briefly described in section 3.2.In general that

work consisted of a cell level timed, colored Petri nets (TCPN) state space representation for

systems with parallel machining capability. This TCPN state representation extended

Murata's generalized Petri net (GPN) state equations by modifying the token marking state

equations to accommodate different type of tokens. In addition, a new set of state equations

was developed to describe time-dependent evolution of a TCPN model. As a result, the

system states of a cell level TCPN model were defined by two vectors:

System marking vector (M
p

): This vector indicates the current token positions. A token
type may consist of a job token, a machine token, or a combined job-machine token.

Remaining processing times vector (M
r
) : This vector denotes how long until a specific

job, machine, or job-machine token in an operation place can be released (i.e. an
operation is completed)

The TCPN workstation state equations provide a mathematical evaluation of the

workstation performance at a higher level. After evaluation, a decomposed Timed Petri net

(TPN) can then be constructed according to the evaluation results along with more detailed

workstation operations. This was illustrated in section 3.3. As previously noted, subnets are

viewed as alternative paths to the discolored TPN. The alternative path approach taken here

is more flexible than a substitution approach in the sense that changes in subnets can be

made without changing the configuration of the discolored TPN. The TPN workstation state

Petri Net: Theory and Applications 322

equations provide a mathematical evaluation of the workstation performance at a lower

level where primitive activities are coordinated to achieve desired task assignments.

In the event of disruptions, the original activity plan devised off-line by the workstation

controller may require adjustments. The question that arises is how to re-construct the

activity plan. A first alternative would be to build a completely new plan to execute the

pending jobs. The other extreme would be waiting until the disturbance is fixed and

continuing with the original plan. This would be partially constructing a new plan to a point

where the original plan can be resumed. In terms of the Petri Nets this corresponds to find a

marking (state) in the original plan reachable from the disrupted state and the question to be

answered is the selection of a marking that should be reached. From there, a number of

possibilities exist to return to the original plan. Details on performance optimization are

given in a companion paper (Mejia & Odrey. 2004).

In terms of the Petri Nets, an error occurs when a transition fires outside a predetermined
time frame. When a transition fires earlier or later (if the transition fires at all) than expected,
an alarm is triggered and an error state is produced. After the error is acknowledged and
diagnosed, a recovery plan is generated. This is accomplished by linking an error recovery
subnet to the activity net. This linking produces an augmentation of the original net. At this
stage the controller must devise a plan to reach the final marking Mf based on the status of
the augmented net. Reaching the final marking Mf is accomplished by constructing a plan to
reach some pre-defined intermediate marking Mint from previously determined List
markings and then firing the pre-determined sequence of transitions from such an
intermediate marking to the final marking. If a path to the intermediate marking can be
found, then the original execution policy (sequence of transition firings) can be employed
from the desired intermediate marking Mint to reach the final marking Mf. The issue of
selecting the appropriate intermediate marking can be found in companion article (Mejia
and Odrey, 2004). Our focus at this juncture is to demonstrate the construction of recovery
subnets.

5.2.3 Construction of recovery subnets for error recovery
Perhaps the most complete descriptions of error recovery trajectories were developed by
(Zhou and DiCesare, 1993). They proposed three possible trajectories. These consisted of
input conditioning, forward error recovery, and backward error recovery. Input
conditioning notes that an abnormal state can transform into a normal state after other
actions are finished or some conditions are met. Forward error recovery attempts to reach a
state reachable from the state where the error occurred. Backward error recovery suggests
that a faulty state can become a normal state if an earlier stage in the trajectory can be
reached. Obviously, not all trajectories are applicable in all cases due to logical or
operational constraints. An example demonstrating backward error recovery is presented
here but note that a similar approach can be applied to the other types of trajectories. Figure
9 illustrates the events during an error occurrence and the corresponding recovery in terms
of Petri Net constructs. Figure (9a) represents the Petri Net during the normal operation.
Places are defined in Figure10. The error is represented by the addition of a new transition tf

and a place pe representing the error state in (9b). Firing tf removes the residing token in p2,
resets the remaining process time corresponding to the place p2, and puts a token in the new
place pe. The error recovery subnet and procedure are discussed in more detail in the
following section.

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 323

Remarks:
pe represents an error state. pr1 and pr2 represent recovery

steps
tf is the transition that represents the initiation of the failure tr1 to tr3 represent the start

and end of the recovery step
 p0 to p3 represent arbitrary operational places; t0 to t2 are changes of events

in the original net

Fig. 9. Construction and Deletion of Recovery Paths (from Odrey and Mejia, 2005).

t0 t1 t2

(f) Firing and deletion of tr3, the
place pr2, and the corresponding
arcs.

 p0

(a) Petri Net of during normal
operation. A part is being
processed by resource r1

 t0 t1 t2

t2

r1

 tr3

(c) Firing and deletion of tf and the arc I(tf,,
pe)

p0

 t0 t1 t2

r1

p
pr2

tr1 tr2 pr

p2p1 p3

pr

 t0 t1 t2
t

r1

 tr3

(d) Firing and deletion of tr1, the
place pe and the corresponding arcs.

pr2
tr2 pr1

 p2p1 p3p0

 p2p1 p3p0

(b) Incorporation of an error/error
recovery net. The error/error recovery
net is shown with thicker lines.

tf

 t0 t1 t2

pe

 tr3

pr2

tr1tr2

 pr1

 p2p1 p3p0

 p2p1 p3p0

t0 t1

r1

tr3

(e) Firing and deletion of tr2, the
place pr1, and the corresponding

pr2

 p2p1 p3p0

Petri Net: Theory and Applications 324

5.2.4 Incorporating a recovery subnet into the original Petri net
The incorporation of the recovery subnet into the original net by the recovery agent is
the first step. In the preceding example (see Figure 9), such a subnet trajectory consists
of two places (pr1 and pr2) and three transitions (tr1 to tr3). Place pr1 represents the
recovery action “find part” and place pr2 the recovery action “pick up part”.
Transitions tr1 to tr3 represent the change of states of these two recovery actions. With
the recovery trajectory incorporated into the original net, the workstation control agent
is required to execute the recovery actions. In (9.b), returning to the normal state
requires the firing of transitions tr1,tr2 and tr3. After firing tr3 the scheduled transition
firings in the original net resume. The augmented net now contains an Operational
Elementary Circuit (OEC) = {p2, tf, pe, tr1, pr1, tr2, pr2, tr3, p0, t0, p1, t1, p2} that has only
operational (timed) places.
One difficulty that arises is the potential that the operational elementary circuits

constructed can result in infinite reachability graphs which make a search strategy

difficult. Our approach to overcome this problem consisted of a sequential methodology

which eliminates arcs and transitions from the combined original net and error/error

recovery subnet. Every time that a transition on the recovery subnet fires, such a

transition, its input places (except those places belonging to the original net) and the

connecting arcs are eliminated from the augmented net. As noted in Figure 9, the

elementary circuit which would be created during the generation of the recovery subnet

will only be partially constructed. For example, in (9b), as soon as the transition tf fires,

the transition tf and the arc I (p2, tf) are removed from the net. Subfigures (9c) to (9f)

illustrate the sequence of firings and elimination of transitions, places and arcs from the

net. The original net is restored when the last transition (tr3) of the error recovery subnet

has been fired. After firing tr3, the part token returns to the original net and the resource

token to the resource place. The workstation control agent records the elements (places,

transitions and arcs) that belong to the original net and recovery subnets, respectively.

A record is kept by the workstation controller such that for every time that a transition

of the augmented net fires the controller searches for such a transition on the agenda. If

the transition is found, it means that the transition belongs to a recovery subnet and all

the transition input places and all its input and output arcs are deleted from the

recovery agenda and from the augmented net (with the exception of arcs and places

belonging only to the recovery subnet and not to the original net).

The next step relates to resuming the normal activities after an error is recovered. In terms
of Petri Nets this implies finding a non-error state where the activities net and the
recovery subnet are linked. The desired non- error state may not the same as the state
prior to the occurrence of the error. For example, the state (marking) in subfigure (9f) is
not the same as the state shown in subfigure (9a). The example described illustrates a
possible trajectory (backward trajectory) which “started” (according to the arc directions)
at p2. Defining the non-error state is the task of the recovery agent and depends primarily
on the characteristics of the error and its recovery. In the event of an input-conditioning
strategy, the corresponding net originates and terminates at the same place (Zhou and
DiCesare, 1993). Our investigations assume that any part token that goes through either a
backward or a forward recovery trajectory is placed in a storage buffers after an error is
fixed. Figure 10 illustrates an example for backward error recovery.

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 325

Description of places and transitions
p0: part available

p1: part in buffer 1

p2: part being moved to resource 1

p3: part being processed by resource 1

p4: part processed

r1: resource 1 available

b1: buffer 1 available

tr1 and tr2: Recovery transitions

Fig. 10. Example of backward recovery trajectory with buffer

5.2.5 Handling resources and deadlocks
The work presented here assumes that, when an error occurs, all resources involved in the
operation that failed and the part that was being process or manipulated become
temporarily unavailable. Consider an example where two recovery actions are required to
overcome an error. This could correspond to a situation of a robot dropping a part. To
recover the part the part must first be found and then a command for the robot to “pick up
part” must be given. Vision systems have been used for the first action of finding the part. It
should be noted that during the execution of recovery actions both the resource and the part
remain unavailable for other tasks. This differs from our previous work (Liu, 1993) which
considered machine breakdowns in which only the machine that failed remains unavailable
during the failure and repair period. The actual manipulation of a part during the failure
states is considered in the logic of a workstation control agent. If the selected trajectory is an
input conditioning subnet, the resources that intervened in the operation that failed remain
unavailable until the operation is successfully completed. For backward and forward
recovery the procedure is more complex in that all resources required to execute the
operation that failed may need to be released at some point (to be determined by the
recovery agent) in the recovery trajectory. Another issue is the possible occurrence of
deadlocks in net augmentation. The policy adopted was to maneuver out of such deadlock
states by temporarily allowing a buffer overflow. An example of maneuvering out of the
deadlock situation using a Petri Net model is given in Figure 11. In the Petri net illustrated,

Backward Recovery Subnet

p3

p4

b1

r1
tr1

tr2

p2

p1p0

Petri Net: Theory and Applications 326

the transition tr will be allowed to fire even if no tokens are available at place b1 (i.e, the
buffer b1 is full). In that case, the place p1, representing the “parts in buffer” condition,
would accept a token overflow (two tokens instead of one) only for the case of tokens
coming from recovery subnets. The advantage of this policy is that clears the deadlock
situation in an efficient way that addtionally can be automatically generated in computer
code. It should be note that if this policy is not feasible in a real system due to buffer
limitations, human intervention may be required.

Fig. 11. Deadlock Avoidance by Allowing Temporary Buffer Overflow (Odrey and Mejia,
2005)

Another issue considered was the situation where firing t1 twice would put two tokens in
place b1 and the original buffer capacity would be permanently doubled. In a Petri net this
overflow condition was modeled with negative tokens. Negative tokens for Petri Nets have
previouusly been proposed for automated reasoning (Murata and Yamaguchi, 1991).To
compensate for an overflow situation our procedure was as follows: when a token coming
from a recovery net arrives to a buffer, one token is substracted from the buffer place (in this
case, the place b1 that represents the buffer availability) even though the buffer place has no
available tokens. If the buffer place has no tokens available then a buffer place will contain a
“negative” token representing the temporary buffer overflow. In the approach taken
negative tokens indicated that a pre-condition of an action was not met but still the action
was executed. The overflow is cleared when transitions, which are input to the buffer place,
are fired as many times as ther are negative tokens that reside in the buffer place. The

b

t1p1

(c) Firing of t1 restores the
original buffer capacity

r1

x

p

b

t1p1
(b) Firing and deletion of tr and
the corresponding arcs and
places. Overflow of tokens occurs
at the buffer to avoid a deadlock.
X represents a negative token

b

r1

t1

tr

pr

p1

(a) Deadlocked net before firing tr

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 327

storage buffer remains unavailable for other incoming parts from the original net until both
the overflow is corrected and one slot of the buffer becomes empty. In terms of the Petri net
of Figure 10, the buffer will be available again only when there is at least one token in the
“buffer” place b1.

5.3 A combined neural net - Petri net approach for diagnostics
In an attempt to investigate an “intelligent” manufacturing workstation controller an
approach integrating Petri net models and neural network techniques for preliminary
diagnosis was undertaken. Within the context of hierarchical control, the focus was on
modeling the dynamics of a flexible automated workstation with the capability of error
recovery. The work-station studied had multiple machines as well as robots and was
capable of performing machining or assembly operations. To fully utilize the flexibility
provided of the workstation, a dynamic modeling and control scheme was developed which
incorporated processing flexibility and long-term learning capability. The main objectives
were (i) to model the dynamics of the workstation and (ii) to provide diagnostics and error
recovery capabilities in the event of anticipated and unanticipated faults. A multi-layer
structure was used to decompose complex activities into simpler activities that could be
handled by a workstation controller. At the highest layer a TCPN represented generic
activities of the workstation. Different color tokens served to model different types of
machines, robots, parts and buffers that are involved in the system operation. This TCPN
model is based on modules which model very broad workstation activities such as “move”,
“process” or “assemble”. A processing sequence is built by linking some these modules
following the process plan. Then the resources needed to execute these activities are linked.
Figure 3 shows an example of the move and assemble modules. If changes are required, the
designer only needs to re-assemble the activity modules.
Our goal was to provide responsive and adaptive re-actions to variation and disruption

from a given process plan or assembly sequence. Specifically, three subproblems were in
this research : (1) a workstation model was constructed which allowed a top-down
synthesis and integration of various control functions. The proposed workstation model
had several levels of abstraction which decomposes operation commands requested by a
higher cell level into a sequence of coordinated processing steps. These processing steps
were obtained through a hierarchical decomposition process where the corresponding
resource allocations and operations synchronization problems are resolved. The motion
control function is incorporated at the lowest level of the hierarchy which has adequate
intelligence to deal with uncertainties in real-time, (2) a model-based monitoring scheme
was developed which includes three functions : collecting necessary information for
determining the current state of the actual system, checking the feasibility of performing the
current set of scheduled operations, and detecting any faulty situation that might occur
while performing these scheduled operations. A Petri net-based watch-dog approach was
integrated with a neural network to perform these monitoring functions, and (3) an error
recovery mechanism was proposed which determines feasible recovery actions, evaluated
possible impacts of alternative recovery plans, and integrates a recovery plan into the
workstation model (Ma, 2000; Ma & Odrey, 1996) . Our focus here is on the integration of
Petri Net based models and neural network techniques for preliminary diagnostics.
Diagnostics determines the fault or faults responsible for a set of symptoms. A diagnosis

may require a complete knowledge of the physical structure of the present devices and their

Petri Net: Theory and Applications 328

functionality (deep knowledge) and a short series of pre-established actions (shallow

knowledge) for pre-defined faults. The diagnostics activity, as structured by Ma (2000), can

be divided into two main types: (i) Preliminary diagnostics and (ii) deep reasoning. The

neural network architecture for preliminary diagnostics is shown in Figure 12.

Preliminary diagnostics is the first subtask of the diagnostic subfunction and is used to

facilitate the diagnostic process. The approach taken here contains three different neural

networks as shown in Figure 12. Neural net 1, termed NN I, generates the expected

system status by converting a Petri net representation into a neural network structure for

real-time control. The second neural net NN2 implements a sensor fusion and/or logical

sensors concept (Henderson & Shilorat, 1984) to provide NN3 with the actual system

status such that a sensory-based control system can be realized. NN3 is a multilayer

feedforward neural network for classifying data obtained from NN1 and NN2 into

different categories for preliminary diagnostics. Preliminary diagnostics provided a

scheme to reduce efforts for further diagnostics by classifying conditions for recovery into

four categories: (i) shut down the system, (ii) continue operation, (iii) call operator or (iv)

invoke proper operation. The purpose of the deep reasoning module was to isolate the

failure(s) and report to the error recovery module. Ma (2000) investigated a neural

network model for preliminary diagnostics using an input-output technique for shallow

knowledge. A Petri Net embedded in a neural network was used to classify errors. These

errors were linked to a rule-based expert system containing pre-defined preliminary

corrective actions (Ma and Odrey, 1996). The neural network was trained and tested with

examples drawn from combinations of PN states and sensory data. Deep reasoning was

not considered in Ma’s work and is a subject of on-going research.

A top-down Petri net decomposition approach was performed to construct a hierarchical
PN model for the given work-station example. High level Petri nets such as TCPN and
TPN are included to enhance the modeling capability and the hierarchical concept
provided the necessary task decomposition. The first (highest) sublevel was a timed-
colored Petri net (TCPN) which is a general PN with two additional parameters: 1) a time
factor to represent the operation time for each operational place, and 2) color tokens to
distinguish between parts. This is decomposed into the second sublevel which is a timed
Petri net (TPN) where color tokens are not required because different parts (color tokens)
are modeled separately. The third decomposition (sublevel) of the model further
decomposes the operations at the assembly table into detailed processing steps such as
"pick up", "transport", and "place". This final decomposition allows the Petri net to be
more easily analyzed.
The approach taken in this research embedded a Petri net model in a neural network
structure and was termed Petri Neural Nets (PNN). The purpose of a PNN is to facilitate
the process of obtaining state evolution information (the expected system status) by
taking advantage of the parallel computational structure provided by neural networks
and utilizing the T -gate threshold logic concept proposed by (Ramamoorthy & Huang,
1989). The state evolution of a system modeled by Petri nets can be expressed using the
following matrix equation:

 M(K+1) = M(K) + UT(K)A, K=1,2,… (7)

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 329

M(K) is a (lxm) row vector representing the system marking at the Kth stage. U(K) is a (n
x 1) column vector containing exactly one nonzero entry "I" in the position corresponding
to the transition to be fired at the Kth firing. The matrix A is a (nxm) transition-to-place
incidence matrix. A schematic of the NN1 architecture is indicated by Figure 13.

Fig. 12. Neural Network architecture for preliminary diagnosis

Based on the state equation, a three-layered PNN with an embedded T -gate threshold logic
which simulated the state evolution of a general PN from M(K) to M(K+I) was developed as
follows for the different layers: 1) an input vector Ik = [I1, ...,Im] (m = number of places) is
set equal to M(K). The expected output vector Oi (i= 1,…,m) is M(K+I). The second layer of
the PNN contains three vectors: (i) VJ (i=1,2 ,... , m) representing M(K), (ii) Gr (r= 1,…n)
where n = number of transitions representing UT(K) which is determined by execution rules
for Petri nets, and 3) Hh (h=l, …, m) which represents UT(K)A. For a decision-free PN, the
execution rules can be implemented using AND T -gate threshold logic. The T -gate
threshold logic is a neural network with fixed weights and can be used to implement a rule-
based expert system for time-critical applications as noted by (Ramamoorthy and Huang,
1989). The weights in the PNN are hard weights and are assigned according to specified
rules. Details can be found for theses weights and the output function for each layer in (Ma
& Odrey, 1996).

Fig. 13. NN1 Neural Network architecture incorporating T-gate threshold logic gates (Ma &
Odrey, 1996)

Neural Network 1 (NN1)
Transformation of system state
information from a Petri Net

representation

Neural Network 2 (NN2)
Implementation of a sensor
fusion and/or logical
sensor concept

expected system status actual system status

Neural Network 3 (NN3)
Classification for preliminary diagnostics

Petri Net: Theory and Applications 330

The purpose of preliminary diagnostics was to classify operation conditions occurring in the
workstation into several categories, each one associated with a preliminary action. The input
vector of NN3 is portioned into two sets of nodes. The first set represents the expected
system status and is obtained from the output of NNI (i.e. M(K.+I) of the corresponding
sublevel-TPN model). The second set of nodes [S1, S2, Sn] represent categories of sensor
information which are obtained from NN2. The output vector of NN3 represents the four
preliminary actions: shutdown (O1), call operator (O2), continue operation (O3), and invoke
further diagnostics (O4). The value of these output are either “0” representing not activated,
or "1" representing activated. An outline of the system is given in Figure 13. Training and
testing data are obtained using diagnostic rules based on common knowledge about the
system. In general, the actua1 operation status of a system at any instant is the set of
readings of all the sensor outputs. However, the actual system status information given by
the sensor outputs is not sufficient for determining preliminary actions. Both the actual
system status and the expected system status are required. The determination of a
preliminary action for operations can thus be stated for the example of Figure 14 as follows:

 IF "the expected system status" = [p1,p2.p3,p4,p5] AND “the actual system
status" = [s1.s2.s3.s4]

 THEN ''preliminary action" = Oi (i = 1,2,3,4)

Fig. 14. Generation of preliminary actions in a neural network incorporating T-gate
threshold logic

Based on a sublevel TPN model, NN1 generates different outputs corresponding to possible
expected system status M(K). Different fault scenarios were used as the basis for simulation
of actual system status and for generating diagnostic rules. Details of the simulation and
results can be found in (Ma and Odrey, 1996). In general a neural network for preliminary
diagnostics was investigated. For NN3 (classification for preliminary diagnostics) different
3-layer perceptron networks with different hidden nodes were simulated and it was found
that a 19-15-4 perceptron network gave the lowest percent classification. Note that this work

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 331

did not construct the NN2 network and only simulated data was used to test the proposed
neural network NN3. We plan to continue this approach which incorporates a hybrid
neural – Petri net in future research.

5.3.1 Advanced diagnostics and error recovery
Preliminary diagnostics, as noted in the previous section, provides a scheme to reduce
efforts for further diagnostics by classifying conditions to be diagnosed into four categories,
each one associated with a preliminary action. The preliminary actions separate the
diagnostic conditions which require knowledge about the physical structure of the devices
and/or their functional descriptions (i.e., deep knowledge). from the conditions which need
only a short series of inferences but fast responses (i.e. shallow knowledge). Shallow
knowledge which usually appears in the form of direct input-output association can store
patterns of predefined instructions from designers and/or experts was considered more
desirable at the preliminary diagnostics stage in this research.

5.3.2 Further diagnostics

Fig. 15. A general framework for error recovery in a Petri net based system

Further (advanced) diagnostics is initiated to consider two possible situations: either a
preplanned error(s) has occurred or an unanticipated error(s) has occurred. Regardless
of error type, a recovery plan is needed to construct a recovery trajectory to bring the
system back to a normal condition (nominal trajectory). For preplanned errors, the
corresponding error causes and/ or sources can be established in a failure reason data
structure. With such a database structure, one can then obtain the failure reasons
associated with a particular operation. In this research, an integrated approach which
utilizes both knowledge-based systems and neural networks is proposed for

Petri Net: Theory and Applications 332

unanticipated errors. Neural networks are used to provide additional information
about unanticipated situations through learning. The same neural network used in the
preplanned error is used to get as much information as possible about unanticipated
errors. The research effort is directed toward using preplanned errors as training data
and a multilayer, feedforward network as the initial test structure. A knowledge-based
system then takes this information as inputs to automated processes. The modeling
process is based on the feasibility of using Petri nets with negative tokens (Murata and
Yamaguchi, 1990). Our current efforts focus on developing an automated reasoning
technique which can draw conclusions from unknown errors in a workstation
environment. To develop an automated reasoning scheme, a corresponding Petri net is
established from information gathered by the neural net approach to model the reasoning.
A schematic of the general framework for error recovery is given in Figure 15.

5.3.3 Error recovery strategies
After diagnostics, the workstation controller needs to generate a recovery plan to
return the system back to a normal state and to continue the remaining tasks. The
generation of recovery plans involves determining recovery strategies, constructing
recovery activities, synthesizing a recovery sequence, and establishing a recovery
plan. To determine recovery strategies, general and specific rules may be selected as
constraints in the generation of recovery plans. In particular, preplanned errors and
unanticipated errors usually have different sets of rules to be followed. In the case of
preplanned errors, the construction of recovery activities can be easily done by
recalling from computer memory. For unanticipated errors, however, an intelligent
task planning system is required, and at least one feasible set of recovery activities
needs to be constructed. In the approach taken recovery activities are synthesized with
the planned activities to form a sequence of coordinated primitive activities. Finally, a
complete recovery plan is established which includes not only the recovery actions but
also other information or commands. In the research done to-date the most important
issues in the generation of recovery plans was to develop an intelligent task planning
system and to synthesize Petri nets corresponding to the recovery activities and to the
planned activities. The purpose of an intelligent task planning system is to select and
sequence processing steps that will change the current state of the system into a
desired system state.
A Petri net based processing step representation to establish error recovery trajectories
through a neural network based learning mechanism was undertaken. The processing steps
modeled by Petri nets were categorized into two classes, namely, an action-class and a
condition-class. Processing steps such as “move”, “ process”, and “assemble” that execute a
task and usually have time associated with them are considered as an action-class. The
condition-class processing steps represent the preconditions and/or post-condition of an
action-class processing step. Examples of condition-class processing steps include “part in
IB” and “part finished processing”. Every action-class processing step is followed by
condition-class processing steps. Similarly, a condition-class processing step can trigger one
or more action-class processing steps. Based on the relationship between action-class and
condition-class processing steps, two sets of problems are defined:

P1: Action-Condition Problem (ACP), i.e. given an action-class processing step, find a (pre)
condition-class processing step

 P2: Condition-Action Problem (CAP), i.e. given a (post) condition-class processing step,
determine an optimal action-class processing step

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 333

The recovery plan generation problem then involves solving ACP and CAP iteratively
which then generates a sequence of processing steps until a desired system state is reached.
When the error recovery module is initiated by the monitoring and diagnostics module, the
expected system state is compare with the actual system state to obtain the discrepancy
(error) of the system. If the error state is at an action-class processing step, the ACP problem
is solved (through the Action Neural Network) and the result is compared with the normal
trajectory to see if any of the normal state can be reached. If not, the error recovery routine
continues by feeding the results from the ACP problem into the CAP problem which is
solved through the Condition Neural Network. The ACP and CAP problems are invoked
iteratively until a state in the normal trajectory can be reached. Similarly, if the error state is
at a condition-class processing step, the CAP problem is invoked first and the results are fed
into the ACP problem, if necessary.
To solve ACP and CAP problems, it was necessary to consider the interactions between
action-class processing steps and condition-class processing steps. In a workstation
environment, many different processing steps can be constructed. It would be difficult to
consider all the interactions among all the processing steps. The basic elements for
constructing a processing step, however, are limited and thus manageable. We term these
individual steps as primitive elements. Our approach consisted of action-class processing
steps being composed of three different elements: the action element, the object element, and
the location element. For example, in the “move part A to m1 using robot 1” processing
step, the action element is “move”, the object elements are “part A” and “robot 1”, and the
location element is “m1”. Similarly, the condition-class processing steps have the object
element, the location element, and the status element. For example, the processing step,
“part A finished at m1”, has “part A” as an object element, “m1” as the location element,
and the status element is “finished”. Various action-class and condition –class elements can
be constructed. In an industrial setting such steps could be constructed from basic Method-
Time-Measurement (MTM) data already available. Each processing step is represented in
terms of different elements using binary vector representations. An action-class processing
step, “move part A to machine 1 with robot 1”, can then be represented as an action –class
vector PSA

PSA =[1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0]

where the “1” designation refers to the primitive element considered and “0” is interpreted
as an element not considered from the action-class set. Similarly, a vector PSC can be
defined to represent a condition-class processing step. An example of
a condition-class processing step, “part A at machine 1”, could be represented by a vector PSC
as follows:

PSC = [1 0 0 0 0 1 0 0 0 0 0 0 0 0]

The elements within the vector are interpreted as active or inactive. This representation has
the advantages of being able to represent many combinations of actions, objects, locations,
and status. In addition, the vector-based representation allows one to apply neural network
techniques that provide learning capability in the generation of recovery plans for
unanticipated errors. In this research, in order to capture the relationship among processing
steps and to generate error recovery plans, a Boltzmann machine neural network was
investigated.

Petri Net: Theory and Applications 334

5.3.4 Boltzmann machine neural network structure
The Boltzmann Machine is a particular class of neural networks that consists of a network of
simple computing elements. The states of the neurons are binary, i.e. 0 and 1. The neurons in the
network are connected by synapses with different (real) weights, which represent a local
quantitative measure for the desirability that the two connected neurons are on. Similar to
backpropagation neural networks, Boltzmann machines can be trained on test data to associate
input and output values. In addition, one can use Boltzmann in optimization problems where
the state of an individual neuron is iteratively adjusted to achieve minimal cost objective. The
ability of doing both association and optimization makes Boltzmann machines very appealing in
the application of workstation recovery plan generation. In this research, the Boltzmann machine
is used at two different stages, namely a learning stage and an optimization stage. At the
learning stage, the objective is to capture the relationships among various elements of the
processing steps through weights adjustment. The relationships among various elements of the
processing steps should be the same throughout the operations. Therefore, the learning stage is
performed off-line. Once the relationships (weights) are established, the desired output is found
at the second stage, on-line, through solving an optimization problem. In this research, in order
to capture the relationship among process steps ant to generate error recovery plans, a Boltzman
machine neural network was used. Details of this investigation are beyond the scope of this
chapter and are currently being submitted for publication. Details can also be found in (Ma,
2000).

6. Conclusions
The work presented above essentially summarizes past and on-going work within the
Industrial & Systems Engineering department at Lehigh University on “smart” systems. The
research undertaken indicates a variable architecture and approach for such systems.
Extensions to this work will incorporate stochastic implications, communications and
negotiation strategies between agents, and further work on control nets and strategies.
Hybrid nets such as the Petri –Neural Net are of particular interest. The techniques
integrated into this work in the future will be directed toward development of robust,
reconfigurable, adaptable large scale systems. Applications are currently in production and
logistic systems. Other applications are being pursued.

7. Acknowledgments
The author would like to thank the students who have contributed to this work over the
years. In particular, the work in this chapter is based on the work of Drs. Cheng-Sheng Liu,
Christina Ma, and Gonzalo Mejia. The author would also like to thank Ms Julie Drzymalski
for helping in proof reading this manuscript and providing helpful suggestions in its
formulation. Her graduate dissertation is extending the concepts of this chapter to supply
chains and enterprise level problems.

8. References
Albus, J. (1997). The NIST Real-time Control System (RCS): an approach to intelligent

systems research. Journal of Expert Theory in Artificial Intelligence. Vol. 9, No 2-3,
pp. 157-174.

Barad, M. & Sipper, D. (1988). Flexibility in Manufacturing Systems: Definition and Petri
Net Modeling, International Journal. of Prod. Research, Vol. 26, No.2, pp. 237-248.

Error Recovery in Production Systems: A Petri Net Based Intelligent System Approach 335

Brennan, R. (2000). Performance Comparison and Analysis of Reactive and Planning-based
Control Architectures for Manufacturing. Robotics and Computer Integrated
Manufacturing. Vol. 16 , No. 2-3, pp.191-200.

Duffie, N. Chitturi, R. Mou, J. (1988). Fault Tolerant Heterarchical Control of Heterogeneous
Manufacturing System Entities. Journal of Manufacturing Systems. Vol. 7, No. 4. pp.
315-327.

Fielding, P. J., DiCesare, F., Goldbogen, Geof., Desrochers, A.(1987) Intelligent automated
error recovery in manufacturing workstations. Proceedings of IEEE International
Symposium on Intelligent Control 18, pp. 280-285, Philadelphia, PA, 1987, IEEE,
Piscataway, NJ.

Gou, L. Luh, P. Kyoya, Y. (1998). Holonic manufacturing scheduling: architecture,
cooperation mechanism, and implementation. Computers in Industry. Vol 37, No. 3,
pp. 231-231.

Henderson, T., Shilcrat,E. (1984), Logical Sensor Systems, Journal of Robotic Systems, Vol.1,
No.2, pp. 169-193.

Hillion, H. Proth, J.M. Performance Evaluation of Job-Shop Systems Using Event Graphs
(1989). IEEE Transactions on Automatic Control, Vol 34, No 1, pp. 3-9.

Jennings, N.R. (2000) On agent-based software engineering, Artificial Intelligence, Vol. 117,
No. 2, pp. 277-296.

Liu C. S. (1992). Planning and Control of Flexible Manufacturing Cells with Alternative
Routing Strategies. Ph.D. Dissertation. Department of Industrial Engineering,
Lehigh University.

Liu, C, Ma, Y. Odrey, N. (1997) Hierarchical Petri Net Modeling for System Dynamics and
Control of Manufacturing Systems. Proceedings of the FAIM Conference, pp.169-182,
Middlesbrough, UK, June 1997, Begell House, NY.

Ma, Yi-Hui (2000) Flexible Manufacturing workstation with Error Recovery Capability,
Ph.D.Dissertation, Dept. Of Industrial Engineering, Lehigh University

Ma, Yi-Hui, Odrey, Nicholas G.. (1996), On the application of Neural Networks to a Petri net
–based intelligent workstation controller for manufacturing, Proceedings of
theArtificial Neural Networks in Engineering (ANNIE ’96) conference, pp. 829-836, Vol.
6, St. Louis, MO, November, 1996 ASME Press, NY.

Maturana, F. Shen, W. Norrie, D. (1999). MetaMorph: An adaptive agent-based architecture
for intelligent manufacturing. International Journal of Production Research, Vol. 37,
No.10, pp. 2159-2173.

Mejia & Odrey(2005), An approach using Petri Nets and improved heuristic search for
manufacturing systems scheduling, Journal of Manufacturing Systems, Vol. 2, No. 2,
pp. 79-92.

Mejia, G. , Odrey, N. (2004) Real Time Control and Error Recovery of Flexible
Manufacturing Workstations: An Approach Based on Petri Nets, Proceedings of the
14th International Conference on Flexible Automation and Intelligent Manufacturing, pp.
824-831, Toronto, CN, June, 2004, Begell House, NY.

Meystel & Albus, (2002), Intelligent Systems: Architecture, Design , and Control, John Wiley
&Sons, Inc. , New York,

Meystel, A and Messina, E. (2000) The Challenge of Intelligent Systems, Proc. Of 15th Int’l
Sym. On Intelligent Control, pp. 211-216, Rio Patras, Greece, July, 2000, IEEE,
Piscataway, NJ.

Murata, T. (1989) Petri nets: properties, analysis, and applications. Proc. of IEEE. Vol.7, No.
4, pp.541-580

Petri Net: Theory and Applications 336

Odrey & Mejia (2003), A reconfigurable multi-agent system architecture for error recovery in
production systems. Robotics & Computer Integrated Manufacturing, Vol. 19 No. 1-2,
pp. 35-43.

Odrey & Mejia(2005), An augmented Petri Net approach for error recovery in
manufacturing systems control, Robotics & Computer-Integrated Manufacturing, Vol.
21, pp. 346-354.

Odrey, N. Ma Y-H. (2001). A Multilevel, Multi-Layer Petri Net Based Approach for
manufacturing Systems Control. Proceedings of the 11th International FAIM
Conference. pp. 218-228, Dublin, Ireland. July 2001., Begell House, NY.

Odrey, N. Ma, Y. Intelligent Workstation Control: An Approach to Error Recovery in
Manufacturing Operations. Proceedings of the 5th International FAIM Conference, pp.
124-141, Stuttgart, Germany, 1995, Begell House, NY.

Okino, N. (1993) A Prototype of Bionic Manufacturing Systems in Flexible Manufacturing
Systems, Past, Present, Future. Publisher, J Peklenik,. Slovenia.

Sousa, P. Ramos (1999), C. A Distributed Architecture And Negotiation Protocol For
Scheduling In Manufacturing Systems Computers in Industry. Vol. 38, No. 2, 1999,
pp. 103-113.

 Sun, J. Xue, D. Norrie, D (1999). An Intelligent Production System Scheduling Mechanism
Considering Design and Manufacturing Constraints. Proceedings of the Third
International Conference on Industrial Automation, pp. 2411-2414. Montreal. June, 1999

Teng, T.E. & Black, J.T., (1990), Cellular Manufacturing System Modeling: the Petri Net
Approach, Journal of Manufacturing Systems., Vol.9 No.1, pp. 45-54.

Tharumarajah, A. Wells, A. J. Nemes, L. (1996) Comparison of the bionic, fractal and holonic
manufacturing system concepts. International Journal of Computer Integrated
Manufacturing. Vol. 9, No.3, pp. 217-226.

Valckernaers, P. Bonneville, F. Van Brussel, H. Bongaerts, L. Wyns, J. (1994). Results of the
Holonic Control System Benchmark at KULeuven. Proceedings of Renssealer's 4th
International Conference on Computer Integrated Manufacturing and Automation
Technology (CIMAT), pp. 128-133, Troy, NY 1994, IEEE, Piscataway, NJ.

Van Brussel, H. Wyns, J. Valckernaers, H. Bongaerts, L. Peeters, P.(1998) Reference
Architecture For Holonic Manufacturing Systems: PROSA. Computers in Industry
Vol 37, pp. 255-274.

Van Brussel, H. Bongaerts, L. Wyns, J. Valckernaers, P. Van Ginderachter, T.(1999). A
conceptual framework for Holonic Manufacturing: Identification of manufacturing
holons. Journal of Manufacturing Systems, Vol. 18, No. 1, pp. 35-52.

Venkatesh, K.; Zhou, M.(1998). Object-oriented design of FMS control software based on
object modeling technique diagrams and Petri nets. Journal of Manufacturing
Systems. Vol. 17, No. 2, pp.118-136.

Wang, L. Balasubramanian, S. Norrie, D. Brennan, R. (1998). Agent-based Control System
for Next Generation Manufacturing. Proceedings of the 1998 IEEE ISIC/CIRA/ISAS
Joint Conference. Gaithersburg, MD., 1998, IEEE, Piscataway, NJ.

Warnecke, H.(1993), The fractal factory. Springer-Verlag, NY.
Zhou, M. DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufacturing

Systems. Kluwer Academic Publishers. USA.

15

Estimation of Mean Response Time of
Multi–Agent Systems Using Petri Nets

Tomasz Babczy ski and Jan Magott
Wroc aw University of Technology

Poland

1. Introduction
Performance analysis of multi–agent system can be done by experiments with real system,
simulation or analytic methods. Now, multi–agent technologies, e.g., (Deloach et al., 2001;
JADE), are often based on Unified Modeling Lanuage (UML) (Booch et al., 1999; UML, 2007)
or its modifications. The following analytical approaches: queuing network models
(Kahkipuro, 1999), stochastic automata networks (Steward et al., 1995), stochastic Petri nets
(King & Pooley, 1999), stochastic process algebra (Pooley, 1999), Markov chains can be used
in performance evaluation of multi–agent systems.
In this chapter, an analytical approach, which is based on Petri nets, is developed. This
approach is applied to performance evaluation of layered multi–agent system. These layers
are associated with the following types of agents: manager, bidder, and searcher ones.
Time–out mechanisms are used in communication between agents. Our method is based on
approximation using Erlang distribution. Erlang distributions create the family of
distributions with different number of stages. In the paper (Babczy ski & Magott, 2006a), an
approximation method which is based on Erlang distribution has been applied for the above
layered multi–agent system. In that paper, there was no bounds for time of waiting for
messages from the agents. In present chapter, time–out mechanisms are used in
communication between the agents. The chapter is an extension of the paper (Babczy ski &
Magott, 2006b) where PERT based approach was presented. Accuracy of our approximation
method is verified using simulator. This simulator has been previously used in simulation
experiments with the following multi–agent systems: personalized information system
(Babczy ski et al., 2004a), industrial system (Babczy ski et al., 2004b), system with static
agents and system with mobile agent (Babczy ski et al., 2005). These systems have been
expressed in standard FIPA (FIPA) which the JADE technology (JADE) is complied with.
The chapter is organized as follows. In section 2, the multi–agent system is described. Then
our approximation method is presented. In section 4, accuracy of our approximation
method is verified by comparison with simulation results. Finally, there are conclusions.

2. Layered multi–agent system
We consider the layered multi–agent information retrieval (MAS) system given at Fig. 1.
The MAS includes: one manager type agent (MTA) as Fat Agent, two bidder type agents
(BTAs) as Thin Agents, and searcher type agents (STAs) as Thin Agents. One BTA co-
operates with a number of STAs.

Petri Net: Theory and Applications 338

Fig. 1. Layered multi–agent information retrieval system

After receiving a request from an user, the MTA sends messages to the BTAs in order to
inform them about the user’s request. Then the timer of the MTA is started, and the MTA is
waiting for two responses from the BTAs. The waiting time is limited by the termination
time tm. Having two responses from the BTAs, the MTA prepares the response for the user.
If the maximal waiting time tm has elapsed then the MTA prepares the response for the user
having information received from the BTAs until the tm has elapsed. In this case, the MTA
has the response from one BTA or it has no response.
After receiving a request from the MTA, the BTA sends messages to all STAs co–operating
with this BTA. Then the timer of the BTA is started, and the BTA is waiting for responses
from all its STAs but no longer than the termination time tb. Having responses from all its
STAs, the BTA prepares the response for the MTA. If the maximal waiting time tb has
elapsed then the BTA prepares the response for the MTA having information received from
the STAs until the tb has elapsed. In this case, the BTA has less responses from the STAs than
the number of its STAs.

Fig. 2. Petri net model of layered multi–agent information retrieval system

The STA prepares the response by the Data Base (DB) searching. Each STA is associated
with one DB. The probability of finding the response in the DB is denoted by f_rate. Time

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 339

unit is second, and it will be omitted. If there is required information in the DB, then
searching time is expressed by uniform distribution over the time interval [0,b). Hence, the
expected searching time, provided there is the required information in the DB, is equal to
b/2. Searching time is equal to b with the probability 1-f_rate.
Message transmition times between the MTA and the BTA, and between the BTA and the
STA are given by n stage Erlang distributions with parameter for each stage. Each stage is
described by exponential distribution with this parameter. Random variable expressed by
Erlang distribution is denoted by En, . Exponential distribution is a special case of Erlang
distribution, i.e., E1, . In examination of the accuracy of our approximation method, it will be
assumed that n=2, =1.
In Fig. 2, rectangles represent timed transitions with non-zero firing time, while dashes re-
present immediate transitions with zero firing time. Immediate transitions have higher prio-
rity than timed transitions. Firing of transition t1 illustrates that the MTA sends messages to
the BTAs. Presence of tokens in places p4 and p5 denotes that the timer for termination time
tm has been started. If there are tokens in all input places of transition t2 during time inter-
val of length tm, then this transition can be fired in last time instant of this interval. Firing
time of transition t3 expresses transmission time of message from the MTA to a BTA. Firing
of transition t4 indicates that the BTA has send m messages to m STAs. Firing time of t6 is
equal to transmission time of the message from the BTA to a STA. From the other side, firing
of transition t4 causes that there are tokens in all input places of transition t5. The time tb is
termination time associated with the BTA. If there are tokens in all input places of transition
t5 during time interval of length tb, then this transition can be fired in last time instant of
this interval. If there is a token in place p10, then transitions t7, t8, respectively, are fired
with probabilities f_rate, 1-f_rate, respectively. Transitions t9, t10, respectively, illustrates
STA searching process in DB, provided required information is found, is not found, respecti-
vely. Transition t11 expresses transmission of message from the STA to the BTA. m tokens in
place p14 shows that m messages from the STAs have been received by the BTA. There are
races of transitions t5, t13 to be fired. If a token is added to place p15 earlier than the firing
time tb has elapsed, then transition t13 is fired. Transition t15 is connected with transmission
of message from the BTA to the MTA. Firing of transition t16 denotes that the MTA has
received all messages from all BTAs. The token in place p5 is engaged in races of transitions
t2, t17 to be fired. A token in place p21 indicates that the user has received a response.

3. Erlang distribution based approximation method
Now we will explain how the expected value of time of the response to the users request is
approximated. First, we show what kind of operations will be considered. Then, we recall
the functions used in further part of the section. Next, the method of the approximation will
be shown. Finally, the approximation of the mean response time of the MAS will be given.

3.1 Operations on random variables
In the chapter, the approximation of the following operations will be described. In all cases
we assume the independence of random variables.
Sum of m random variables. For RVs X1 to Xm we introduce the Sum operation.

mm XXXXSum 11),,(
 (1)

Because the RVs X1 to Xm are independent, the following equations, for expected values (E)
and variations (Var) of the RVs, are true.

Petri Net: Theory and Applications 340

m

k
km

m

k
km

)Var(X)),X,Var (Sum(X

)E(X)),X,E (Sum(X

1

1

1

1

 (2)

Maximum of m identically distributed RVs. For m independent RVs X1 to Xm we define the
Max operation.

),,(1 mXXMax (3)

The cumulative distribution function (CDF) is given by the formula:

m
XXXMax tFtF km)(()(),,(1

 (4)

where)(tF kX is the common CDF of RVs X1, …, Xm.

Cut–off by time–out event. For the RV X and time–out T we have the Tout operation.

),(TXTout (5)

The CDF is given by the formula:

Tt
TttF

tF X
TXTout

for1

for)(
)(),((6)

where)(tFX is the CDF of the RV X.

Approximation operation. Additionally, we define an Apx operation, which stands for the
approximation of a RV by the Erlang distributed one.

,)(nEXApx (7)

where En, is the Erlang distributed RV with n stages and parameter for each stage.
This approximation will be used for RVs resulted from the Sum and the Max operations. The
details of the approximation will be shown in section 3.4.

3.2 Gamma functions
In the below described approximation, the function will be used. Now we recall some

equations and facts associated with this function (MathWorld). The (complete) function
for real value of p is defined by the following integral.

0

1)(dxexp xp (8)

Two incomplete functions are also defined, the upper incomplete function and the lower

incomplete function.

t
xp dxextp 1),(,

t xp dxextp
0

1),((9)

The following obvious equation is true for the all values of p and , t.

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 341

),(),()(tptpp (10)

When the parameter p=n N, the function reduces to the factorial.

)!1()(nn (11)

As for the function from the equation 5, the incomplete functions can also be reduced to

elementary functions for the parameter p=n .

1

0

1

0

!

)(
1)!1(),(

!

)(
)!1(),(

n

k

k
t

n

k

k
t

k
tentn

k
tentn

 (12)

3.3 Erlang distribution
Some probability distributions of time characteristics are approximated by Erlang
distribution.
The probability density function and the CDF of Erlang distribution with n stages and with

parameter are given (MathWorld) by expressions:

1

0

1

1
1

n

k

tkk

E

tnn

E k!
et

(n)
(n, t)(t)F,

)!(n
et(t)f n,kn,k (13)

The random variable (RV) with this distribution will be denoted by ,nE . This RV can be

interpreted as sum of n RVs with exponential distribution and each with parameter . The

expected value and the variance for this RV are equal to /)(, nEE n and

2
, /)(nEVar n , respectively.

For the RV X (with any distribution), the squared coefficient of variation (SCV) of the X is
defined by the formula:

2)(

)(
)(

XE
XVarXSCV (14)

where: E(X) is the expected value of X, Var(X) is the variance of X.

The SCV for the ,nE is equal to nESCV n /1)(, .

3.4 Two moments approximation
In the Section 3.1, the Apx(X) operation was introduced. The result of the operation is the

Erlang distributed random variable ,nE . In order to determine the parameters of demanded

Erlang distribution, the following procedure can be used.
1. For the RV X under approximation, calculate the moments

E(X), Var(X) and the coefficient SCV(X)

2. Determine the number n of stages of the Erlang distribution

n=round(1/SCV(X))

Petri Net: Theory and Applications 342

3. Obtain the parameter from the equation:

=n/E(X)

While the last two steps of the procedure are common for all distributions of approximated
RVs, the first one is different for RVs resulted from operations Sum and Max, introduced in
the Section 3.1.

),,(1 mXXSum The moments are calculated from the formulae 2.

),,(1 mXXMax In this case, the moments are calculated by numerical integrating the

following formulae (Abdelkader, 2003)

2

0

0

)()(12)(

)(1)(

MEdttFtMVar

dttFME
m

X

m
X

k

k
, (15)

where:)(tF kX is the common CDF of RVs X1, …, Xm as in the formula 2, M is the shortcut for

),,(1 mXXMax .

This operation will be executed on the Erlang distributed RVs obtained as a result of the
approximation.

3.5 Example
Now, we show how to apply the approximation method to the layered multi–agent system
described in the section 2.
The timed model of the system can be written using the operations defined in the
section 3.1. First, we suppose that time–out mechanism is not used.

Fig. 3. Petri net of the first analysis step

Let us consider the subnet contained in dashed part of Fig. 3. It represents the RV of the STA
searching time in the DB denoted by ratefbU _, . This RV has the probability density function:

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 343

otherwise0

for)(_1

,0for/1_

)(_, btbtratef
btbratef

tf ratefbU (16)

where (t-b) is the Dirac delta distribution in point b.
Expected value, variance, and SCV for this RV are given by the following expressions:

2_,

2

_,

_,

)_2(3

)_34(_
)(

12

)_34(_
)(

2

)_2(
)(

ratef
ratefratefUSCV

ratefratefbUVar

ratefbUE

ratefb

ratefb

ratefb

 (17)

tm

2nd bidder

m

2nd bidder

tb

E(2,1)

E(2,1)

m

E(2,1)

E(2,1)

Ub,f_rate

p1 p7

p6p3

p20p21

p17p18

p15

p16

p10

p14 p13

p8

p9

p2

p19

p4

p5

t1

t3

t4 t6

t11t12

t5

t13

t14t15t16

t17

t2

Fig. 4. Petri net of the second analysis step

Let us consider the subnet contained in dashed part of Fig. 4. It illustrates the probability
distribution of the RV X of the length of the time interval between the time instant when the
BTA sends the request to given STA and the time instant when the BTA receives the
response from this STA. This RV is given by the expression:

),,(,_,, nratefbn EUESumX (18)

We suppose that RVs of the transmission times between agents and RVs of the searching
processes in the DBs are independent. Hence, according to the expressions 2, the expected
value, the variance, and the SCV for the RV X are expressed by the following formulae:

2

222

22
4

12
3

1
2

2
1

)_2(43

_3_424
)(

__2)(

_2)(

bratefn
bratefratefnXSCV

ratefbratefbnXVar

ratefbbnXE

 (19)

Petri Net: Theory and Applications 344

For analysed multi–agent system, the RVs of the transmission times between the agents are
two stage Erlang distributions with the parameter =1 for each stage, and will be denoted
by E2,1.
The RV X is approximated by the RV:

)(, XApxE XXn (20)

using the procedure described in the section 3.4.

Fig. 5. Petri net of the third analysis step

Let us consider the subnet contained in dashed part of Fig. 5. It models m STAs associated to
one BTA. Let kn XXE)(, be such a RV XXnE , that approximates the length of the time

interval between the time instant when the BTA sends the request to kth STA and the time
instant when the BTA receives the response from this STA. Equal values of mean completion
times of each sequence: transmission from the BTA to the STA, searching in the DB,
transmission from the STA to the BTA has been selected because this strategy usually gives
the greatest error. In this case, the RV Y of the BTA waiting time for all responses from the
STAs is

))(,,)((,1, mnn XXXX EEMaxY . (21)

The CDF and the probability density function of the RV Y are given by the expressions:

m

mntn

Y

m

Y

n
tnemttf

n
tntF

)!1(

),(
)(

)!1(

),(
)(

11
 (22)

The RV Y is now approximated by the RV

)(, YApxE YYn (23)

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 345

using the procedure described in the section 3.4. The moments needed in the procedure are
calculated using the formulae 15.
Let us consider the subnet contained in dashed part of Fig. 6. It represents such a situation
that the BTA waits for the responses from the m STAs but not longer than for the termination

time tb, i.e., time–out mechanism is applied. Therefore, we analyse the RV YYnE , truncated

in the tb. This RV will be denoted by:

),(, tbEToutW YYn . (24)

Fig. 6. Petri net of the fourth analysis step

The CDF and the kth moment of the RV W are given by the expressions:

2)1()2()1(

)(

)()(;)(

)!1(

),(

)!1(

),(

!

),1(
)(where

otherwise1

0for)(

0for0

)(

WWW

Y

YY
k

k
YY

YYk
W

Y

tnn
YYY

W

WW

WVarWE

n
tbntb

n
tbkn

n
ettntF

tbttF
t

tF

YYY

. (25)

The RV W is not approximated.
Let us consider the subnet contained in dashed part of Fig. 7. It models the RV of the length
of the time interval between the time instant when the MTA sends the request to given BTA
and the time instant when the MTA receives the response from this BTA is denoted by the
RV:

),,(1,21,2 EWESumZ . (26)

Petri Net: Theory and Applications 346

Fig. 7. Petri net of the fifth analysis step

The expected value of the time of receiving of a response by the MTA (or user), i.e. response
time, is approximated in the similar way as the expected value of the RVs X and Y have been
approximated giving the RV:

)(, ZApxE ZZn . (27)

Fig. 8. Petri net of the sixth analysis step

Let us consider the subnet contained in dashed part of Fig. 8. It expresses two BTAs that are
associated with the MTA. In this case, the RV Q of the MTA waiting time for all responses

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 347

from BTAs is:

))(,)((2,1, ZZZZ nn EEMaxQ . (28)

The expected value and the variance of the RV Q are calculated from the formulae 15.

The RV Q is now approximated by the RV:

)(, QApxE QQn (29)

using the procedure described in the section 3.4.

Fig. 9. Petri net of the seventh analysis step

Let us consider the subnet contained in dashed part of Fig. 9. It models that the MTA waits

for the responses from two BTAs not longer than for the termination time tm. Therefore, we

truncate the RV QQnE , in the tm. This RV will be denoted by:

),(, tmEToutR QQn . (30)

This RV is not approximated, we calculate the expected value E(R) in similar way as E(W)
has been computed from equations 25.

Fig. 10. The final Petri net

Petri Net: Theory and Applications 348

Summing it up, we can write our example model as:

Q), tm) Tout(Apx(R
))), Apx(Z Max(Apx(ZQ

),W,E Sum(EZ
Y), tb) Tout(Apx(W

)), Apx(X), Max(Apx(XY
),E,U Sum(EX

,,

m

,b,f_rate,

21

1212

1

1212

 (31)

4. Accuracy of the approximation method
In order to evaluate the accuracy of the approximation method, the simulation for: the MAS
containing m STAs for each BTA, where m=3,10, have been performed. For each MAS, the

following values of f_rate=0.1, 0.3, 0.6, and 0.9 have been considered. The transmission time

between agents is given by the RV 1,2E . Hence, the mean transmission time between the

agents is equal to 2)(1,2EE , and the mean transmission time in both directions is equal to

4)(trE .

In Table 1, the percentage errors of the mean response time for: the maximal searching time

in the DB equal to b=16, the termination times tb=20, tm=27 are given. First, let us suppose

that time–out mechanism is not considered. The RV of the length of time interval between

the time instant when the BTA sends the message to given STA and time interval when the

BTA receives the response from this STA is),,(1,2_,161,2_,16 EUESumX ratefratef . The

expected value of the RV ratefbU _, is equal:

bratefbratefUE ratefb)_1(2/_)(_, (32)

Hence, 8.8)(9.0,16UE , 2.15)(1.0,16UE , and as a result 8.12)(9.0,16XE , 2.19)(1.0,16XE .

Now let us consider the MAS with the time–out mechanisms. Therefore,)(1.0,16XEtb .

In spite of 8)(/ 1,2EEb and)()(2 9.0,16UEtrE , i.e., the uniform distribution of the RV of

the searching time is dominating the Erlang distribution of the RV of the transmission times,

the Erlang distribution based approximation is very good (maximal error in the Table 1 is

equal to 2.6%).

m f_rate 0.1 0.3 0.6 0.9

3 0.7% -0.4% -2.5% -2.6%

10 1.4% 1.3% 0.7% -0.1%

Table 1. Percentage errors of the mean response time for: the maximal searching time b=16,
the termination times tb=20, tm=27

In Table 2, the percentage errors of the mean response time for: the maximal searching time

b=16, the termination times tb=15, tm=20 are given. In this case:)(3.1 1.0,16XEtb . The

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 349

approximation error is smaller than that for the tb=20 (Table 1).

m f_rate 0.1 0.3 0.6 0.9

3 0.14% 0.17% -0.19% -0.80%

10 0.22% 0.08% -0.28% 0.04%

Table 2. Percentage errors of the mean response time for: the maximal searching time b=16,
the termination times tb=15, tm=20

In Table 3, the percentage errors of the mean response time for: the maximal searching time

b=16, the termination times tb=30, tm=40 are given. In this case: tbXE)(5.1 1.0,16 . Now

approximation error is clearly greater than in previous two tables.

m f_rate 0.1 0.3 0.6 0.9

3 7.3% 6.4% 4.3% 2.5%

10 11.7% 10.9% 12.1% 7.7%

Table 3. Percentage errors of the mean response time for: the maximal searching time b=16,
the termination times tb=30, tm=40

In table 4, the percentage errors of the mean response time for: the maximal searching time

b=32, the termination times tb=38, tm=45 are given. The expected values of analysed RVs are

the following: 6.17)(9.0,32UE , 4.30)(1.0,32UE , and as a result 6.21)(9.0,32XE ,

4.34)(1.0,32XE . Hence, tbXE)(1.1 1.0,32 . Additionally, 16)(/ 1,2EEb . In this case, the

uniform distribution of the RV of the searching time dominates the Erlang distribution of

the RV of the transmission times stronger than for the Tables 1 and 2. The approximation is

still very good.

m f_rate 0.1 0.3 0.6 0.9

3 0.5% -0.7% -3.1% -2.5%

10 0.9% 0.7% 0.6% 1.0%

Table 4. Percentage errors of the mean response time for: the maximal searching time b=32,
the termination times tb=38, tm=45

In Table 5, the percentage errors of the mean response time for: the maximal searching time

b=32, the termination times tb=380, tm=450 are given. In this case, 16)(/ 1,2EEb . The

approximation errors are much greater than previously. However, it is not realistic choice of

parameters, because the termination time tb is more than 10 times greater than the mean

Petri Net: Theory and Applications 350

time of the RV 1.0,32X .

m f_rate 0.1 0.3 0.6 0.9

3 17.2% 11.9% 9.8% 7.6%

10 28.2% 22.3% 24.6% 21.0%

Table 5. Percentage errors of the mean response time for: the maximal searching time b=32,
the termination times tb=380, tm=450

5. Conclusions
The approximation method of the mean response time for layered multi–agent system has

been presented. This system has three layers of agents, namely, manager, bidder, and

searcher type ones denoted by abreviations MTA, BTA, STA. After receiving a request from

an user, the MTA sends the messages to the BTAs in order to inform them about the user

request. After receiving a request from the MTA, the BTA sends the messages to all STAs co–

operating with this BTA. In the communication, the time–out mechanisms are used. The

STA prepares the response for the BTA by the Data Base (DB) searching. The probability of

finding the response in the DB is denoted by f_rate. Searching time is expressed by uniform

distribution over the time interval [0,b). Message transmission times between the MTA and

the BTA and between the BTA and the STA are given by the random variables (RVs) of n
stage Erlang distribution. In verification of accuracy of the method by simulation

experiments, the transmission times have been expressed by the RV of two–stage one.

In the approximation method, the RV with n stage Erlang distribution is used. It has been

obtained from the simulation, that the sum of the RV of the Erlang distribution

(representing the transmission time) and the RV of searching time with uniform distribution

can be approximated by the other RV of Erlang distribution with suitable number of stages.

This is true even if the expected value of the RV of the uniform distribution is clearly greater

than the expected value of the RVs of the transmission times.

Let us analyse the RV of the length of the time interval between the time instant when the

BTA sends the message to given STA and the time instant when the BTA receives the

response from this STA. Let this RV be denoted by X. If the maximal time when the BTA is

waiting for the responses from the STAs (termination time) tb is equal or smaller than the

expected value E(X) of the RV X then the approximation is very good. For the analysed

cases, the maximal error is 3.1%. For the performed simulation experiments, if the tb is

approximately equal to 1.5 E(X) then the maximal approximation error is about 12%. If the

tb is about 10 times greater than the E(X) then, for analysed cases, the approximation error is

about 28%. However, this is not realistic choice of the tb.

Many multi–agent systems have layered structure with the following agents: client assistant,

brokers, execution agents. The presented performance approximation method can be used

for finding the mean time of response on client request for this class of systems. In the

future, we will try to get a better approximation using the general phase type distribution

Estimation of Mean Response Time of Multi–Agent Systems Using Petri Nets 351

(Bobbio et al., 2004) and hypoexponential distribution (Magott & Skudlarski, 1993) instead

of the Erlang one.

6. References
Abdelkader, Y. H. (2003). Erlang distributed activity times in stochastic activity networks.

Kybernetika [Cybernetics], Vol. 39, No. 3, 2003, 347-358.

Babczy ski, T.; Kruczkiewicz, Z. & Magott, J. (2004a). Performance evaluation of multiagent

personalized information system. Proceedings of the 7th Int. Conf. Artificial Intelligence
and Soft Computing - ICAISC, Zakopane, 2004, LNCS/LNAI, Springer-Verlag, Vol.

3070, 810-815.

Babczy ski, T.; Kruczkiewicz, Z. & Magott, J. (2004b). Performance analysis of multiagent

industrial system. Proceedings of the 8th Int. Workshop Cooperative Information Agents -
CIA, Erfurth, 2004, LNCS/LNAI, Springer-Verlag, Vol. 3191, 242-256.

Babczy ski, T.; Kruczkiewicz, Z. & Magott, J. (2005). Performance comparison of multiagent

systems. Proceedings of the Central and Eastern European Conference on Multiagent
Systems - CEEMAS, 2005, LNCS/LNAI, Springer-Verlag, Vol. 3690, 612-615.

Babczy ski, T. & Magott, J. (2006a). PERT based approach to performance analysis of multi–

agent systems. Proc. of Int. Conference on Artificial Intelligence and Soft Computing
ICAISC, Zakopane, 2006, LNCS/LNAI, Springer-Verlag, Vol. 4029, 1040-1049.

Babczy ski, T. & Magott, J. (2006b). Estimation of mean response time of multi–agent

systems. Software Engineering Techniques: Design for Quality, K. Sacha (ed.), 2006,

Springer-Verlag, vol. 227, 109-113.

Bobbio, A.; Horvath, A. & Telek, M. (2004). The scale factor: a new degree of freedom in

phase-type approximation. Performance Evaluation, Elsevier, Vol. 56, No. 1-4, 2004,

121-144.

Booch, G.; Rumbaugh, J. & Jacobson, I. (1999). The Unified Modeling Language, User Guide,

Addison Wesley Longman, 1999.

Deloach, S.A.; Wood, M.F. & Sparkman, C.H. (2001). Multiagents systems engineering,

International Journal of Software Engineering and Knowledge Engineering, Vol. 11, No. 3,

2001, 231-258.

FIPA. Foundation for Intelligent Physical Agents, http://www.fipa.org/specs/

JADE. http://jade.tilab.com/

Kahkipuro, P. (1999). UML based performance modelling framework for object-oriented

distributed systems, Proceedings of the Unified Modeling Language: Beyond the
Standard, 1999, LNCS, Springer-Verlag, Vol. 1723.

King, P. & Pooley, R. (1999). Using UML to derive stochastic Petri net models. Proc. of the
15th Annual UK Performance Engineering Workshop, University of Bristol, 1999, 45-56.

Magott, J. & Skudlarski, K. (1993). Estimating the mean completion time of PERT networks

with exponentially distributed durations of activities. European Journal of Operational
Research, Vol. 71, 1993, 70-79.

MathWorld, Wolfram Research, Inc.,

 http://mathworld.wolfram.com/ErlangDistribution.html,

 http://mathworld.wolfram.com/topics/GammaFunctions.html.

Pooley, R. (1999). Using UML to derive stochastic process algebra models. Proceedings of the

Petri Net: Theory and Applications 352

15th Annual UK Performance Engineering Workshop, University of Bristol, 1999, 23-33.

Stewart, W. J.; Atif, K. & Plateau, B. (1995). The numerical solution of stochastic automata

networks, European Journal of Operation Research, Vol. 86, No 3, 1995, 503-525

UML (2007). Unified Modeling Language v.2.1, OMG specification, 2007

 http://www.omg.org/technology/documents/modeling_spec_catalog.htm.

16

Diagnosis of Discrete Event Systems
with Petri Nets

Dimitri Lefebvre
GREAH – University Le Havre

France

1. Introduction
Modern technological processes include complex and large scale systems, where faults in a

single component have major effects on the availability and performances of the system as a

whole. For example manufacturing systems consists of many different machines, robots and

transportation tools all of which have to correctly satisfy their purpose in order to ensure

and fulfil global objectives. In this context, a failure is any event that changes the behaviour

of the system such that it does no longer satisfy its purpose. Failure events lead to fault

states (Rausand et al., 2004). Faults can be due to internal events as to external ones, and are

often classified into three subclasses : plant faults that change the dynamical input – output

properties of the system, sensor faults that result in substantial errors during sensors

reading, and actuator faults when the influence of the controller to the plant is disturbed

(Blanke et al., 2003).

In order to limit the effects of the faults on the system, diagnosis is used to detect and isolate

the failures. Diagnosis is often associated with control reconfiguration, that adapts the

controller to the faulty situation such that it continues to satisfy its goal. Fault diagnosis and

controller reconfiguration are carried out by supervision systems. This chapter only consider

problems related to the diagnosis of systems. Diagnosis includes distinct stages:

1. The fault detection decides whether or not a failure event has occurred. This stage also
concerns the determination of the time at which the failure occurs.

2. The fault isolation find the component that is faulty.
3. The fault identification identifies the fault and estimates also its magnitude.
Diagnosis is usually discussed according to the model type used, with component based

analysis that uses architectural and structure graph models, with continuous variables

systems described by differential or difference equations and transfer functions, with

discrete event systems represented by automata or Petri nets and with hybrid dynamical

systems that combine continuous and discrete event behaviours (Blanke et al., 2003).

Component based methods uses qualitative methods (Rausand et al., 2004) as failure modes

and effect analysis (Blanke, 1996) and bi-partite graphs to investigate the redundancies

included in the set of constraints and measurements for diagnosis purposes (Cordier et al.,

2000; Patton et al., 1999). Fault diagnosis of continuous variables systems is usually based on

residual generation and evaluation with parity space approaches or observation,

Petri Net: Theory and Applications354

identification and parameters estimation techniques (Gertler, 1998; Patton et al., 1989). The

behaviour of discrete event dynamical systems (DES) is described by sequences of input and

output events. In contrast to the continuous systems only abrupt changes of the signal

values are considered with DES. In that case, the state of the art is different in comparison

with continuous approaches and only few results are available for diagnosis. The problem

has been originally investigated with observation methods for automata (Sampath et al.,

1995) developed in connection with the supervisory control theory (Ramadge et al., 1987).

This chapter focus on diagnosis of DES modelled with Petri nets (PN) where failures are

represented with some particular transitions. The problem is to detect and isolate the firing

of the failure transitions in a given firing sequence. The firings of the failure transitions are

assumed to be unobserveable and must be estimated according to complete or partial

marking measurements that are eventually disturbed by measurement errors. Several

problems are related : firing sequences estimation, sensor selection, delay from failure event

to detection, and also diagnosers complexity. Let us notice that this study is limited to the

methods that represent the faulty behaviours according to the firing of failure transitions

and that assume that the state (i.e. the marking vector) of the system is partially or totally

measurable. In a alternative way, faults can be also considered as forbidden states. In that

case, the observation of the state has been investigated in order to design controllers with

forbidden marking specifications (Giua et al., 2002). Asynchronous diagnosis by means of

PN unfolding techniques and hidden state history reconstruction obtained from alarm

observations was also investigated (Benvenist et al., 2003). These approaches are not

developped in this chapter.

The chapter is divided into six sections. Section two states the problem and introduces the

notations. Section three is about state space methods that are based on a partial expansion of

the reachability graph of the PN under consideration. Section four concerns structural

methods that investigate the causality relationships characterized by incidence matrix.

Section five is about algebraic methods inspired from coding theory in finite fields of integer

numbers. The section six sums up the results and is a tentative of synthesis of the different

approaches.

2. Problem statement, motivations and notations
A dynamical system with input u and output y is subject to some faults f. Basically, the

diagnosis problem is to find the fault f from a given sequence of input – output couples

(U, Y) with:

U = (u(0), u(1),…,u(k))

 Y = (y(0), y(1),…,y(k)) (1)

where k stands for time t = k. t, and t represents the sampling period of sensors. In the

next t will be omitted and time t will be referred as k as long as there is no ambiguity. It is

commonly assumed that no inspection of the process is possible. As a consequence the

diagnosis is only based on available measurement data. Moreover the diagnosis problem is

usually considered under real time constraints. As long as DES are considered the signals

are not real-valued but belong to a discrete value set.

Diagnosis of Discrete Event Systems with Petri Nets 355

The motivations for the diagnosis of DES is obvious as long as DES occur naturally in the

engineering practice. Many actuators like switches, valves and so on, only jump between

discrete states. Binary signals are mainly used with numerical systems and logical values

“true” and “false” are often used as input and output signals. Alarm sensors that indicate

that a physical quantity exceeds a prescribed bound are typical systems with only two

logical states. Moreover, in several systems also the internal state is discrete valued. As an

example, robot encoders are discrete valued even if the number of discrete state is large

enough to produce smooth trajectories. At last, one must keep in mind that a given

dynamical system can always be considered as a DES system or as a continuous variable

system according to the purpose of the investigation. As long as supervision problems are

considered, a rather broad view on the system behaviour can be adopted that is based on

discrete signals. On the contrary, if signals have to remain in a narrow tolerance band, the

following approaches do no longer fit and one has to adopt a continuous point of view

(Blanke et al., 2003).

2.1 Ordinary Petri nets
An ordinary PN with n places and q transitions is defined as < P, T, Pre, Post > where P =

{Pi} is a non-empty finite set of n places, T = {Tj} is a non-empty finite set of q transitions,

such that P T = . Pre: P T {0, 1} is the pre-incidence application and WPR = (wPRij)

{0, 1}n q with wPRij = Pre (Pi, Tj) is the pre-incidence matrix. Post: P T {0, 1} is the post-

incidence application and WPO = (wPOij) {0, 1}n q with wPOij = Post (Pi, Tj) is the post-

incidence matrix. The PN incidence matrix W is defined as W = WPO – WPR Z3n x q with Z3

 {-1, 0, 1} and wi stands for the ith column of W (Askin et al., 1993; Cassandras et al., 1999;

David et al., 1992). M = (mi) (Z+)n is defined as the marking vector and MI (Z+)n as the

initial marking vector, with Z+ the set of non negative integer numbers. A firing sequence

= Ti.Tj… Tk is defined as an ordered series of transitions that are successively fired from

marking M to marking M’ (i.e. M [> M’) such that equation (2) is satisfied:

j ki
T TT

1 2: M M M M' (2)

A sequence can be represented by its characteristic vector (i.e. Parikh vector) X = (xj)

(Z+)q where xj stands for the number of times Tj has occurred in sequence (David et al.,

1992). Marking M’ resulting from marking M with the execution of sequence is given by

(3):

M = M’ - M = W.X (3)

The reachability graph R(PN, MI) is the set of markings M such that a firing sequence

exists from MI to M. A sequence is said to be executable for marking MI if there exists a

couple of markings (M, M’) R(PN, MI) such that M [> M’.

2.2 Problem statement and notations
The objective of diagnosis problem is to identify the occurrence and type of failure events,

based on observable traces generated by the system. For this purpose, let us define F = {Fk}

the set of K distinct faults that may affect the system. A label L = {N} F is associated

Petri Net: Theory and Applications356

to each transition. As a consequence T = TF TN with TF the set of “failure” transitions and
TN the set of “normal” transitions. The firing of transitions is usually unobservable. L = N is
interpreted as a “normal” behavior, and L = Fk means that fault Fk has occurred. Starting
from an initial state, the system may evolve according to a “normal” behavior by firing
“normal” transitions or according to a faulty behavior by firing a sequence with one or
several “failure” transitions.

Let us define = { k} T b be a list of b groups of fault transitions k T (or eventually

single failure transitions). We define B() = (bkj) {0, 1}b q such that bkj = 1 if Tj k, else bkj

= 0. Let us also consider X = B().X (Z+) b the firing vector to be estimated. In other words,

the kth row of matrix B() characterizes k, and the sum of firing occurrences in the kth subset

of transitions (i.e. the kth entry of X()) has to be estimated from the measurement of the

observable markings. To define a list of transitions subsets is interesting in case of non

discernable faults. When the faults {Fk}k = 1,…K must be detected and located, then the list =
{{TF1},…,{TFK}} with K singletons {TF1},…,{TFk} is used. When the faults {Fk}k = 1,…K must be

detected but not isolated (i.e non discernable faults) = {TF1,…,TFK} with a single subset
{TF1,…,TFK} is defined.
The set P is also divided into the set PO = {P’i} of c observable places and the set PU of n - c

unobservable ones: P = PO PU. Vector MO (Z+)c is defined as MO = C(PO).M with C(PO) =

(cij) {0, 1}c n, such that cij = 1 if Pj PO and Pj = P’i, else cij = 0. Only the marking MO of the

observable places is assumed to be measured. Let us also define WO = C(PO).W (Z3)c x q,

wO(j) as the jth column of matrix WO, and MO according to (4):

MO = C(P).W.X = WO.X (4)

Petri nets are asynchronous models. As a consequence, two distinct transitions are never
simultaneously fired and the following basic assumption can be considered: there always
exists a marking measurement between two consecutive firings in a given firing sequence.
The preceding hypothesis is necessary because the firing of a transition will be undetectable
if it does not have any observable influence on the marking variation. For example, the
marking of the cycle {P2, T3, P3, T4} in PN1 (figure 1) is not modified if there is no

intermediate observation for the sequence of firings = T3.T4. Moreover the marking of a
given place is not modified if a transition in the preset and another one in the post – set are
both fired between two consecutive observations. For example, the marking of place P1 in

PN1 remains unchanged after the execution of sequence = T2.T1. According to the
preceding hypothesis, the firing sequences that are considered in the following can always

be separated into sub-sequences of size 1 : X {0, 1} q, and ||X|| 1.

Fig. 1. Example PN1 of Petri net with cycles

T2P1T1

P2 P3T3 T4

Diagnosis of Discrete Event Systems with Petri Nets 357

3. State space methods for the diagnosis of DES
3.1 Partial expansion of reachability graph and indetermined cycles
Fault diagnosis based on state space approach and on partial expansion of the reachability
graph was first formulated with automata (Sampath et al., 1995). Sampath et al. introduce
the study of indeterminate cycles in automata and state that a langage is diagnosable if and
only if the diagnoser satisfies the following condition : there is no Fk - failure indeterminate
cycle for all failure types.
The investigation of indeterminate cycles was then extended to PN with finite reachability

graph (Ushio et al., 1998). The considered PN are live (i.e. for any Tj T, and for all M

R(PN, MI) there exists a sequence executable from M that includes transition Tj) and safe

(i.e. for all M R(PN, MI), M {0, 1}n) with some places that are observable and other not.
Transitions are usually assumed to be unobservable. The diagnosability of the system is
based on the study of indetermined cycles included in the observable part of the labelled
reachability graph R(PN, TF, MI, PO) (Ushio et al., 1998). A cycle is called “determined” if it
contains at least one observable state that results with no ambiguity from a normal firing
sequence, or from a Fk - failure firing sequence (i.e. a firing sequence that contains a Fk -
failure transition). Characterisation of the cycles is obtained according to label propagation
and range functions that tell us how to assign the fault labels and how to estimate all the
next possibly diagnoser states from an initial state. Starting from an observable initial
marking, the diagnoser detects and isolates a failure transition in a given firing sequence
from measurement of the successive observable states visited by the system.
The notion of diagnosability is defined as the inherent property of the system that when a
failure occurred, we can always infer its type, no matter how the system evolves after the
failure. The resulting diagnosers are “delayed” (i.e. multi-steps diagnoser) in the sense that
the occurrence of intermediate events may be necessary to detect and isolate the faults. The
number of intermediate events is upper bounded according to the maximal size of the
determined cycles. In (Chung et al., 2003) some transitions are assumed to be observable in
order to increase the database used by the diagnoser. An algorithm, based on linear
programming, of polynomial complexity in the worst case for computing a sufficient
condition of diagnosability has been also proposed (Wen et al., 2005).
Let us consider the Petri net named PN2 in figure 2 as an example. All transitions are
supposed to be unobservable. The transition T1 represents a failure event F. Other
transitions are assumed to represent normal events.

Fig. 2. Example PN2 of Petri net

P1

P2

P3

P4

P5

T2 (N)

T1(F) T3 (N)

T4 (N)

T5 (N)
T6 (N)

T7 (N)

Petri Net: Theory and Applications358

If the set of observable places is given by PO1 = {P1, P4, P5}, the observable part of the labelled
reachability graph R(PN2, {T1}, (1, 0, 0, 0, 0)T, PO1) is worked out as in figure 3a. This
diagnoser has an indetermined cycle so the system is not diagnosable (figure 3a, on the left).
If PO2 = {P1, P3}, the observable part of the labelled reachability graph R(PN2, {T1}, (1, 0, 0, 0,
0)T, PO2) is worked out as in figure 3b. This diagnoser has no indetermined cycle so the
system is diagnosable.

Fig. 3. Two partial expansions of the reachability graph for PN2

 a) R(PN2, {T1}, (1, 0, 0, 0, 0)T, PO1) ; b) R(PN2, {T1}, (1, 0, 0, 0, 0)T, PO2)

As a conclusion, let us notice that the preceding method is efficient to evaluate the
diagnosability of a system but not suitable to design diagnosers. The reason is that the
partial expansion of the reachability graph must be worked out for all diagnoser candidates.
Such a computation is time consuming so that it cannot be adapted for sensor selection
problems in case of large scale systems.

3.2 Application
State space method have been used to state the diagnosability of an automatic temperature
control system (ATC) for automobile applications (Wen et al., 2005). The PN models of ATC
has 3 components (figure 4a-b-c):
a) The pump model has four unobservable states. The places ACI and AC2 stand for

pump off and pump on respectively. The places AC3 and AC4 stand for pump failed off
and pump failed on respectively.

b) The fan model has two unobservable states : FAN1 and FAN2 stand for fan off and fan
on respectively.

c) The controller has four observable states and four events. The state Cl represents both
the pump and fan are off. State C2 represents that the pump turns on first, while the fan

(10000, N)

(01000, F)
(00001, F)

(00010, N)
(00001, N)

(00100, N)

(10000, F)

(00010, F)
(00001, F)

(00100, F)

(10000, N)

(00010, N)

(00001, N)(10000, F)
(10000, N)

(00001, F)
(00001, N)

(01000, F)
(00100, N)

a) b)

Diagnosis of Discrete Event Systems with Petri Nets 359

is in off. State C3 represents that the pump turns on, and the fan turns on. State C4
represents that the pump turns off first, while the fan is still working.

a) Pump

b) Fan

Petri Net: Theory and Applications360

c) Controller

Fig. 4. PN3 model of an automatic temperature control system (Wen et al., 2005)

Transition Event Type (Fail type) Sensor Map
t1 A/C ON (N) H to H
t2 Fan ON (N) H to L
t3 A/C OFF (N) L to H
t4 Fan OFF (N) H to H

t5 A/C ON (F1) H to H
t6 Fan ON (F1) H to H
t7 A/C OFF (F1) H to H
t8 Fan OFF (F1) H to H
t9 A/C ON (F2) H to H
t10 Fan ON (F2) H to L

t11 A/C OFF (F2) L to L
t12 Fan OFF (F2) L to H
t13 A/C FOFF (F1) H to H
t14 A/C FOFF (F1) H to H
t15 A/C FOFF (F1) L to H
t16 A/C FOFF (F1) H to H

t17 A/C FON (F2) H to H
t18 A/C FON (F2) H to H
t19 A/C FON (F2) L to L
t20 A/C FON (F2) H to L

Table 1. Transitions and sensor map of the ATC (Wen et al., 2005)

Diagnosis of Discrete Event Systems with Petri Nets 361

There are two failure types. Failure types F1 and F2 stand for pump fails off and pump fails
on respectively. It is assumed that the system has one temperature sensor. The set of outputs
is L = {low} and H={high} according to the temperature in the cabin of the vehicle. The
meaning of the transitions and sensor map are listed in table 1. For example, S (H to H)
means that the reading of the cabin sensor changes from High to High. The study of the
indetermined cycles in observable part of reachability graph and the investigation of the
transitions (events) with the same observable projection (for example Tl, T5, and T9

represent the same observable projection {el} where {el} depicts that the controller state is
"pump on" and it's sensor reading changes from High to High) is useful to state that this
system is diagnosable.

4. Diagnosis based on structural approaches
4.1 Event detectability
Another diagnosis approach for DES has been developed according to event detectability of

interpreted PN (Alcaraz-Mejia et al., 2003; Ramirez-Trevino et al., 2004). An interpreted PN

is event detectable when any pair of transitions can be distinguished from each other by the

observation of the input - output symbols of the interpreted PN (inputs are defined

according to the events associated with the transitions and outputs are defined according to

the measurements of the observable markings). Preliminary results have been obtained

according to the additive independence of columns of the output matrix (Ichikawa et al.,

1988). A characterization of event detectability has been established as a consequence, when

all columns of matrix WO = C(P).W (Z3)c x q are not zero and different from each other

(Alcaraz-Mejia et al., 2003). Input - output diagnosability in finite number of steps has been

derived as a consequence. An interpreted PN is input - output diagnosable in r steps if any

marking M resulting immediately from the firing of a fault transition is distinguishable

from any other marking M’ by firing any sequence with r transitions (Alcaraz-Mejia et al.,

2003; Ramirez-Trevino et al., 2004). Several structural characterizations of input - output

diagnosability have been provided: necessary and sufficient conditions related to input -

output relationships between places, sufficient conditions when the normal behaviour of the

interpreted PN is event detectable (Alcaraz-Mejia et al., 2003; Ramirez-Trevino et al., 2004;

Ramirez-Trevino et al., 2007).

In order to illustrate event diagnosability, let us consider again PN2 in figure 2. On one

hand, if the set of observable places is given by PO1 = {P1, P4, P5}, event detectability is

worked out according to matrix WO1:

O1

1 0 0 0 0

C(P) 0 0 0 1 0

0 0 0 0 1

,
O O11

1 1 0 0 0 0 1

W C(P).W 0 0 0 0 1 1 0

0 0 1 1 0 1 1

 (5)

System (5) is not event detectable because columns 1 and 2, and also columns 3 and 4 of

matrix WO1 are identical.

On the other hand, if the set of observable places is given by PO2 = {P1, P3}, event

detectability is worked out according to matrix WO2:

Petri Net: Theory and Applications362

O2

1 0 0 0 0
C(P)

0 0 1 0 0
, O O22

1 1 0 0 0 0 1
W C(P).W

0 1 0 1 1 0 0
 (6)

However system (6) is diagnosable for fault F1, it is not event detectable because columns 3

and 6 are zero and columns 4 and 5 are identical. As a consequence, input - output

diagnosers cannot be derived.

In (Aramburo-Lizarraga et al., 2005) the condition of event detectability is relaxed over parts

of the model where the faults are not expected; thus the diagnoser handles a reduced model.

Moreover, a method for splitting the global model into communicating modules is proposed

that leads to the design of a set of distributed diagnosers. A framework concerning DES

diagnosis based on PN and event detectability approach can also be found in (Ramirez-

Trevino et al., 2007) where the authors introduce a bottom-up modelling methodology that

avoids tuning phases and state combinatory found in finite state automata approaches.

4.2 Minimal sets of observable places for single step diagnosis
Fault diagnosis is strongly related to the problem of sensor selection that leads to the

determination of minimal sets (for inclusion) of observable places in order to detect and

identify the firing of some particular “failure” transitions. In this context, places are

assumed to have a physical meaning so that direct relationships exist between places, state

variables and sensors. The problem is to decide the number and location of the places to be

observed (i.e. the state variables to be measured) in order to estimate the firings of some

transitions (i.e. to detect and isolate some faults). Such sets of places are named “minimal

sets of observable places” (Lefebvre 2004; Lefebvre et al., 2007).The problem that is solved is

to give necessary and sufficient conditions in order to decide if the unbiased observation of

the marking variation for a set of places PO leads to immediate estimation of X().

The subset of places PO P is called a set of observable places (SOP) for , if X() can be

estimated exactly (i.e. with no error) and immediately (i.e. with no delay) from the unbiased

measurement of MO between two consecutive observations. The subset of places PO P is

called a minimal set of observable places (MSOP) for , if PO is a SOP for , and if there is no

subset of places P’ PO, P’ PO that is also a SOP for .

A SOP for provides enough information to detect and isolate a firing in before the

occurrence of any other event and a MSOP is a minimal SOP for inclusion. According to

basic assumption in section 2.b, PO is a SOP for means that for any vector X {0, 1}q such

that ||X|| 1, the unbiased measurement of MO =C(PO).W.X (Z3)c leads to immediate

and exact estimation of vector X() = B().X {0, 1}b.

Characterisations of SOP can be obtained with an enumeration of the partitions for PO or

equivalently with the columns of the observable part WO of incidence matrix (Lefebvre 2006,

Lefebvre et al., 2007). For any marking variation MO let us define the disjoint partition of

set PO as PA(MO) = (P+(MO), P –(MO), P 0(MO)) with P+(MO) = {Pi} PO such that mi >

0, P-(MO) = {Pi} PO such that mi < 0 and P0(MO) = {Pi} PO such that mi = 0. Let us

also consider the set of transitions E(PA(MO)) T:

0
i O i O i O

O i i i i
P P (M) P P (M) P P (M)

E(PA(M)) P P P P (7)

Diagnosis of Discrete Event Systems with Petri Nets 363

where °Pi stands for the set of Pi - upstream transitions and Pi° stands for the set of Pi -

downstream transitions. The subset PO P is a SOP for if and only if characterisation 1 or

equivalently 2 is satisfied (Lefebvre et al., 2007):

1. For each subset k T, k = 1,…,b, there exist a list of rk disjoint partitions PAO(i) =

(P+O(i), P –O(i), P 0O(i)) of PO, i = 1,…, rk, such that P+O(i) P –O(i) and :

k

O k
i 1,..,r

E(PA (i))

2. For each subset k T, k = 1,…,b, and for any couple of transitions T k, T k we

have wO() 0 and wO() wO().
The preceding result leads to an algorithm of complexity q2 that generates the exhaustive list

F(PO) of groups of transitions k with minimal cardinality for which PO is a SOP. The

reduction of the obtained list thanks to linear algebra can be obtained as a post processing

(Lefebvre 2004).

Algorithm a
1. Initialise list F to be empty
2. While T is not empty do

3. Initialise subset k to be empty

4. Select Tj T
5. Remove Tj from set T

6. If wO(j) 0, then

7. Add Tj to subset k

8. For any Ti T, do

9. If wO(j) = wO(i), then transition Tj is added to set k and Ti is removed from set T
10. End for (step 8)

11. Add subset k to the list F
12. End if (step 6)
13. End while (step 2)
A recursive algorithm based on a combinatory exploration of the PN subsets of places

generates also the list G(k) of all MSOP for k. From a computational point of view, this non

polynomial algorithm must be used with some precautions. But the complexity depends on

the number of potential observable places, and not on the size of the whole PN. Thus, it is

suitable even for large scale systems as long as the considered set of potential observable

places remains small. In comparison with algorithms that partially expand the reachability

graph, the complexity of our results does not depend on the size of that graph.

Let us consider again PN2 with 1 = {T1}. Applying the preceding characterisation (condition

1 or 2), it is easy to state that PO1 is not a SOP for 1, whereas PO2 is a SOP and also a MSOP

for 1. Moreover, this characterization leads to the exhaustive list of MSOP for 1 : G(1) =

{{P2}, {P1, P3}}. It leads also to the exhaustive list of transitions for which PO1 is a SOP : F(PO1)

= {{T5}, {T6}, {T7}, {T1, T2}, {T3, T4}} and to the exhaustive list of transitions for which PO2 is a

SOP : F(PO2) = {{T1}, {T2}, {T7}, {T4, T5}}. As a consequence, {P2} and {P1, P3} are the two

possible MSOP for single – step diagnosis.

Petri Net: Theory and Applications364

4.3 Diagnosis with CR and DP
Causality relationships (CR) and directed paths (DP) in PN models (Lefebvre et al., 2005)
can also be used for multi-steps diagnosis purposes. In that case, diagnosis is improved by
considering that some transitions may be observable. For that purpose, the set TN is divided
into a set TO of observable transitions and a set TU of unobservable ones.
Let N and N’ be two nodes (i.e. places or transitions) of PN model. A CR exists from N’ to N
if and only if the behaviour of the node N’ could affect the variable attached to node N. The
CR size (referred as CR – rank in the following) can be understood as the number of places
in the shortest causality relationship from transition Tk to place Pi or transition Tj, and as the
number of transitions in the shortest causality relationship from place Pk to place Pi or
transition Tj. When no causality relationship exists, the CR - rank equals infinity. The CR –

rank of PN nodes in range I = [rmin, rmax] { } is characterised by the matrix CR(I) as given
in (8) (Lefebvre et al., 2005):

PP PT (n q)x(n q)

TP TT

CR (I) CR (I)
CR(I) I

CR (I) CR (I)
 (8)

with CRPP(I) = CRPP(Pi, Pk, I) I n x n , CRPT(I) =CRPT(Pi, Tk, I) I n x q, CRTP(I) = CRTP(Tj, Pk, I)

 I q x n, CRTT(I) = CRTT(Tj, Tk, I) I q x q.
Similarly, a DP exists from N’ to N if and only if a token is able to move from N’ to N. A DP
between two nodes is also a CR but a CR is not necessary a DP. The DP - rank of PN nodes

in range I = [rmin, rmax] { } is characterised by a matrix DP(I) I(n+q) x (n+q) similar to CR(I)
(Lefebvre et al., 2005). From a computational point of view, the determination of the CR and
DP matrices results from polynomial algorithms of complexity (rmax - rmin).n.q. The CR and
DP ranks are defined according to the table 2.

M(A,r) A=WPR+WPO A=WPR

(A.(WPR)T)r CRPP(Pi, Pk, I) DPPP(Pi, Pk, I)

(A.(WPR)T)r.A CRPT(Pi, Tk, I) DPPT(Pi, Tk, I)

(WPR)T.(A.(WPR)T)r CRTP(Tj, Pk, I) DPTP(Tj, Pk, I)

((WPR)T.A)r CRTT(Tj, Tk, I) DPTT(Tj, Tk, I)

Table 2. CR and DP characterisation (Lefebvre et al., 2005)

In the next, the set I will be omitted as long as I = [0, min(n, q)] { } because CR and DP
ranks cannot exceed the number of places or transitions.

In order to evaluate the potential of a set of observable nodes PO TO for diagnosis purpose,
let us define the influence areas ICR(Tk) and IDP(Tk) of failure transition Tk, and dependence
areas DCR(N) and DDP(N) of node N. The set ICR(Tk) of nodes that are CR - sensitive with
respect to the transition Tk is called the CR - influence area of Tk. This area is a subnet of PN

defined as ICR(Tk) = <PICR(Tk), TICR(Tk), PreICR(Tk), PostICR(Tk)> where PICR(Tk) P is the set

of places Pi such that CRPT(Pi, Tk) < . TICR(Tk) T is the set of transitions Tj such that

CRTT(Tj, Tk) < , PreICR(Tk) and PostICR(Tk) are the restrictions of the pre - incidence and post
– incidence applications limited to the sets PICR(Tk) and TICR(Tk). The DP - influence area
IDP(Tk) is defined in a similar way. The CR - dependence area DCR(N) of the node N is also a

Diagnosis of Discrete Event Systems with Petri Nets 365

subnet of PN defined as DCR(N) = <PDCR(N), TDCR(N), PreDCR(N), PostDCR(N)> where
TDCR(N) and PDCR(N) are the sets of transitions and places that are likely to influence the
node N through a causality relationship. The DP - dependence area DDP(N) is defined in a
similar way. The characterisation of the sets PICR(Tk), TICR(Tk), PIDP(Tk), TIDP(Tk), TDCR(Pi),
TDCR(Tj) TDDP(Pi), and TDDP(Tj) is given in table 3 according to the position of finite entries in
columns or rows of CR and DP matrices.

 CR DP

PI..(Tk) CRPT kth column DPPT kth column

TI..(Tk) CRTT kth column DPTT kth column

TD..(Pi) CRPT ith row DPPT ith row

TD..(Tj) CRTT jth row DPTT jth row

Table 3. Influence and dependence areas (Lefebvre et al., 2005)

The CR and DP investigation is helpful for delayed diagnosis of systems modelled by PN, in

the sense that it provides in a systematic way the relationships between a fault transition

and other nodes of PN.

1. Let N PO TO. A necessary condition such that the observation of node N contributes

to the diagnosis of Fk is N ICR(Tk) (Lefebvre et al., 2005).

2. Let N PO TO. A sufficient condition to detect and isolate the firing of the fault

transition Tk with the observation of node N is N IDP(Tk) and TDDP(PN/Tk) (N) = if N
is a place or TDDP(PN/Tk) (N) = {N} if N is a transition in PN/Tk (i.e. PN where the
transition Tk has been removed) (Lefebvre et al., 2005).

If the preceding propositions cannot be applied, the nodes that have to be observed at first

are the ones with the smaller dependence areas including fault transition Tk. This choice

consists to select sensors in order to be sensitive with respect to the smaller set of events.

4.4 Application
PN can be used to model and monitor batch or chemical processes, like the system

represented in figure 5a (Lefebvre et al., 2007). This system is composed of a tank R that can

be filled and emptyed according to the flows Qsource provided by the source and Qdemand

required by the distribution network. The system has three logical actuators: the input

valves V1 and V2 and the output valve V3 with two states {open = 1, closed = 0}. The

continuous state variable h corresponds to the tank level and is defined according to

S.dh/dt = D – A.(2.g.h)1/2 with S the tank section, A the output pipe section and g the

gravity acceleration.

The goal of the PN supervisor PN4 is to keep the level h below the treshold LSH+ and above

the treshold LSH- in order to limit the pressure in distribution network. When LSH- is

reached V1 is opened during an appropriate time to fill the tank. Then V1 is closed.

Eventually V2 is closed and V3 is opened if LSHH is reached. Two logical level sensors are

used to detect the tresholds LSH- and LSHH.

Petri Net: Theory and Applications366

P2 V1=0, V2=1,
V3=0

T2:LSH-

T3:LSHH

T4:LSH-

P3 V1=0, V2=0,
V3=1

P1 : V1=1, V2=1, V3=0

T1 :LSH+

LSH+

LSHH

V3

V1V2

Distribution
network

Evacuation

h
LSH-

LSHH

LSH-Timer

1 2 3 4

1

PT 2

3

T T T T

1 0 1 0 P

CR (PN4) 0 0 0 1 P

1 1 0 0 P

 ,

2 3 4

1

PT 1 2

3

T T T

 0 1 0 P

DP (PN 4 /T) P

 0 P

 (9)

Fig. 5. Tank system a) Sensors and actuators; b) PN4 model of the controller

The set of observable places is assumed to be defined as PO = {P3}. A single fault is

considered when the treshold LSH+ is exceeded. The MSOP for LSH+, included in P, are

given by G({LSH+}) = {{P1}, {P2}}. The resulting MSOP are not suitable because no sensor is

used to detect the threshold LSH+. Matrix CRPT shows that PICR(T1) = {P1, P2, P3}: the

observation of each place contributes to the diagnosability of PN4. Matrix DPPT in PN4/T1,

shows that TDDP(PN4/T1)(P2) = (but P2 is not observable) and TDDP(PN4/T1)(P3) = {T3}. As a

conclusion, the observation of P3 can be used as a two-steps diagnoser to detect a fault of

sensor LSH+.

5. Diagnosis based on algebraic approaches
5.1 Diagnosis based on coding theory
Event sequences estimation is an important issue for fault diagnosis of DES, so far as fault

events cannot be directly measured. This section is about event sequences estimation with

PN models. Events are assumed to be represented with transitions and firing sequences are

estimated from measurements of the marking variation. Estimation with and without

measurement errors can be discussed in n – dimensional vector space over alphabet Z3

(Lefebvre, 2006; Lefebvre, 2007). The basic idea to correct measurement errors by projecting

measurements in orthogonal subspace of Vect(W) where Vect(W) stands for the subspace

generated by the columns of W. This method is inspired from linear coding theory (Van

Lint, 1999) and extend the results presented for continuous PN in (Lefebvre et al., 2001).

a) b)

Diagnosis of Discrete Event Systems with Petri Nets 367

Measurement M̂ of marking variation M (Z3)n may be affected by an additive error

vector E (Z3)n: M̂ M E . The error vector will be characterized according to the

Hamming distance d(W) of the considered PN that is defined with the Hamming distance of

the columns of incidence matrix :

i j 0 id(W) min{min{d(w ,w),i j},min{d (w)}} (10)

where d(wi, wj) stands for the Hamming distance between columns wi and wj of matrix W

and d0(wi) = d(wi, 0) stands for the weight of vector wi.

It is assumed that error vector E verifies the following conditions:

1. Pr(d0(E) = 0) > Pr(d0(E) = 1) > ... > Pr(d0(E) = n) where Pr(d0(E) = i) is the probability

that weight of E equals i;

2. An error in position i does not influence other positions;

3. A symbol in error can be each of the remaining symbols with equal probability.

A short estimation algorithm easy to use and to implement when state measurement is

complete (i.e. all entries of M̂ are measured), and error free (i.e. measurement equals

actual marking variation M), is based on the comparison of the measurement with respect

to columns of W and zero vector (this corresponds to the condition of event-detectability in

case that all places are observable). When this measurement equals a single column of W,

the algorithm decides that the corresponding transition fired. When it equals the zero

vector, the algorithm decides that no transition fired.

When measurement is perturbed by non zero error E, two problems must be mentioned:

1. A miss estimation may occur when M̂ is non zero and different from any

columns of W. The estimation algorithm is not able to decide if a transition fired or
not and which transition fired. As consequence the algorithm does not give any
decision.

2. A wrong estimation may occur when M̂ does not equal actual marking variation

M but equals zero vector or another column of W. The estimation algorithm
decides if a transition fired or not and which transition fired, but the decision is
wrong due to the measurement error.

To overcome these difficulties and to improve estimation, diagnosis can be reformulated as

a linear problem in ((Z3)n , +, *), with the Smith transformation of W, where “+” and “*”

stand for the sum and product endowed over Z3. The Smith transformation results from

elementary operations (i.e. row or column permutations, linear combinations and external

products), summed up in matrices P (Z3)n x n and Q (Z3) q x q such that:

rI 0
P * W * Q

0 0
 (11)

Ir is the identity matrix of dimension r x r, and r is the rank of matrix W. The Smith

transformation leads to reduced incidence matrix W' defined as in equation (12) :

 W' = (Ir 0) * Q-1 = (Ir 0) * P *W = F * W (Z3) r x q (12)

Petri Net: Theory and Applications368

Necessary and sufficient conditions for firing sequences estimation can be stated when

measurement is error free and basic assumption in section 2.2 is satisfied: columns of

incidence matrix W' defined by equation (12) are distinct and non zero (Lefebvre, 2006).

In case of measurement errors that satisfy assumptions 1 to 3, two sets of sufficient

conditions for firing sequences estimation have been also proposed (Lefebvre, 2007):

1. Columns of incidence matrix W are distinct, non zero and errors E that disturb

satisfy d0(E) (d(W) – 1) / 2 (i.e. the number of disturbed entries of measurement is
no larger than (d(W) – 1) / 2).

2. Columns of incidence matrix W' defined by equation (12) are distinct and non zero,
and considered errors E belongs to distinct cosets different from C(0). The coset

C(u) of u is defined as C(u) = {x (Z3)n such that x = u + y with y Vect(W)}, for

any vector u (Z3)n.
Moreover, the use of the Smith transformation of incidence matrix is also helpful to define

the parity check matrix HT = (0 In-r) * P (Z3) (n-r) x n, and to work out the syndrome of

marking variation measurements S(M̂) = HT * M̂ and to compare it with the syndrome

of marking variation errors S(E) = HT * E. As a consequence the method leads to a less

complex and more efficient diagnosis algorithm for DES modeled with PN (algorithm c)

in comparison with usual method based on Hamming distance (algorithm b).

Algorithm b
1. For each time k, measure M̂ (k) the current state of DES

2. Compute M̂ (k) = M̂ (k) – M̂ (k-1)

3. Compute weight d0(M̂ (k)). If d0(M̂ (k)) (d(W) - 1) / 2, then no event occurs

between two consecutive state measurements. Go to step 6.

4. Compute Hamming distance d(M̂ (k), wj) for each column wj of W. If d(M̂ (k),

wj) (d(W) - 1) / 2 then Tj fired. Go to step 6.

5. If for all j = 1,...,q, d(M̂ (k), wj) > (d(W) - 1) / 2 then measurement is too much

disturbed by errors (i.e. d0(E) > (d(W) – 1) / 2) and no decision is provided (i.e. a
miss estimation occurs).

6. Wait until time k + 1. Go to step 1.
Algorithm c
1. For each time k, measure M̂ (k) the current state of DES

2. Compute M̂ (k) = M̂ (k) – M̂ (k-1)

3. Compute HT * M̂ (k). If HT * M̂ (k) = 0 then measurement is not disturbed by

errors: ˆM(k) M(k) . Go to step 5.

4. If syndrome HT * M̂ (k) 0, compute coset leader E(k) and ˆM(k) M(k) E(k) .

Go to step 5.

5. Compute M'(k) = F * M(k).

6. Compare M'(k) with zero vector. If M'(k) = 0 then no event occurs between 2
consecutive state measurements. Go to step 8.

7. Compare M'(k) with columns of matrix W'. If M'(k) = w'j then Tj fired. Go to step
8.

8. Wait until time k + 1. Go to step 1.

Diagnosis of Discrete Event Systems with Petri Nets 369

The correction capacity (i.e. number of error vectors that are corrected) of algorithm b is
given by equation (13):

(d(W) 1)/2
i

i 1

n!
2 .

i!(n i)!
 (13)

and its complexity results from 2n.(q+1) scalar comparisons or operations whereas
correction capacity of algorithm c equals 3n – r – 1, and its complexity results from
r.(2n+q)+(n–r).(2n–1+3n-r) scalar comparisons or operations (Lefebvre, 2007).
As a conclusion, one can notice that algorithm c is more efficient for PN with small rank in
comparison with the number of places, and that it is of particular interest for PN with few
transitions in comparison with the number of places. Another conclusion is to prefer
algorithm c for PN with a small Hamming distance. This result is not surprising as long as
the correction capacity of algorithm a is directly related to the value of Hamming distance.
For PN with small Hamming distance, the number of biased markings that belong to a
single sphere is also small.

5.2 Redundant Petri nets embedding
This method incorporates redundancy into Petri nets and uses algebraic decoding
techniques as the Berlekamp – Massey decoding (Berlekamp, 1984) to detect and identify
faults (Li et al., 2004; Wu et al., 2005). The marking of the original PN is embedded into a
redundant one and the diagnosis of faults is performed by mean of linear parity checks. The
algorithm operates in the integer finite field of order p, referred as (Z+p) with p a prime
integer large enough. This approach has a complexity of m2.(n+q) (Wu et al., 2002) improved
to complexity m.(n+q) (Wu et al., 2005) where 2.m represent the number of places that are
added to the original PN.
In comparison with the method in section 5.1, two kinds of faults are considered : (1) place
faults are associated with conditions that cause the corruption of the number of tokens in
some places of the PN. Place faults are measured, with the Hamming distance metric, in
terms of the number of faulty places independent of the number of erroneous tokens in each
faulty place ; (2) transition failures are associated with preconditions that prevent tokens
from being removed from the input places in some transitions (even though tokens are
deposited at the corresponding output places) or postconditions that prevent tokens from
being deposited at the output places in some transitions (even though tokens are removed
from the corresponding input places). Errors “-1” and “+1” are used respectively and
transitions faults are measured with the Lee distance metric (Berlekamp, 1984). By adding
2.m places in the redundant PN, Wu et al. proves that the method allows the simultaneous
identification of m place faults and 2.m – 1 transition failures.
It is assumed that the firing of the transitions in the redundant PN are not directly
observable whereas the marking is periodically observed, and that the diagnosis is
performed over a time interval of N sampling periods (N is eventually chosen equal to 1). It
is also assumed that
1. A particular transition does not suffer both a precondition and postcondition

during interval [1, N] (otherwise, their effect will be cancelled);
2. The erroneous number of tokens in each place is also bounded within interval

[-(p - 1/2), (p - 1/2)];
3. Parameter p is a prime integer that satisfy p > max(n + 2.m, q).

Petri Net: Theory and Applications370

The key idea of the method is to design two matrices C (Z+p)2m x n and D (Z+)2m x n that
define the state of the embedded PN such that equation (14) is satisfied :

PO PR

PO PR

W W
M(k 1) M(k) .X(k) .X(k)

C.W D C.W D (14)

Defining the parity check matrix as in P = (-C I2m), the syndrome of marking M(k) is given
by S(k) = P.M(k).

Let us define ET+(N) (Z+)q as the vector of postcondition faults, ET-(N) (Z+)q as the vector

of precondition faults and EP(N) (Z+)2m + n as the place faults vector during time interval [1,
N]. As a consequence the faulty marking is defined as :

T T

PO PR
P

PO PR

W W
M̂(N) M(N) .E (N) .E (N) E (N)

C.W D C.W D
 (15)

The identification of both transition failures and place faults based on the syndrome S(N) is

completely determined by matrices D and C :

 S(N) = D.(ET+(N) - ET-(N)) + P.EP(N) (16)

On one hand, Wu et al. propose to define matrix D as in equation (17) :

1 2 3 q
2m x q2 2 2 2

2m 1 2 3 q

2m 1 2m 1 2m 1 2m 1
1 2 3 q

1 1 1 1

D Z (17)

where i are q distinct non zero elements in Z+p. In case m = 1, the determination of matrix
D is given according to :

2 x q

2 2 2 2

1 2 3 q
D modp Z

1 2 3 q

On the other hand, they propose to define matrix C such that equation (18) is satisfied
(operations are defined in Z+p) :

 .(-C I2m) = H2m (18)

with :

1 2 3 n 2m

2 2 2 2
1 2 3 n 2m

2m x (n + 2m)
3 3 3 3

2m 1 2 3 n 2m

2m 2m 2m 2m
1 2 3 n 2m

H Z

Diagnosis of Discrete Event Systems with Petri Nets 371

 (19)

n 1 n 2 n 3 n 2m

2 2 2 2
n 1 n 2 n 3 n 2m

2m x 2m
3 3 3 3
n 1 n 2 n 3 n 2m

2m 2m 2m 2m
n 1 n 2 n 3 n 2m

Z

In order to identify simultaneously place and fault transition Wu et al. define :

D* = -p.D

 C* = p.1 - C (20)

 P* = (C – p.1 I2m)

where 1 is a 2m x n matrix with all entries being 1. The syndrome S(N) defined as S(N) =
P*.M(N) is used to identify first m or less place faults by means of the Berlekamp – Massey
algorithm and then 2m – 1 transitions by computing the modified syndrome :

 ST(N) = (S(N) – P*.Ep(N)) / p = D.(ET+(N) - ET-(N)) (21)

5.3 Applications
Algebraic methods have been used for the diagnosis of manufacturing and robotic systems
(Lefebvre, 2007, Wu et al., 2005) and for large scale power networks like the IEEE 118-bus
power system (Ren et al., 2006).

P9T4 T5

P3

P6T2

P7

P4T1

T3P5 P8

P1

P2

P9T4 T5

P3

P6T2

P7

P4T1

T3P5 P8

P1

P2

Fig. 6. PN5 model of a manufacturing system

In order to illustrate algebraic methods, let us consider PN5 in figure 6, that is a
simplified model of a manufacturing workshop (Silva et al., 2004). The final product is
composed of two different parts that are processed in two separate machines modelled
by transitions T1 and T2, and stored in buffers P4 and P6, respectively. Then, they are

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

1 0 1 0 0

1 0 1 0 0W

0 1 1 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

Petri Net: Theory and Applications372

assembled by the machine T3, and processed in T4 and T5. During the processing,
several tools are needed, modelled by places P3, P5 and P7.
PN5 has n = 9 places, q = 5 transitions, is of rank r = 4 and incidence matrix W has a
Hamming distance d = 2. Matrices F and HT, worked out as in section 5.1, are given
according to equation (22):

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
F

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0

, T

1 0 1 0 1 0 0 0 0

0 1 1 0 0 1 0 0 0

0 1 1 0 0 0 1 0 0H

1 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 1 1

 (22)

Syndromes Errors of weight 1 Syndromes Errors of weight 1

(-1 0 0 1 0)T (1 0 0 0 0 0 0 0 0)T (1 0 0 0 0)T (0 0 0 0 1 0 0 0 0)T

(1 0 0 -1 0)T (-1 0 0 0 0 0 0 0 0)T (-1 0 0 0 0)T (0 0 0 0 -1 0 0 0 0)T

(0 1 -1 0 0)T (0 1 0 0 0 0 0 0 0)T (0 1 0 0 0)T (0 0 0 0 0 1 0 0 0)T

(0 -1 1 0 0)T (0 -1 0 0 0 0 0 0 0)T (0 -1 0 0 0)T (0 0 0 0 0 -1 0 0 0)T

(1 -1 1 -1 1)T (0 0 1 0 0 0 0 0 0)T (0 0 1 0 0)T (0 0 0 0 0 0 1 0 0)T

(-1 1 -1 1 -1)T (0 0 -1 0 0 0 0 0 0)T (0 0 -1 0 0)T (0 0 0 0 0 0 -1 0 0)T

(0 0 0 1 0)T (0 0 0 1 0 0 0 0 0)T (0 0 0 0 1)T
(0 0 0 0 0 0 0 1 0)T

(0 0 0 0 0 0 0 0 1)T

(0 0 0 -1 0)T (0 0 0 -1 0 0 0 0 0)T (0 0 0 0 -1)T
(0 0 0 0 0 0 0 -1 0)T

(0 0 0 0 0 0 0 0 -1)T

Table 4. Correspondence between syndromes and coset leaders for PN5

PN5 has 243 cosets and each coset has 81 vectors. The table 4 gives the relationships between

syndromes and coset leaders. Let us notice that the two last syndromes correspond to two

different coset leaders. As a consequence not all errors of weight 1 will be corrected by

algorithms b and c (errors (0 0 0 0 0 0 0 1 0)T and (0 0 0 0 0 0 0 0 1)T cannot be separated as

errors (0 0 0 0 0 0 0 -1 0)T and (0 0 0 0 0 0 0 0 -1)T).

Analysis of performance and numerous simulations show that the miss estimation rate for

algorithm c is quite better in comparison with algorithm b (Lefebvre 2007), but the wrong

estimation rate for c increases in comparison with b. Let us mention that whatever the

algorithm used, the presence of miss estimation depends strongly on the Hamming distance

of W.

Applying the method developed in 5.2 in order to identify 1 place fault and 1 transition

failure (m = 1) with p = 13, the matrices D and D*, that lead to transition failure diagnosis are

given according to equation (23):

Diagnosis of Discrete Event Systems with Petri Nets 373

1 2 3 4 5
D

1 4 9 3 12
, * 13 26 39 52 65

D 13 x D
13 52 117 39 156

 (23)

On the other hand, the matrices H, C and C*, that lead to place fault diagnosis are given
according to equations (24) and (25):

5 10 4 10 2 10 5 2 11 11 4 1 0
H

12 9 2 3 2 1 3 10 10 6 8 0 1
 (24)

4 10 2 10 5 2 11 11 4
C

2 3 2 1 3 10 10 6 8

* 9 3 11 3 8 11 2 2 9
C

11 10 11 12 10 3 3 7 5
 (25)

The parity check matrix is defined according to (26) :

* 9 3 11 3 8 11 2 2 _ 9 1 0
P

11 10 11 12 10 3 3 7 5 0 1
 (26)

As a consequence 2 places are added in the PN model of figure 6 for diagnosis purposes.
These new places are defined according to equation (27):

* *
PO

16 37 51 61 88
C .W D

25 55 137 44 188
, * *

PR

30 31 64 54 74
C .W D

34 65 143 46 161
 (27)

and the initial marking of embedded PN is given according to (28):

9 T*
I I*

I
M M 2 2 1 0 1 0 1 0 0 45 66

C
 (28)

The use of embedded PN defined with equations (27) and (28) is useful to detect at first
place faults and then transitions failures according to the comparison of syndrome S(N) =
P*.M(N) with the columns of matrices H given by equation (24) and with the columns of
matrix D given by (23).

6. Conclusions
The investigation of diagnosis methods for discrete event systems shows that Petri nets is
efficient not only to model the considered systems but also to support the diagnosis
methods. Several approaches can be used in order to check diagnosability, to select
sensors and to work out diagnosers. The table 5 sums up the main characteristics of these
method.

As a conclusion it is important to notice the great effort, observed this last years to
develop and improve diagnosis methods for DES. The strong connection with observation
properties in automata and the use of advances in computer science like the coding theory
have played an important role in that development. Now, the challenges are, from our

Petri Net: Theory and Applications374

point of view, to continue this investigation, by combining the different methods together
and also to take advantages from many important contributions that have been proposed
for continuous systems. To build a bridge from continuous variable systems to DES
theories remains one of the most promising issues for the next years.

State based
approach
(section 3)

Event
detectability

and SOP
(sections

4.1 and 4.2)

CR and DP
investigation
(section 4.3)

Diagnosis in
Z3

(section 5.1)

Diagnosis in
Z+p

(section 5.2)

Diagnosability
checking

Yes Yes Yes No No

Sensor
selection

No Yes Yes No No

Immediate /
delayed

diagnosis

Immediate
and delayed
diagnosis at

most in k
steps

Immediate
diagnosis

Delayed
diagnosis at

least in k steps

Immediate
diagnosis

Immediate
and delayed
diagnosis at
most in N

steps

Marking
measurements

Partial and
unbiased

Partial and
unbiased

X
Partial and

biased
Complete
and biased

Partial firing
sequence

observation
Yes No X No No

Complexity :
Polynomial or

Non
polynomial

NP P / NP P P P

Table 5. Main features of several diagnosis methods for DES

7. References
Alcaraz-Mejia M., Lopez-Mellado E., Ramirez-Trevino A., Rivera-Rangel I. (2003). Petri net

based fault diagnosis of DES, Proc. IEEE-SMC03, pp. 4730-4735, Washington, USA.
Aramburo-Lizarraga, J.; Lopez-Mellado, E.; Ramirez-Trevino, A. (2005). Distributed fault

diagnosis using Petri net reduced models, Proc. IEEE-SMC05, vol. 1, pp. 702-705.
Askin R.G., Standridge C. R. (1993). Modeling and analysis of Petri nets, John Wiley and sons

Inc.
Berlekamp R.E. (1984). Algebraic coding theory, Laguna Hills, CA, Aegean Park.
Benveniste A., Fabre F., Jard C., Haar S. (2003). Diagnosis of asynchronous discrete event

systems, a net unfolding approach, Trans. IEEE –TAC, vol. 48, no.5.

Diagnosis of Discrete Event Systems with Petri Nets 375

Blanke M. (1996). Consistent design of dependable control systems, Control Engineering
Practice, vol. 4, no. 9, pp. 1305 – 1312.

Blanke M., Kinnaert M., Lunze J., Staroswiecki M. (2003). Diagnosis and fault tolerant control,
Springer Verlag, New York.

Cassandras C.G., Lafortune S. (1999). Introduction to discrete event systems, Kluwer Academic
Pub.

Chung S.L, Wu C.C., Jeng M. (2003). Failure diagnosis: a case study on modeling and
analysis by Petri nets, Proc. IEEE-SMC03, pp. 2727-2732, Washington, USA.

Cordier M.O., Dague P., Lévy F., Dumas M., Montmain J. Staroswiecky M., Travé-Massuyès
L. (2000). AI and automatic control approaches of model-based diagnosis : links
and underlying hypothesis, Proc. IFAC Symposium on fault detection, Supervision and
Safety for Technical Processes, pp. 274 – 279, Budapest, Hungary.

David R., Alla H. (1992). Petri nets and grafcet – tools for modelling discrete events systems,
Prentice Hall, London.

Gertler J. (1998). Fault detection and diagnosis in engineering systems, Marcel Dekker, New
York.

Giua A., Seatzy C. (2002). Observability of place / transition nets, Trans. IEEE – TAC, vol. 47,
no. 9, pp. 1424 – 1437.

Ichikawa, A., Hiraishi, K. (1988). Analysis and Control of Discrete Event Systems
Represented by Petri Nets, Proc. IIASA Conf., pages 115-134. Springer-Verlag,
Berlin, West Germany.

Lefebvre D., El Moudni A. (2001). Firing and enabling sequences estimation for timed Petri
nets, Trans. IEEE - SMCA, vol. 31, no.3, pp. 153- 162.

Lefebvre D., Delherm C. (2005). Diagnosis with causality relationships and directed paths in
Petri net models, Proc. IFAC WC05, Prague, Czech Republic.

Lefebvre D. (2004). About estimation problems with Petri net models for fault detection and
isolation with discrete event and hybrid systems, Proc. SAUM04, Invited lecture,
pp. 42 – 51, Beograd, Serbia and Montenegro.

Lefebvre D., Delherm C., Leclercq E., Druaux F. (2006). Some contributions with Petri nets
for the modelling, analysis and control of HDS, Proc. ICHSA, Invited lecture,
Lafayette, Louisiana, USA.

Lefebvre D. (2006a). Sensoring and diagnosis of DES with Petri net models, Proc. IFAC
Safeprocess 2006, invited session “Model based fault analysis during a system’s
entire life cycle”, pp. 1213 - 1218, Beijing, China.

Lefebvre D. (2006b) Firing sequences estimation for ordinary Petri nets, Proc. Workshop IAR -
ACD, Nancy, France.

Lefebvre D., Delherm C. (2007). Fault detection and isolation of discrete event systems with
Petri net models, Trans. IEEE – TASE, vol. 4, no. 1, pp. 114 – 118.

Lefebvre D. (2007). Firing sequences estimation in vector space over Z3 for ordinary Petri
nets, Trans. IEEE – SMCA, under review.

Li L., Hadjicostis C. N. Sreenivas R. S. (2004). Fault Detection and Identification in Petri Net
Controllers, Proc. IEEE-CDC04, pp. 5248 – 5253, Atlantis, Paradise Island, Bahamas.

Patton R.J., Frank M., Clark R.N. (Eds), (1989). Fault diagnosis in dynamic systems theory and
applications, Prentice Hall, New York.

Patton R.J., Frank M., Clark R.N. (Eds), (1999). Issues of fault diagnosis for dynamical systems,
Springer Verlag, London.

Petri Net: Theory and Applications376

Ramirez-Trevino A., Ruiz-Bletran E., Rivera-Rangel I., Lopez-Mellado E. (2004).
Diagnosability of discrete event systems. A Petri net based approach, Proc. IEEE-
ICRA, pp. 541 – 546.

Ramirez-Trevino A., Ruiz-Bletran E., Rivera-Rangel I., Lopez-Mellado E. (2007). Online Fault
Diagnosis of Discrete Event Systems. A Petri Net-Based Approach, Trans. IEEE –
TASE, vol. 4, no. 1, pp. 31-39.

Rausand M., Hoyland A. (2004). System reliability theory : models, statistical methods, and
applications, Wiley, Hoboken, New Jersey.

Ren H., Mi Z. (2006). Power system fault diagnosis modeling techniques based on encoded
Petri nets, Proc. IEEE Power Engineering Society General Meeting.

Sampath M., Sengupta R., Lafortune S., Sinnamohideen K., Teneketzis D. (1995).
Diagnosibility of discrete event systems, Trans. IEEE-TAC, vol. 40, no.9, pp. 1555-
1575.

Silva M., Recalde L. (2004). On fluidification of Petri Nets: from discrete to hybrid and
continuous models, Annual Reviews in Control, vol. 28, no. 2, pp. 253-266.

Ushio T., Onishi I., Okuda K., (1998). Fault detection based on Petri net models with faulty
behaviours, Proc. IEEE – SMC98, pp 113-118.

Van Lint J.H. (1999). Introduction to Coding Theory, Graduate Texts in Mathematics, vol. 86,
Springer Verlag.

Wen Y.L, Li C.H., Jeng M. (2005). A polynomial algorithm for checking diagnosability of
Petri nets, Proc. IEEE-SMC05, pp. 2542-2547, vol. 3.

Wu Y., Hadjicostis N. (2002). Non-concurrent fault identification in discrete event systems
using encoded Petri net states, Proc. IEEE – CDC02, vol. 4, pp4018-4023.

Wu Y., Hadjicostis N. (2005). Algebraic approaches for fault identification in discrete event
systems, Trans. IEEE - TAC, vol. 50, no. 12, pp. 2048 – 2053.

17

Augmented Marked Graphs and the
Analysis of Shared Resource Systems

King Sing Cheung
University of Hong Kong

Hong Kong

1. Introduction
Augmented marked graphs were first introduced in 1997 (Chu & Xie, 1997). They are not
well known as compared to other sub-classes of Petri nets such as free-choice nets (Desel &
Esparza, 1995), and the properties of augmented marked graphs are not studied extensively.
However, augmented marked graphs possess a structure which is desirable for modelling
shared resources, and for this reason, they are often used in modelling shared resource
systems, such as manufacturing systems (Chu & Xie, 1997; Zhou & Venkatesh, 1999; Jeng et
al., 2000; Jeng et al., 2002; Huang et al., 2003; Cheung & Chow, 2005).
There are a few published works on augmented marked graphs. Based on siphons and
mathematical programming, Chu and Xie proposed a necessary and sufficient condition of
live and reversible augmented marked graphs, which checks the existence of potential
deadlocks (Chu & Xie, 1997). However, this involves the flow of tokens during execution
and cannot be checked simply by looking into the structure. Chu and Xie also proposed
another siphon-based characterisation for live and reversible augmented marked graphs but
it provides a sufficient condition only. On the other hand, the boundedness and
conservativeness of augmented marked graphs were not investigated.
In the literature, apart from (Chu & Xie, 1997), the studies of augmented marked graphs
mainly focus on their property-preserving synthesis or composition. Jeng et al. proposed a
synthesis of process nets (covering augmented marked graphs) for manufacturing system
design, where the condition of liveness and reversibility are based on siphons and the
firability of transitions (Jeng et al., 2000; Jeng et al., 2002). Huang et al. also investigated the
composition of augmented marked graphs so that properties such as liveness, boundedness
and reversibility can be preserved (Huang et al., 2003).
In our earlier works on augmented marked graphs, we proposed characterisations for their
liveness, boundedness, reversibility and conservativeness and applied the characterisations
to the analysis and design of manufacturing systems, object-oriented systems and shared
resource systems (Cheung, 2004; Cheung, 2005; Cheung & Chow, 2005a; Cheung & Chow,
2005b; Cheung & Chow, 2005c; Cheung, 2006; Cheung & Chow, 2006; Cheung et al., 2006;
Cheung, 2007). This paper consolidates our previous works with a special focus on the
properties of augmented marked graphs.
First, we provide a number of characterisations for live and reversible augmented marked
graphs, based on siphons and cycles. In particular, a property called R-inclusion property is

Petri Net: Theory and Applications 378

introduced to characterise the siphon-trap property of augmented marked graphs. With this
property, the liveness and reversibility of an augmented marked graph can be analysed
through cycles instead of siphons. Second, we introduce R-transformation which transforms
an augmented marked graph into a marked graph. Its boundedness and conservativeness
can be determined by checking the cycles of the transformed marked graph. Based on these
characterisations, some pretty simple conditions and procedures are derived for checking
the liveness, reversibility, boundedness and conservativeness of an augmented marked
graph. These will be illustrated using the dining philosophers problem. We then show the
application to manufacturing system design.
The rest of this paper is organised as follows. Following this introduction, Section 2 provides
the preliminaries to be used in this paper. Section 3 describes augmented marked graphs
and their known properties. Section 4 shows characterisations for liveness and reversibility
while Section 5 shows characterisations for boundedness and conservativeness. Section 6
then illustrates these characterisations using the dining philosophers example. Section 7
describes the application to manufacturing system design. Finally, Section 8 concludes this
paper with a brief discussion.

2. Preliminaries
This section provides the preliminaries to be used in this paper for those readers who are
not familiar with Petri nets (Peterson, 1981; Reisig, 1985; Murata, 1989; Desel & Reisig, 1998).

Definition 2.1. A place-transition net (PT-net) is a 4-tuple N = P, T, F, W , where P is a set

of places, T is a set of transitions, F ((P T) (T P)) is a flow relation, and W : F { 1, 2,
... } is a weight function. N is said to be ordinary if and only if the range of W is { 1 }.

An ordinary PT-net is usually written as P, T, F . In the rest of this paper, unless specified
otherwise, all PT-nets refer to ordinary PT-nets.

Definition 2.2. Let N = P, T, F, W be a PT-net. For any x (P T), x = { y | (y, x) F }

and x = { y | (x, y) F } are called the pre-set and post-set of x, respectively.
For clarity in presentation, the pre-set and post-set of a set of places or transitions X = { x1, x2,

..., xn } can be written as X and X respectively, where X = x1 x2 ... xn and X = x1

x2 ... xn .

Definition 2.3. For a PT-net N = P, T, F, W , a path is a sequence of places and transitions

 = x1, x2, ..., xn , such that (xi, xi+1) F for i = 1, 2, ..., n-1. is said to be elementary if and
only if it contains no duplicate places or transitions.

Definition 2.4. For a PT-net N = P, T, F, W , a sequence of places p1, p2, ..., pn is called a

cycle if and only if there exists a set of transitions { t1, t2, ..., tn }, such that p1, t1, p2, t2, ..., pn,

tn forms an elementary path and (tn, p1) F.

Definition 2.5. For a PT-net N = P, T, F, W , a marking is a function M : P { 0, 1, 2, ...},
where M(p) is the number of tokens in p. (N, M0) represents N with an initial marking M0.
Definition 2.6. For a PT-net (N, M0), a transition t is said to be enabled at a marking M if and

only if p t : M(p) W(p,t). On firing t, M is changed to M' such that p P : M'(p) =

M(p) - W(p,t) + W(t,p). In notation, M [N,t M' or M [t M'.

Definition 2.7. For a PT-net (N, M0), a sequence of transitions = t1, t2, ..., tn is called a

firing sequence if and only if M0 [t1 ... [tn Mn. In notation, M0 [N, Mn or M0 [Mn.

Augmented Marked Graphs and the Analysis of Shared Resource Systems 379

Definition 2.8. For a PT-net (N, M0), a marking M is said to be reachable if and only if there

exists a firing sequence such that M0 [M. In notation, M0 [N, M or M0 [M. [N, M0 or

[M0 represents the set of all reachable markings of (N, M0).

Definition 2.9. Let N = P, T, F, W be a PT-net, where P = { p1, p2, ..., pm } and T = { t1, t2, ...,

tn }. The incidence matrix of N is an m n matrix V whose typical entry vij = W(pi,tj) - W(tj,pi)
represents the change in number of tokens in pi after firing tj once, for i = 1, 2, ..., m and j = 1,
2, ..., n.

Definition 2.10. For a PT-net (N, M0), a transition t is said to be live if and only if M

[M0 , M' : M [M' [t . (N, M0) is said to be live if and only if every transition is live.

Definition 2.11. For a PT-net (N, M0), a place p is said to be k-bounded if and only if M

[M0 : M(p) k, where k is a positive integer. (N, M0) is said to be bounded if and only if
every place is k-bounded, and safe if and only if every place is 1-bounded.

Definition 2.12. A PT-net (N, M0) is said to be reversible if and only if M [M0 : M [
M0.

Definition 2.13. A PT-net N = P, T, F, W is said to be conservative if and only if there

exists a |P|-vector > 0 such that V = 0, where V is the incidence matrix of N.
Property 2.1. A PT-net is bounded if it is conservative (Murata, 1989; Desel & Reisig, 1998).

Definition 2.14. For a PT-net N = P, T, F, W , a place invariant is a |P|-vector 0 such

that V = 0, where V is the incidence matrix of N.

Definition 2.15. For a PT-net N, a set of places S is called a siphon if and only if S S . S is

said to be minimal if and only if there does not exist another siphon S' in N such that S' S.

Definition 2.16. For a PT-net, a set of places T is called a trap if and only if T T.
Definition 2.17. A PT-net (N, M0) is said to satisfy the siphon-trap property if and only if
every siphon contains a marked trap (or every minimal siphon contains a marked trap).

Definition 2.18. A marked graph is an ordinary PT-net N = P, T, F, W such that p P :

| p| = |p | = 1.
Property 2.2. A marked graph (N, M0) is live if and only if every cycle is marked by M0

(Reisig, 1985; Murata, 1989).
Property 2.3. A live marked graph (N, M0) is bounded if and only if every place belongs to a
cycle marked by M0 (Reisig, 1985; Murata, 1989).
Property 2.4. A live and bounded marked graph is reversible (Reisig, 1985; Murata, 1989).
Property 2.5. For a marked graph, the corresponding place vector of a cycle is a place
invariant (Reisig, 1985; Murata, 1989).

3. Augmented marked graphs
This section describes augmented marked graphs and their known properties on liveness
and reversibility.
Definition 3.1. An augmented marked graph (N, M0; R) is a PT-net (N, M0) with a specific
subset of places R, satisfying the following conditions : (a) Every place in R is marked by M0.
(b) The net (N', M0') obtained from (N, M0; R) by removing the places in R and their

associated arcs is a marked graph. (c) For each r R, there exist kr 1 pair of transitions Dr =

{ ts1, th1 , ts2, th2 , ..., tskr, thkr }, such that r = { ts1, ts2, ..., tskr } T and r = { th1, th2, ..., thkr }

T and that, for each tsi, thi Dr, there exists in N' an elementary path ri connecting tsi to thi.

(d) In (N', M0'), every cycle is marked and no ri is marked.

Petri Net: Theory and Applications 380

Figure 1 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. For r1, Dr1 = { t1,

t11 , t3, t9 }. For r2, Dr2 = { t2, t11 , t4, t10 }.

Fig. 1. A typical augmented marked graph.

Property 3.1. An augmented marked graph is live if and only if it does not contain any
potential deadlock - a siphon which would eventually become empty (Chu & Xie, 1997).
Property 3.2. An augmented marked graph is reversible if it is live (Chu & Xie, 1997).
Property 3.3. An augmented marked graph is live and reversible if and only if every
minimal siphon would never become empty.

Proof. () It follows from Properties 3.1 and 3.2 that an augmented marked graph is live

and reversible if every minimal siphon would never become empty. () It follows from
Property 3.1 that every minimal siphon would never become empty.
Property 3.4. An augmented marked graph (N, M0; R) is live and reversible if every minimal
siphon, which contains at least one place of R, contains a marked trap (Chu & Xie, 1997).
For the augmented marked graph (N, M0; R) in Figure 1, the minimal siphons include : { p1,
p5, p8}, { r1, p2, p4, p6, p7, p9 }, { r1, p2, p4, p6, p7, p10 }, { r2, p3, p5, p6, p8, p9 } and { r2, p3, p5, p6,
p8, p10 }. Each of these minimal siphons contains a marked trap, and would never become
empty. (N, M0; R) is live and reversible.

4. Liveness and reversibility
This section provides characterisations for live and reversible augmented marked graphs,
based on siphons and cycles. Strategies for checking liveness and reversibility are then
presented.

Definition 4.1. For a PT-net N, N is defined as the set of all cycles in N.

Definition 4.2. Let N be a PT-net. For a subset of cycles Y N, P[Y] is defined as the set of

places in Y, and T[Y] = P[Y] P[Y] is defined as the set of transitions generated by Y.

t2

r2

t11

t1

r1

t3

p4

p2 p3

p7

t9 t10

t7

p5

p8

t4

t5

p9 p10

t8

p6
t6 p1

Augmented Marked Graphs and the Analysis of Shared Resource Systems 381

For clarity in presentation, P[{ }] and T[{ }] can be written as P[] and T[], to denote the set

of places in a cycle and the set of transitions generated by , respectively.

Definition 4.3. For a PT-net N, an elementary path = x1, x2, ..., xn is said to be conflict-

free if and only if, for any transition xi in , j (i -1) xj xi (Barkaoui, 1995).

Lemma 4.1. Let S be a minimal siphon of a PT-net. For any p, p' S, there exists in S a
conflict-free path from p to p' (Barkaoui, 1995).
Property 4.1. For a minimal siphon S of an augmented marked graph (N, M0; R), there exists

a set of cycles Y N such that P[Y] = S.
Proof. Let S = { p1, p2, ..., pn }. For each pi, it follows from the definition of augmented

marked graphs that pi . Then, there exists pj S, where pj pi, such that (pj pi) .
According to Lemma 4.1, pi connects to pj via a conflict-free path in S. Since pj connects to pi,

this forms a cycle i in S, where pi P[i] S. Let Y = { 1, 2, ..., n }. We have P[Y] = P[1]

P[2] ... P[n] S. On the other hand, S (P[1] P[2] ... P[n]) = P[Y] since S = { p1,
p2, ..., pn }. Hence, P[Y] = S.
Property 4.2. Every cycle in an augmented marked graph is marked.
Proof. (by contradiction) Let (N, M0; R) be an augmented marked graph. Suppose there

exists a cycle in (N, M0; R), such that is not marked. Then, does not contain any place in

R. Hence, also exists in the net (N', M0') obtained from (N, M0; R) after removing the places
in R and their associated arcs. However, by definition of augmented marked graphs, every
cycle in (N', M0') is marked.
Property 4.3. Every siphon in an augmented marked graph is marked.
Proof. For an augmented marked graph, according to Properties 4.1 and 4.2, every minimal
siphon contains cycles and is marked. Hence, every siphon, which contains at least one
minimal siphon, is marked.

Property 4.4. Let (N, M0; R) be an augmented marked graph. For every r R, there exists a
minimal siphon which contains only one marked place r.

Proof. Let Dr = { ts1, th1 , ts2, th2 , ..., tsn, thn }, where r = { ts1, ts2, ..., tsn } and r = { th1, th2, ...,

thn }. By definition of augmented marked graphs, for each tsi, thi Dr, tsi connects to thi via

an elementary path i which is not marked. Let S = P1 P2 ... Pn { r }, where Pi is the

set of places in i. We have Pi (Pi r) because, for each p Pi, | p | = | p | = 1. Then,

(P1 P2 ... Pn) (P1 P2 ... Pn r). Besides, r = { th1, th2, ..., thn } (P1 P2

... Pn). Hence, S = (P1 P2 ... Pn r) (P1 P2 ... Pn r) = S . Therefore, S
is a siphon, in which r is the only one marked place. Let S' be a minimal siphon in S.
According to Property 4.3, S' is marked. Since r is the only one marked place in S, r is also
the only one marked place in S'.
Consider the augmented marked graph (N, M0; R) shown in Figure 1. Every minimal siphon
is covered by cycles. For example, for a minimal siphon S1 = { r1, p2, p4, p6, p7, p9 }, there

exists a set of cycles Y1 = { 11, 12 }, where 11 = r1, p4, p7 and 12 = r1, p2, p6, p9 , such that
S1 = P[Y1]. For another minimal siphon S2 = { r2, p3, p5, p6, p8, p10 }, there exists a set of cycles

Y2 = { 21, 22 }, where 21 = r2, p5, p8 and 22 = r2, p3, p6, p10 , such that S2 = P[Y2]. S1 is a

minimal siphon, in which r1 R is the only one marked place. Also, S2 is a minimal siphon,

in which r2 R is the only one marked place.
Definition 4.4. For an augmented marked graph (N, M0; R), a minimal siphon is called a R-
siphon if and only if it contains at least one place in R.
Definition 4.5. For an augmented marked graph (N, M0; R), a minimal siphon is called a
NR-siphon if and only if it does not contain any place in R.

Petri Net: Theory and Applications 382

Definition 4.6. Let N be a PT-net. For a set of places Q in N, N[Q] is defined as the set of
cycles that contains at least one place in Q.

For clarity in presentation, N[{p}] can be written as N[p] to denote the set of cycles that
contains a place p.
Figure 2 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. There are five
minimal siphons, namely, S1 = { r1, p3, p4, p7, p8 }, S2 = { r1, p3, p5, p7, p8 }, S3 = { r2, p2, p4, p6,
p8, p9, p10 }, S4 = { r2, p2, p5, p6, p8, p9, p10 } and S5 = { p1, p3, p7 }. S1, S2, S3 and S4 are R-siphons
while S5 is a NR-siphon.
Property 4.5. For an augmented marked graph (N, M0; R), a R-siphon is covered by a set of

cycles Y N[R].
Proof. (By contradiction) Let S be a R-siphon. By Property 4.1, S is covered by cycles.

Suppose there exists a cycle in S, such that N[R]. According to the definition of

augmented marked graphs, for any p P[], | p | = | p | = 1. Hence, P[] = P[] , and P[]

is also a siphon. Since there exists a place r R such that r S but r P[], we have P[] S.

However, by definition of minimal siphons, there does not exists any siphon S' = P[] in S,

such that S' = P[] S.
For the augmented marked graph (N, M0; R) shown in Figure 2. every R-siphon is covered

by a set of cycles in N[R]. For example, a R-siphon S1 = { r1, p3, p4, p7, p8 } is covered by a set

of cycles Y1 = { 11, 12 } N[R], where 11 = r1, p3, p7 and 12 = r1, p4, p8 . Another R-

siphon S2 = { r1, p3, p5, p7, p8 } is covered by a set of cycles Y2 = { 21, 22 } N[R], where 21 =

 r1, p3, p7 and 22 = r1, p5, p8 .

Fig. 2. An augmented marked graph for illustration of R-siphons.

r2

t9

t1

p2

t3a

r1

t2

p3 p4 p5

p8p7

t8 t10

t6

p6

p9

t4

t5p1

p10

t11

t7

Augmented Marked Graphs and the Analysis of Shared Resource Systems 383

Property 4.6. Let S be a R-siphon of an augmented marked graph (N, M0; R). For every t

(S \ S), there does not exist any s (S \ R) such that t s .

Proof. (by contradiction) Suppose s exists. By definition of augmented marked graphs, | s |

= | s | = 1. S is covered by cycles in accordance with Property 4.5. Hence, t is the one and

only one transition in s , where t T[Y] = (S S). This however contradicts t (S \ S).
Property 4.7. For an augmented marked graph (N, M0; R), a NR-siphon contains itself as a
marked trap and would never become empty.
Proof. Let S be a NR-siphon. According to Property 4.3, S is marked. It follows from the

definition of augmented marked graphs that, for any s S, | s | = | s | = 1. Then, S = S
and S is also a trap. Hence, S contains itself as a marked trap and would never become
empty.
Property 4.8. An augmented marked graph (N, M0; R) is live and reversible if and only if no
R-siphons eventually become empty.

Proof. () According to Property 4.7, a NR-siphon would never become empty. Given that
no R-siphons eventually become empty, every minimal siphon would never become empty.

According to Property 3.3, (N, M0; R) is live and reversible. () It follows from Property 3.1
that no R-siphons eventually become empty.
Property 4.9. An augmented marked graph (N, M0; R) satisfies the siphon-trap property if
and only if every R-siphon contains a marked trap.

Proof. () According to Property 4.7, a NR-siphon contains a marked trap. Given that every

R-siphon contains a marked trap, every minimal siphon contains a marked trap. () Every

minimal siphon contains marked trap implies that every R-siphon contains a marked trap.
Consider the augmented marked graph (N, M0; R) shown in Figure 2. Every R-siphon
contains marked trap. Each of the R-siphons S1 = { r1, p3, p4, p7, p8 }, S2 = { r1, p3, p5, p7, p8 }, S3

= { r2, p2, p4, p6, p8, p9, p10 } and S4 = { r2, p2, p5, p6, p8, p9, p10 } contains a marked trap and
would never become empty. Also, the NR-siphon S5 = { p1, p3, p7 } contains itself as a
marked trap and would never become empty. (N, M0; R) is live and reversible.
Property 4.10. (characterisation of Property 3.4) An augmented marked graph (N, M0; R) is
live and reversible if every R-siphon contains a marked trap.
Proof. For (N, M0; R), if every R-siphon contains a marked trap, according to Property 4.9,
the siphon-trap property is satisfied. Hence, every minimal siphon would never become
empty. It then follows from Property 3.3 that (N, M0; R) is live and reversible.
Property 4.8 provides a simpler necessary and sufficient condition for live and reversible
augmented marked graphs, as compared to Properties 3.1 and 3.2. According to Property
4.8, only R-siphons are considered. Typically, for an augmented marked graph (N, M0; R),
the set R is small, so only a small number of siphons need to be considered. Properties 3.4
and 4.10 also refers to the same set of siphons but only a sufficient condition is provided.
With Properties 4.8 and 4.10, we can determine if an augmented marked graph is live and
reversible based on R-siphons. On the other hand, Property 4.5 provides a characterisation

for R-siphons so that R-siphons can be easily identified by finding cycles in N[R].
We may now derive the following strategy for checking the liveness and reversibility of an
augmented marked graph (N, M0; R) :

1. Find all R-siphons based on N[R].
2. Check if every R-siphon contains a marked trap. If yes, report (N, M0; R) is live and

reversible. Otherwise, go to (c).

Petri Net: Theory and Applications 384

3. For each R-siphon which does not contain any marked trap, check if it would never
become empty. If yes, (N, M0; R) is live and reversible. Otherwise, (N, M0; R) is neither
live nor reversible.

In the following, a property called R-inclusion is introduced for characterising the liveness
and reversibility of augmented marked graphs.

Definition 4.7. For a PT-net N, a set of cycles Y N is said to be conflict-free if and only if,

for any q, q' P[Y], there exists in P[Y] a conflict-free path from q to q'.

For the PT-net N shown in Figure 3, consider three cycles 1, 2, 3 N[p3], where 1 = p3,

p2, p7 , 2 = p3, p4 and 3 = p3, p1, p6, p10, p8 . Y1 = { 1, 2 } is conflict-free because for any

q, q' P[Y1], there exists in P[Y1] a conflict-free path from q to q'. Y2 = { 2, 3 } is not conflict-

free. Consider Y2. We have p4, p8 P[Y2]. p4 is connected to p8 via only one path = p4, t5,

p3, t1, p1, t3, p6, t6, p10, t9, p8 in Y2, and is not conflict-free because p4, p8 t5.

Fig. 3. A PT-net N for illustration of conflict-free cycles.

Property 4.11. Let S be a minimal siphon of an augmented marked graph (N, M0; R), and Y

N be a set of cycles such that S = P[Y]. Then, Y is conflict-free.

Proof. It follows from Lemma 4.1 that, for any q, q' S = P[Y], there exists in S = P[Y] a
conflict-free path from q to q'. Hence, Y is conflict free.
For the augmented marked graph shown in Figure 1, { r1, p2, p4, p6, p7, p9 } is a minimal

siphon covered by a set of cycles { r1, p4, p7 , r1, p2, p6, p9 } which is conflict free. { r2, p3,

p5, p6, p8, p10 } is another minimal siphon covered by a set of cycles { r2, p5, p8 , r2, p3, p6,

p10 } which is conflict-free. For the augmented marked graph shown in Figure 2, { r1, p3, p4,

p7, p8 } is a minimal siphon covered by a set of cycles { r1, p3, p7 , r1, p4, p8 } which is

conflict free. { r1, p3, p5, p7, p8 } is another minimal siphon covered by a set of cycles { r1, p3,

p7 , r1, p5, p8 } which is conflict free.

t1

t4

p2

t9

p11

p3

p8

p1

t7

p7

p10

t3

t6

p6p5

t2

t5

p4

p9

t8

Augmented Marked Graphs and the Analysis of Shared Resource Systems 385

Definition 4.8. Let (N, M0; R) be an augmented marked graph. A place r R is said to

satisfy the R-inclusion if and only if, for any set of cycles Y N[R] such that Y is conflict-

free, r T[Y] r T[Y].
Figure 4 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. Consider r1. For

any set of cycles Y1 N[R] such that Y1 is conflict-free, r1 T[Y1] r1 T[Y1]. Next,

consider r2. For any set of cycles Y2 N[R] such that Y2 is conflict-free, r2 T[Y2] r2

T[Y]. Both r1 and r2 satisfy the R-inclusion.
Figure 5 shows an augmented marked graph (N, M0; R), where R = { r1, r2 }. For r1, there

exists a set of cycles Y1 = { 11, 12 } N[R], where 11 = r1, p5 and 12 = r1, p5, r2, p6 . r1 =

{ t5, t6 } T[Y1] = { t3, t4, t5, t6 }, but r1 = { t2, t3 } T[Y1]. For r2, there exists a set of cycles Y2 =

{ 21, 22 } N[R], where 21 = r2, p6 and 22 = r2, p6, r1, p5 . r2 = { t5, t6 } T[Y2] = { t3, t4,

t5, t6 }, but r2 = { t1, t4 } T[Y2]. Hence, r1 and r2 do not satisfy the R-inclusion property.

Fig. 4. An augmented marked graph for illustration of R-inclusion.

Fig. 5. Another augmented marked graph for illustration of R-inclusion.

t1

t3

p3

t5

p5

r1

t2

t4

p4

t6

p6

p2p1

r2

t1

r1t3

p3

t5

p5

r2

t2

t4

p4

t6

p6

p1 p2

Petri Net: Theory and Applications 386

Property 4.12. For an augmented marked graph (N, M0; R), a R-siphon S contains itself as a

marked trap if every place r R in S satisfies the R-inclusion property.
Proof. Let S = { p1, p2, ..., pn }. According to Property 4.3, S is marked. It follows from

Properties 4.5 and 4.11 that there exists a set of cycles Y N[R], such that Y is conflict-free

and P[Y] = S. Since S is a siphon, for each pi S, pi (S S) = (P[Y] P[Y]) = T[Y]. In

case pi R, pi T[Y] because | pi | = | pi | = 1. In case pi R, given that pi satisfies the R-

inclusion property, pi T[Y]. Every pi T[Y] = (P[Y] P[Y]) and pi P[Y] = S. Since S

= (p1 p2 ... pn) S, S is also a trap. S contains itself as a marked trap.
Consider the augmented marked graph (N, M0; R), where R = { r1, r2 }, shown in Figure 4.
Both r1 and r2 satisfy the R-inclusion property. { r1, p3, p4 } is a minimal siphon which
contains itself as a marked trap. { r2, p5, p6 } is another minimal siphon which contains itself
as a marked trap.
Property 4.13. An augmented marked graph (N, M0; R) satisfies the siphon-trap property if

and only if every place r R satisfies the R-inclusion property.

Proof. () It follows from Properties 4.12 and 4.9. (by contradiction) Suppose there exists

r R, such that r does not satisfy the R-inclusion property. According to Property 4.4, there
exists a R-siphon S, in which r is the only marked place. It follows from Properties 4.5 and

4.11 that there exists Y N[R], such that Y is conflict-free and S = P[Y]. According to

Property 4.9, S contains a marked trap Q. Then, r Q and r (Q Q). Since S is a siphon,

we have r (S S) = (P[Y] P[Y]) = T[Y]. However, as r does not satisfy the R-inclusion

property, r T[Y] = (P[Y] P[Y]) = (S S), implying r (Q Q).
Property 4.14. An augmented marked graph (N, M0; R) is live and reversible if every place r

 R satisfies the R-inclusion property.
Proof. According to Property 4.13, (N, M0; R) satisfies the siphon-trap property. It follows
from Property 4.10 that (N, M0; R) is live and reversible.
Consider the augmented marked graph (N, M0; R), where R = { r1, r2 }, shown in Figure 4.
Both r1 and r2 satisfy the R-inclusion property. (N, M0; R) satisfies the siphon-trap property,
and is live and reversible.
Property 4.14 provides a cycle-based sufficient condition for live and reversible augmented
marked graphs. Without finding siphons and checking if each of these siphons contains a
marked trap, we need to check the R-inclusion property which involves finding cycles and
checking their pre-sets and post-sets. This provides an alternative characterisation for live
and reversible augmented marked graphs, apart from the existing siphon-based ones.
Based on Properties 4.5, 4.8, 4.10, 4.12 and 4.14, we may revise the strategy for checking the
liveness and reversibility of an augmented marked graph (N, M0; R) with the use of the R-
inclusion property, as follows.

1. Check if every r R satisfies the R-inclusion property. If yes, report (N, M0; R) is live
and reversible. Otherwise go to (b).

2. Let R' R be the set of places which do not satisfy the R-inclusion property. Based on

N[R'], find all R-siphons which contain at least one place in R'.
3. For each R-siphon identified in (b), check if it contains a marked trap. If yes, (N, M0; R)

is live and reversible. Otherwise, go to (d).
4. For each R-siphon identified in (b) that does not contain any marked trap, check if it

would never become empty. If yes, (N, M0; R) is live and reversible. Otherwise, (N, M0;
R) is neither live nor reversible.HHHHHH

Augmented Marked Graphs and the Analysis of Shared Resource Systems 387

5. Boundedness and conservativeness
This section first introduces a transformation, called R-transform, for augmented marked
graphs. Based on R-transform, a number of characterisations for bounded and conservative
augmented marked graphs are then derived. Strategies for checking boundedness and
conservativeness are then presented.
Property 5.1. Let (N, M0; R) be an augmented marked graph to be transformed into (N', M0')

as follows. For each place r R, where Dr = { ts1, th1 , ts2, th2 , ..., tskr, thkr }, replace r with a

set of places { p1, p2, ..., pkr }, such that M0'[pi] = M0[r] and pi = { tsi } and pi = { thi } for i = 1,
2, ..., kr. Then, (N', M0') is a marked graph.

Proof. According to the definition of augmented marked graphs, for each place p R in N,

M0; R), | p | = | p | = 1. Each place r R is replaced by a set of places { p1, p2, ..., pkr },

where | pi | = | pi | = 1 for i = 1, 2, ..., kr. Hence, for every place q in N', | q | = | q | = 1.
(N', M0') is a marked graph.
Definition 5.1. Let (N, M0; R) be an augmented marked graph. The marked graph (N', M0')
obtained from (N, M0; R) after the transformation as stated in Property 5.1 is called the R-
transform of (N, M0; R).
Property 5.2. The R-transform of an augmented marked graph is live.
Proof. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R). Since the
transformation process does not create new cycles, cycles in (N', M0') also exist in (N, M0; R).
According to Property 4.1, every cycle in (N, M0; R) is marked, and hence, every cycle in (N',
M0') is marked. Since (N', M0') is a marked graph, it follows from Property 2.2 that (N', M0')
is live.
Figure 6 shows an augmented marked graph (N, M0; R). Figure 7 shows the R-transform of
(N, M0; R), where r is replaced by { q1, q2 }. It is a live marked graph.

Fig. 6. An augmented marked graph for illustration of R-transform.

Property 5.3. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R),

where r R is replaced by a set of places Q = { q1, q2, ..., qk }, and P0 be the set of marked

t2

r1

t1

p1

p4 p5

t8

t5

p6

p9

t3

t4 p2

p3

p10

p7 p8

t7t6

Petri Net: Theory and Applications 388

places in N'. Then, for each qi in N', there exists a place invariant i of N' such that i[qi] = 1

and i[s] = 0 for any place s P0 \ {qi}.

Fig. 7. The R-transform of the augmented marked graph shown in figure 6.

Proof. Let Dr = { ts1, th1 , ts2, th2 , ..., tskr, thkr }. According to the definition of augmented

marked graphs, for each tsi, thi , there exists an unmarked path = ts1, ..., th1 in (N, M0; R).

Obviously, also exists as an unmarked path in (N', M0'), and together with qi forms a

cycle i which is marked at qi only. As (N', M0') is a marked graph, according to Property 2.5,

the corresponding vector of i is a place invariant i of N'. Since qi is the only one marked

place in i, i[qi] = 1 and i[s] = 0 for any place s P0 \ {qi}.

Property 5.4. Let (N, M0; R) be an augmented marked graph, where R = { r1, r2, ..., rn }. Let

(N', M0') be the R-transform of (N, M0; R), where each ri is replaced by a set of places Qi, for i

= 1, 2, ..., n. If every place in (N', M0') belongs to a cycle, then there exists a place invariant

of N' such that > 0 and [q1] = [q2] = ... = [qk] for each Qi = { q1, q2, ..., qk }.

Proof. Let P = { p1, p2, ..., pn } be the set of places in N', and P0 be those marked places. Since

each pi belongs to a cycle i and (N', M0') is a marked graph, according to Property 2.5, the

corresponding vector of i is a place invariant i' of N'. Then, ' = 1' + 2' + ... + n' > 0 is a

place invariant of N'. Consider Qi = { q1, q2, ..., qk }. Let qm Qi such that '[qm] '[qj] for

any qj Qi. For each qj, according to Property 5.3, there exists an invariant j' > 0 such that

j'[qj] = 1 and j'[s] = 0 for any place s P0 \ {qj}. There also exists a place invariant " = ' +

h j', where h 1, such that "[qj] = "[qm] and "[s] = '[s] for any s P0 \ {qj}. Hence, there

eventually exists a place invariant of N' such that [q1] = [q2] = ... = [qk].

Consider the R-transform (N', M0') of an augmented marked graph, as shown in Figure 7.

For q1, there exists a place invariant 1, such that 1[q1] = 1 and 1[q2] = 1[p1] = 1[p2] = 0.

For q2, there also exists a place invariant 2, such that 2[q2] = 1 and 2[q1] = 2[p1] = 2[p2] =

0. In (N', M0'), every place belongs to a cycle. There also exists a place invariant > 0, where

[q1] = [q2].

t2

q1

t1

p1

p4 p5

t8

t5

p6

p9

t3

t4 p2

p3

p10

p7 p8

t7t6

q2

Augmented Marked Graphs and the Analysis of Shared Resource Systems 389

Lemma 5.1. Let N = P, T, F be a PT-net and N' = P', T', F' be the PT-net obtained from N

after fusing a set of places Q = { q1, q2, ..., qn } P into a single place r P'. If there exists a

place invariant of N such that [q1] = [q2] = ... = [qn] = k 0, then there also exists a

place invariant ' of N' such that '[r] = k and '[s] = [s] for any s P'\{r} = P\Q.

Proof. Since N' is obtained from N by fusing Q = { q1, q2, ..., qn } into r, we have P' = (P\Q)

{ r }. Let V be the incidence matrix of N. Then, the incidence matrix V' of N' satisfies that

V'[r] = i=1,2,...,nV[qi] and V'[s] = V[s] for any s P'\{r} = P\Q. Since is a place invariant of

N, V = 0. Let ' be a place vector of N' such that '[r] = [q1] = [q2] = ... = [qn] = k and

'[s] = [s] for every s P'\{r} = P\Q. Then, 'V' = '[r]V'[r] + p (P'\{r}) '[p]V'[p] =

i=1,2,...,n [qi]V[qi] + p (P\Q) [p]V[p] = V = 0. Hence, ' is a place invariant of N'.

Lemma 5.2. Let N = P, T, F be a PT-net and N' = P', T', F' be the PT-net obtained from N

after fusing a set of places Q = { q1, q2, ..., qn } P into a single place r P'. If there exists a

place invariant ' of N' such that '[r] = k 0, then there also exists a place invariant of N

such that [q1] = [q2] = ... = [qn] = k and [s] = '[s] for any s P\Q = P'\{r}.

Proof. Since N' is obtained from N by fusing Q = { q1, q2, ..., qn } into r, we have P' = (P\Q)

{ r }. Let V be the incidence matrix of N. Then, the incidence matrix V' of N' satisfies that

V'[r] = i=1,2,...,nV[qi] and V'[s] = V[s] for any s P'\{r} = P\Q. Since ' is a place invariant of

N', 'V' = 0. Let be a place vector of N such that [q1] = [q2] = ... = [qn] = k and [s] =

'[s] for every s P\Q = P'\{r}. Then, V = i=1,2,...,n [qi]V[qi] + p (P\Q) [p]V[p] = '[r]V'[r] +

p (P'\{r}) '[p]V'[p] = 'V'. Hence, is a place invariant of N.

Property 5.5. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R). (N,

M0; R) is bounded and conservative if and only if every place in (N', M0') belongs to a cycle.

Proof. () Let R = { r1, r2, ..., rn }. (N', M0') is the R-transform of (N, M0; R), where each ri is

replaced by a set of places Qi, for i = 1, 2, ..., n. Since every place in (N', M0') belongs to a

cycle, according to Property 5.4, there exists a place invariant ' of N' such that ' > 0 and

'[q1] = '[q2] = ... = '[qk] for each Qi = { q1, q2, ..., qk }. It follows from Lemma 5.1 that there

also exists a place invariants of N such that > 0 and [ri] = '[q1] = '[q2] = ... = '[qk] for

each Qi. Hence, (N, M0; R) is conservative. According to Property 2.1, (N, M0; R) is bounded.

() Since (N, M0; R) is conservative, there exists a place invariant of N such that > 0.

Consider each ri R which is replaced by Qi = { q1, q2, ..., qk }. According to Lemma 5.2,

there also exists a place invariant ' of N' such that ' > 0 and '[q1] = '[q2] = ... = '[qk] =

[ri] and '[s] = [s] for any s P'\Qi. Hence, (N', M0') is conservative. It follows from

Property 2.1 that (N', M0') is bounded. Since (N', M0') is a marked graph, according to

Property 2.3, every place in (N', M0') belongs to a cycle.

Property 5.6. Let (N', M0') be the R-transform of an augmented marked graph (N, M0; R). (N,

M0; R) is bounded and conservative if and only if (N', M0') is bounded.

Proof. It follows from Properties 2.3 and 5.5.
Consider the augmented marked graph (N, M0; R) shown in Figure 6, and the R-transform

(N', M0') of (N, M0; R). Every place in (N', M0') belongs to a cycle. (N, M0; R) is bounded and

conservative. (N', M0') is also bounded and conservative.

Figure 8 shows another augmented marked graph (N, M0; R). Figure 9 shows the R-

transform (N', M0') of (N, M0; R), where r is replaced by { q1, q2 }. For (N', M0'), places p3 and

p10 do not belong to any cycle. (N, M0; R) is neither bounded nor conservative.

Petri Net: Theory and Applications 390

Fig. 8. Another augmented marked graph for illustration of R-transform.

Fig. 9. The R-transform of the augmented marked graph shown in figure 8.

Based on Properties 5.5, the following strategy is derived for checking the boundedness and

conservativeness of an augmented marked graph (N, M0; R) :

1. Create the R-transform of (N, M0; R).
2. Let (N', M0') be the R-transform. For each place p in N', check if there exists a cycle that

contains p. If yes, (N, M0; R) is bounded and conservative. Otherwise, (N, M0; R) is
neither bounded nor conservative.

t2

r1

t1

p1

p4 p5

t8

t5

p6

p9

t3

t4 p2

p3

p10

p7 p8

t7t6

t2

q1

t1

p1

p4 p5

t8

t5

p6

p9

t3

t4 p2

p3

p10

p7 p8

t7t6

q2

Augmented Marked Graphs and the Analysis of Shared Resource Systems 391

6. The Dining philosophers problem
This section illustrates the properties of augmented marked graphs obtained in the previous

two sections using the dining philosophers problem. By modelling the dining philosophers

problem by an augmented marked graph, the system is analysed on its liveness,

reversibility, boundedness and conservativeness based on the properties of augmented

marked graphs.

Example 1 : The Dining Philosophers Problem (Version 1)

Six philosophers (H1, H2, H3, H4, H5 and H6) are sitting around a circular table for dinner.

They are either meditating or eating the food placed at the centre of the table. There are six

pieces of chopsticks (C1, C2, C3, C4, C5 and C6) shared by them for getting the food to eat, as

shown in Figure 10. For one to get the food to eat, both the chopstick at the right hand side

and the chopstick at the left hand side must be available. The philosopher then grasps both

chopsticks simultaneously and then takes the food to eat. Afterwards, the chopsticks are

released and returned to their original positions simultaneously.

Fig. 10. The dinning philosophers problem.

Figure 11 shows an augmented marked graph (N, M0; R), representing the dining
philosophers problem (version 1). Table 1 shows the semantic meanings of the places and
transitions. There are 24 R-siphons, namely, {r1, p61, p11}, {r1, p61, p12}, {r1, p62, p11}, {r1, p62,
p12}, {r2, p11, p21}, {r2, p11, p22}, {r2, p12, p21}, {r2, p12, p22}, {r3, p21, p31}, {r3, p21, p32}, {r3, p22, p31},
{r3, p22, p32}, {r4, p31, p41}, {r4, p31, p42}, {r4, p32, p41}, {r4, p32, p42}, {r5, p41, p51}, {r5, p41, p52}, {r5,
p42, p51}, {r5, p42, p52}, {r6, p51, p61}, {r6, p51, p62}, {r6, p52, p61} and {r6, p52, p62}. Each of these R-
siphons contains a marked trap and would never become empty. Based on the results
obtained in Section 4, (N, M0; R) is live and reversible. On the other hand, for the R-
transform of (N, M0; R), every place belongs to a cycle. Based on the results obtained in
Section 5, (N, M0; R) is bounded and conservative.
Example 2 : The Dining Philosophers Problem (Version 2)
The Dining Philosophers Problem is now modified as follows. For one to get the food to eat,
he or she first grasps the chopstick at the right hand side if available, then grasps the
chopstick at the left hand side if available, and then takes the food to eat. Afterwards, the
chopsticks are released and returned to their original positions simultaneously.

C6

C3
C4

C5

C2

C1

H6

H4

H1

H3

H2H5 FOOD

Petri Net: Theory and Applications 392

Fig. 11. Augmented marked graph (Example 1).

Semantic meaning for places Semantic meaning for transitions
p11 H1 is meditating. t11 H1 takes the action to grasp C1 and C2.

p12 H1 has got C1 and C2 and takes the food. t12 H1 takes the action to return C1 and C2.

p21 H2 is meditating. t21 H1 takes the action to grasp C2 and C3.

p22 H2 has got C2 and C3 and takes the food. t22 H1 takes the action to return C2 and C3.

p31 H3 is meditating. t31 H1 takes the action to grasp C3 and C4.

p32 H3 has got C3 and C4 and takes the food. t32 H1 takes the action to return C3 and C4.

p41 H4 is meditating. t41 H1 takes the action to grasp C4 and C5.

p42 H4 has got C4 and C5 and takes the food. t42 H1 takes the action to return C4 and C5.

p51 H5 is meditating. t51 H1 takes the action to grasp C5 and C6.

p52 H5 has got C5 and C6 and takes the food. t52 H1 takes the action to return C5 and C6.

p61 H6 is meditating. t61 H1 takes the action to grasp C6 and C1.

p62 H6 has got C6 and C1 and takes the food. t62 H1 takes the action to return C6 and C1.

r1 C1 is available for pick.

r2 C2 is available for pick.

r3 C3 is available for pick.

r4 C4 is available for pick.

r5 C5 is available for pick.

r6 C6 is available for pick.

Table 1. Semantic meaning for the places and transitions in Fig. 11.

t11

t42

r6

t31

t62

p12

t12
r2

r1

p11

r3

r4

r5

p21

p22

p31

p32p41

p42

p51

p52

p61

p62

t21

t41

t51

t61

t22

t32

t52

Augmented Marked Graphs and the Analysis of Shared Resource Systems 393

Figure 12 shows an augmented marked graph (N, M0; R), representing the dining
philosophers problem (version 2). Table 2 shows the semantic meanings of the places and
transitions. The set of places {r1, p13, r2, p23, r3, p33, r4, p43, r5, p53, r6, p63} is a R-siphon which

would become empty after firing the sequence of transitions t11, t12, t13, t14, t15, t16 . Based on
the results obtained in Section 4, (N, M0; R) is neither live nor reversible. Deadlocks would

occur, for example, after firing t11, t12, t13, t14, t15, t16 . On the other hand, for the R-transform
of (N, M0; R), every place belongs to a cycle. Based on the results obtained in Section 5, (N,
M0; R) is bounded and conservative.

Fig. 12. Augmented marked graph (Example 2).

7. Application to manufacturing system
Manufacturing systems are typically shared resource systems, wherein the resources used to

be maximally shared among different asynchronous processes. Moreover, every resource

has a pre-defined capacity limit that can never be exceeded. Therefore, in manufacturing

system design, a major design objective is to achieve a live, bounded and reversible system -

liveness implies freeness of deadlock, boundedness implies absence of capacity overflow,

and reversibility allows system recovery. Verification of the system liveness, boundedness

and reversibility is essentially required, though very time-consuming.

p51

t43

p43

p31

p21t53

p12

t12

t11

p13

t13 r2

r1

r3

t22

t21

p22p23

t23

p32

p33

t32

t31

t33

r4

p42

t42

t41

r5

r6

p52

t52

t51

p53

p62

t62

t61

p63

t63

p11

p41

p61

Petri Net: Theory and Applications 394

Possessing a specific structure for representing shared resources, augmented marked graphs

are often used for modelling manufacturing systems. By modelling a manufacturing system

as an augmented marked graph, this section shows how the system liveness, boundedness

and reversibility can be analysed, based on the properties of augmented marked graphs.

Semantic meaning for places Semantic meaning for transitions
p11 H1 is meditating. t11 H1 takes the action to grasp C1.

p12 H1 has got C1 and prepares to pick C2. t12 H1 takes the action to grasp C2.

p13 H1 has got C1 and C2 and takes the food. t13
H1 takes the action to return C1 and

C2.

p21 H2 is meditating. t21 H2 takes the action to grasp C2.

p22 H2 has got C2 and prepares to pick C3. t22 H2 takes the action to grasp C3.

p23 H2 has got C2 and C3 and takes the food. t23
H2 takes the action to return C2 and

C3.

p31 H3 is meditating. t31 H3 takes the action to grasp C3.

p32 H3 has got C3 and prepares to pick C4. t32 H3 takes the action to grasp C4.

p33 H3 has got C3 and C4 and takes the food. t33
H3 takes the action to return C3 and

C4.

p41 H4 is meditating. t41 H4 takes the action to grasp C4.

p42 H4 has got C4 and prepares to pick C5. t42 H4 takes the action to grasp C5.

p43 H4 has got C4 and C5 and takes the food. t43
H4 takes the action to return C4 and

C5.

p51 H5 is meditating. t51 H5 takes the action to grasp C5.

p52 H5 has got C5 and prepares to pick C6. t52 H5 takes the action to grasp C6.

p53 H5 has got C5 and C6 and takes the food. t53
H5 takes the action to return C5 and

C6.

p61 H6 is meditating. t61 H6 takes the action to grasp C6.

p62 H6 has got C6 and prepares to pick C1. t62 H6 takes the action to grasp C1.

p63 H6 has got C6 and C1 and takes the food. t63
H6 takes the action to return C6 and

C1.

r1 C1 is available for pick.

r2 C2 is available for pick.

r3 C3 is available for pick.

r4 C4 is available for pick.

r5 C5 is available for pick.

r6 C6 is available for pick.

Table 2. Semantic meaning for the places and transitions in Fig. 12.

Example 3. It is a FWS-200 Flexible Workstation System, extracted from the literature (Zhou
& Venkatesh, 1999, pp. 121-124). The system consists of two robots R1 and R2, one feeder
area and one PCB area, as shown in Figure 13. There are two asynchronous processes.

Augmented Marked Graphs and the Analysis of Shared Resource Systems 395

Production process 1 : R1 picks components from the feeder area, and moves into the PCB
area for inserting components. The finished product is then moved out from the PCB area.
Production process 2 : R2 picks components from the feeder area, and moves into the PCB
area for inserting components. The finished product is then moved out from the PCB area.
Figure 14 shows an augmented marked graph (N, M0; R), representing the FWS-200 flexible
workstation system. Table 3 shows the semantic meanings of the places and transitions.

Fig. 13. The FWS-200 flexible workstation system.

Fig. 14. Augmented marked graph (Example 3).

For the augmented marked graph (N, M0; R) shown in Figure 14, every R-siphon would
never become empty. Based on the results obtained in Section 4, (N, M0; R) is live and

Components for R1

Robot R1

Robot R2

Products from R2Components for R2

PCB area Feeder area

Products from R1

p11

t11

p14

r1

p12 t12

p13

r2

t13

t21

p24

p22t22

p23

t23

p21

Petri Net: Theory and Applications 396

reversible. For the R-transform of (N, M0; R), every place belongs to a cycle. Based on the
results obtained in Section 5, (N, M0; R) is bounded and conservative. It is then concluded
that the FWS-200 flexible workstation system is live, bounded, reversible and conservative.

Semantic meaning for places Semantic meaning for transitions
p11 R1 is ready t11 R1 starts picking components

p12 Components for R1 are available t12 R1 starts inserting components

p13 R1 is picking components from feeder t13 R1 starts moving out the product

p14
R1 is inserting components in PCB

area
t21 R2 starts picking components

p21 R2 is ready t22 R2 starts inserting components

p22 Components for R2 are available t23 R2 starts moving out the finished product

p23 R2 is picking components from feeder

p24
R2 is inserting components in PCB

area

r1 Feeder area is available

r2 PCB area is available

Table 3. Semantic meaning for the places and transitions in Fig. 14.

Example 4. It is a flexible assembly system, extracted from the literature (Proth & Xie, 1996,
pp. 58-61). The system consists of three conveyors C1, C2 and C3 and three robots R1, R2 and
R3, as shown in Figure 15. There are three asynchronous processes.
Assembly process 1 : C1 requests R1. After acquiring R1, it requests R2. After acquiring R2, it
performs assembling and then releases both R1 and R2 simultaneously.
Assembly process 2 : C2 requests R2. After acquiring R2, it requests R3. After acquiring R3, it
perform assembling and then releases both R2 and R3 simultaneously.
Assembly process 3 : C3 requests R3. After acquiring R3, it requests R1. After acquiring R1, it
perform assembling and then releases both R3 and R1 simultaneously.

Fig. 15. The flexible assembly system.

Robot R3

Robot R1

Conveyor C3

Robot R2

Conveyor C1

Conveyor C2

Augmented Marked Graphs and the Analysis of Shared Resource Systems 397

Figure 16 shows an augmented marked graph (N, M0; R), representing the flexible assembly
system. Table 4 shows the semantic meanings of the places and transitions.

Fig. 16. Augmented marked graph (Example 4).

Semantic meaning for places Semantic meaning for transitions

p12 C1 is occupying R1 t11 C1 starts acquiring R1

p13 C1 is occupying R1 and R2 t12 C1 starts acquiring R2

p21 C2 is ready t13
C1 finishes assembling and release R1 and

R2

p22 C2 is occupying R2 t21 C2 starts acquiring R2

p23 C2 is occupying R2 and R3 t22 C2 starts acquiring R3

p21 C3 is ready t23
C2 finishes assembling and release R2 and

R3

p22 C3 is occupying R3 t31 C3 starts acquiring R3

p23 C3 is occupying R3 and R1 t32 C3 starts acquiring R1

r1 R1 is available t33
C3 finishes assembling and release R3 and

R1

r2 R2 is available

r3 R3 is available

Table 4. Semantic meaning for the places and transitions in Fig. 16.

t32t22t12

t11

t13

p11

p12

p13

r2

t21

t23

p21

p22

p23

r3

t31

t33

p31

p32

p33

r1

Petri Net: Theory and Applications 398

For the augmented marked graph (N, M0; R) shown in Figure 16, there exists a R-siphon S =

{ p13, p23, p33, r1, r2, r3 } which becomes empty after firing the sequence of transitions t11, t21,

t31 . Based on the results obtained in Section 4, (N, M0; R) is neither live nor reversible. A

deadlock would occur after firing t11, t21, t31 . For the R-transform of (N, M0; R), every place

belongs to a cycle. Based on the results obtained in Section 5, (N, M0; R) is bounded and

conservative. It is then concluded that the flexible assembly system is non-live, non-

reversible but bounded and conservative.

8. Conclusion
In the past decade, augmented marked graphs have evolved into a sub-class of Petri nets.

They are often used for modelling shared resource systems, such as manufacturing systems.

One major reason is that augmented marked graphs possess a special structure which is

desirable for modelling shared resources. However, the properties of augmented marked

graphs are not extensively studied. In the literature, there are a few published works on

augmented marked graphs.

This paper consolidates our earlier works on augmented marked graphs with a special focus

on liveness, boundedness, reversibility and conservativeness. We provide a number of

characterisations for live and reversible augmented marked graphs. In particulars, some of

these characterisations are based on cycles, instead of siphons. Besides, we introduce the R-

transformation, on which characterisations for bounded and conservative augmented

marked graphs are obtained. With these characterisations, some pretty simple conditions

and procedures for checking the liveness, reversibility, boundedness and conservativeness

of an augmented marked graph are derived. These have been illustrated using the dining

philosophers problem.

Typically, in designing shared resource systems, one need to achieve design objectives on

two folds. On one hand, the resources are scarce and should be maximally shared. On the

other hand, the system should be carefully designed so that erroneous situations due to the

sharing of resources, such as deadlock and capacity overflow, can be avoided. Yet, the

verification of liveness, boundedness and reversibility is very difficult and time-consuming.

This paper contributes to provide an effective means to analysing these essential properties.

By modelling a shared resource system as an augmented marked graph, its liveness,

boundedness, reversibility and conservativeness can be effectively analysed, based on the

characterisations and properties of augmented marked graphs. We specifically show the

application to the analysis of manufacturing systems which are typically shared resource

systems. Promising results are obtained.

9. References
Barkaoui, K., Couvreur, J.M. & Dutheillet, C. (1995), On Liveness in Extended Non Self-

Controlling Nets, Application and Theory of Petri Nets, Lecture Notes in Computer
Science, Vol. 935, pp. 25-44, Springer-Verlag.

Cheung, K.S. (2004), New Characterisations for Live and Reversible Augmented Marked

Graphs, Information Processing Letters, Vol. 92, No. 5, pp. 239-243.

Augmented Marked Graphs and the Analysis of Shared Resource Systems 399

Cheung, K.S. (2005), A Synthesis Method for Designing Shared-Resource Systems,

Computing and Informatics, Vol. 24, No. 6, pp. 629-653.

Cheung, K.S. (2006), Modelling and Analysis of Manufacturing Systems Using Augmented

Marked Graphs, Information Technology and Control, Vol. 35, No. 1, pp. 19-26.

Cheung, K.S. (2007), Boundedness and Conservativeness of Augmented Marked Graphs,

IMA Journal of Mathematical Control and Information, Vol. 24, No. 2, pp. 235-244.

Cheung, K.S. & Chow, K.O. (2005a), Cycle-Inclusion Property of Augmented Marked

Graphs, Information Processing Letters, Vol. 94, No. 6, pp. 271-276.

Cheung, K.S. & Chow, K.O. (2005b), Analysis of Manufacturing Systems Based on

Augmented Marked Graphs, Proceedings of the IEEE International Conference on
Computational Intelligence for Modelling, Control and Automation, Vol. 2, pp. 847-851.

Cheung, K.S. & Chow, K.O. (2005c), A Synthesis Approach to Deriving Object-Based

Specifications from Object Interaction Scenarios, In : Nilsson et al. (eds.), Advances
in Information Systems Development - Bridging the Gap Between Academic and Industry,

pp. 647-656, Springer.

Cheung, K.S. & Chow, K.O. (2006), Analysis of Capacity Overflow for Manufacturing

Systems, Proceedings of the IEEE Conference on Automation Science and Engineering,

pp. 287-292.

Cheung, K.S., Cheung, T.Y. & Chow, K.O. (2006), A Petri-Net-Based Synthesis Methodology

for Use-Case-Driven System Design, Journal of Systems and Software, Vol. 79, No. 6,

pp. 772-790.

Chu, F. & Xie, X. (1997), Deadlock Analysis of Petri Nets Using Siphons and Mathematical

Programming, IEEE Transactions on Robotics and Automation, Vol. 13, No. 6, pp. 793-

804.

Desel, J. & Esparza, J. (1995), Free Choice Petri Nets, Cambridge University Press.

Desel, J. & Reisig, W. (1998), Place Transition Petri Nets, Lectures on Petri Nets I : Basic Models,
Lecture Notes in Computer Science, Vol. 1491, pp. 122-173, Springer-Verlag.

Huang, H.J., Jiao, L. & Cheung, T.Y. (2003), Property-Preserving Composition of Augmented

Marked Graphs that Share Common Resources, Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1446-1451.

Jeng, M.D., Xie, X. & Huang, Y. (2000), Manufacturing Modeling Using Process Nets with

Resources, Proceedings of the IEEE International Conference on Robotics and Automation,

pp. 2185-2190.

Jeng, M.D., Xie, X. & Peng, M.Y. (2002), Process Nets with Resources for Manufacturing

Modeling and their Analysis, IEEE Transactions on Robotics and Automation, Vol. 18,

No. 6, pp. 875-889.

Murata, T. (1989), Petri Nets : Properties, Analysis and Applications, Proceedings of the IEEE,

Vol. 77, No. 4., pp. 541-580.

Peterson, J.L. (1981), Petri net theory and the modeling of systems, Prentice Hall.

Proth, J.M. & Xie, X. (1996), Petri Nets : A Tool for Design and Management of Manufacturing
Systems, Wiley.

Reisig, W. (1985), Petri Nets : An Introduction, Springer-Verlag.

Petri Net: Theory and Applications 400

Zhou, M.C. & Venkatesh, K. (1999), Modeling, Simulation and Control of Flexible Manufacturing
Systems : A Petri Net Approach, World Scientific.

18

Incremental Integer Linear Programming Models
for Petri Nets Reachability Problems

Thomas Bourdeaud'huy1, Saïd Hanafi² and Pascal Yim1

1L.A.G.I.S. Ecole Centrale de Lille
²L.A.M.I.H. Université de Valenciennes

France

1. Introduction
The operational management of complex systems is characterized, in general, by the
existence of a huge number of solutions. Decision-making processes must be implemented
in order to find the best results. These processes need suitable modeling tools offering true
practical resolution perspectives. Among them, Petri nets (PNs) provide a simple graphical
model taking into account, in the same formalism, concurrency, parallelism and
synchronization. Their graphical and precise nature, their firm mathematical foundation
and the aboundance of analysis methods have made them become a classical modeling tool
for the study of discrete event systems, ranging from operating systems to logistic ones.
However, their interest in the field of problem solving is still badly known.
In this paper, we consider some PN reachability problems. Since PNs can model flows in a
natural and efficient way, many operations research problems can be defined using
reachability between states, e.g. scheduling (Lee and DiCesare, 1994; Van Der AAlst, 1995),
planning (Silva et al., 2000), car-sequencing problems (Briand, 1999). Moreover, research on
Petri nets addresses the issue of flexibility: many extensions have been proposed to facilitate
the modeling of complex systems, by addition of ``color’’, ``time’’ and ``hierarchy’’ (Jensen,
1992; Wang,1998). For example, it is relatively easy to map scheduling problems onto timed
PNs. Their graphical nature reinforce obviously this strength, by allowing a kind of
interactivity with the system. At last, a large number of difficult PN analysis problems are
equivalent to the reachability problem, or to some of its variants or sub-problems (Keller,
1976). Particularly, model-checking (Latvala, 2001) which represents a key point when dealing
with systems analysis is directly linked to an exhaustive traversal of the corresponding PN
reachability graph.
Various methods have been suggested to handle the PNs reachability problem. In this
paper, we propose to use the mathematical programming paradigm. Some PN analysis
problems have already been handled using such techniques (Melzer and Esparza, 1996;Silva
et al., 1998; Khomenko and Koutny, 2000), but none has considered the general PNs
reachability problem.
The proposed approach is based on an implicit traversal of the Petri net reachability graph,
which does not need its construction. This is done by considering a unique sequence of steps
growing incrementally to represent exactly the total behavior of the net. We follow here a

Petri Net: Theory and Applications 402

previous work from (Benasser and Yim, 1999) called logical abstraction technique. Their
technique was validated on several examples using logical constraint programming
techniques. It has shown more effective than other generic solvers and could even compete
with heuristics dedicated to particular classes of problems. Our methodology allows to
improve this original model using the wide range of tools and adjustments brought by
Operational Research techniques. We model the problem as an integer linear program, then
we solve it with a branch-and-bound technique (divide and conquer), using the Cplex
optimization software.
Moreover, we show how our incremental approach can be extended to Timed Petri nets in
order to solve scheduling problems modelled as Timed Petri Nets reachability problems.
The model built is as general as possible since we do not make assumptions about the firing
policy, contrarywise to other classical approaches dealing with the same issue.
This chapter is organized as follows. In section 2, we formally define the kind of PN
considered, their respective reachabilty problems and the ways such problems are dealt
with in the litterature. Then, in section 3, we give general considerations about step firings
and describe the elements of our incremental approaches. In section 4, we apply our
methodology to express reachability problems using a mathematical programming
formulation. Finally, as a conclusion, we describe a few promising research directions.

2. Petri Nets reachability problems
In this section, we give the terminology of both kinds of the PN we are interested in using
linear algebra -- in order to make our formulations more concise -- and define formally their
respective reachability problems.

2.1 Place/transition Petri nets
2.1.1 Petri net terminology
Definition 1 (Place/Transition Petri Net). A Place/Transition Petri net (Murata, 1989)

= (, , ,)R C CP T with its initial marking m is a bipartite weighted directed graph where:

1= { , , }mp pP is a finite set of places, with =| |M P . Places are represented as circles

and indexed by letter i ;

1= { , , }nt tT is a finite set of transitions, with =| |N T . Transitions are represented as

rectangles and indexed by letter j ;

Incidence matrices ,C C and C P TN (with =C C C) define the weighted flow

function which associates to each arc (,)i jp t (from place ip to transition jt) or (,)j it p

(from transition jt to place ip) its weight ijC or ijC . When there is no arc between place

ip and transition jt , then we have: = = 0ij ijC C . The thi row vector and thj column

vector taken from incidence matrices C , C and C are denoted respectively iC , jC ,

iC , jC and iC , jC . We denote respectively by p and p the set of predecessors and

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 403

successors of place p , and conversely t and t are the set of predecessors and successors of
transition t (also known as input and output nodes);

:m P N associates to each place p P an integer ()m p called the marking of the
place p . Markings are represented as full dots called tokens inside places.

Definition 2 (Characteristic Vectors). Let (,)R m be a Petri net with 1 2= { , , , }mp p pP
and 1 2= { , , , }nt t tT :

The canonical vector pi
e associated to place ip (resp. t j

e associated to transition jt) is the

vector in {0,1}N (resp. in {0,1}M) which takes the value ``1’’ in its thi (resp. thj)
component and ``0’’ elsewhere.

The marking vector m associated to marking m is the column vector 1(()m p , 2()m p ,

, ()) M
mm p ú N .

p1

p2

p4
p3

t1

t2 t3

t4

2p1

p2

p4
p3

t1

t2 t3

t4

2

1 1 0 0 0 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0 1 1 1 0
0 0 1 0 0 2 0 0 0 2 1 0
0 0 0 1 0 0 1 0 0 0 1 1

C C C

Fig. 1. A Petri Net and its Incidence Matrices

Example 1 (PN). An example of a PN and its incidence matrices is presented in Fig.1. Its initial

marking is 0 = (1,0,0,0)m ú . We have
2

= (0,1,0,0,0)pe ú and
3

= (0,0,1,0,0)te ú .

In a PN, the markings of the places represent the state of the corresponding system at a
given moment. This state can be modified by the firing of transitions. This behaviour is
called the ``token game’’.
Definition 3 (Transition Firings). Let (,)R m be a Petri net. A transition jt is fireable from

marking m iff:

, ()i i ij

t j

p m p C

m C e

P
 (1)

The fireability condition is denoted by [m t . If this condition is satisfied, a new marking m is
produced from the marking m , such that:

Petri Net: Theory and Applications 404

, () = ()

 =
i i i ij ij

t j

p m p m p C C

m m C e

P
 (2)

The firing of a transition t from the marking m to the marking m is denoted by [m t m .
Transition firings modify the marking of the net. It is thus interesting to know if one
particular marking can be reached. This problem is known as the ``reachability problem’’ for
Petri nets.

2.1.2 Reachability problem
Definition 4 (Reachable Marking). A marking m is reachable from a marking m iff there
exists a sequence of transitions

1 2
=

k
t t t such that: 1 21 2

[[[
K

m t m t m t m

We denote by [m m that the marking m is reachable from the marking m , where

1 2
=

K
t t t is called a firing sequence. The Parikh vector

=1
= K

tk
k

e associated to

the firing sequence is the vector whose
thj component is equal to the number of times

the transition j is fired in . It is used to formulate a well known property of Petri Nets.

Proposition 1 (State equation). Let 0(,)R m be a Petri net, fm a marking and

1 2
=

K
t t t a firing sequence. Then we have:

0 0[=f fm m m m C (3)

Proof. It is obtained using a simple induction over the number of transitions fired in the

sequence. W
The equation Error! Reference source not found. is called the fundamental (or state) equation
of Petri nets. This equation has been widely studied in PN reachability analysis, but it only
leads to semi-decision algorithms due to the existence of spurious solutions (Silva et al., 1992).
Indeed, in that case, the reverse implication does not hold: the Parikh vector of a firing
sequence is always solution to the state equation, but the reverse is not true. Some
techniques (Colom and Silva, 1989b) have been proposed to improve the strength of this
characterization, but they are still insufficient.

Definition 5 (Reachability Problem). Let 0(,)R m be a Petri net and fm a marking. The set

of all markings reachable from 0m is denoted by 0(,)R mR ; the set of all possible firing sequences

(within which each transition is fireable from the corresponding marking) is denoted by 0(,)R mF .

The problem of finding whether 0(,)fm R mR or not is known as the reachability problem for

Petri nets.
It has been shown that the reachability problem is decidable (Kosaraju, 1982). However it is
EXP-TIME and EXP-SPACE hard in the general case (Lipton, 1976). Of course, practical

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 405

applications need not only to know if a marking is reachable, but also what are the
corresponding firing sequences leading to this marking. To solve this problem, one needs to

find a firing sequence 0(,)R mF such that 0[fm m . A ``naive’’ approach consists

in exploring the reachability graph exhaustively. This graph corresponds to the usual formal
representation of the behavior of the net.

Definition 6 (Reachability Graph). The reachability graph of a Petri net 0(,)R m , denoted by

0(,)R mG , is defined by:

A set of nodes 0(,)R mR which represents the reachable markings;

A set of arcs, where an arc (,)m m labelled t connects nodes m and m iff [m t m .

Example 2 (Reachability Graph). Fig.2. presents a part of the reachability graph for the Petri net
of Fig.1.

(0,1,2,0)T

(1,0,0,0)T

(0,0,1,1)T (0,1,3,0)T

(1,0,1,0)T

(0,1,1,0)T

(0,1,0,0)T

(0,0,0,1)T

t2

t1

t3
t4 t2

t3

t1 t3

t4

(0,1,2,0)T

(1,0,0,0)T

(0,0,1,1)T (0,1,3,0)T

(1,0,1,0)T

(0,1,1,0)T

(0,1,0,0)T

(0,0,0,1)T

t2

t1

t3
t4 t2

t3

t1 t3

t4

Fig. 2. Reachability graph for the PN of Fig. 1

For a given initial marking 0m , the reachability graph 0(,)R mG and the corresponding

reachability set 0(,)R mR may be of infinite size. For instance, the set of markings

reachable from 0m for the net of Fig. 1 is infinite.

Practically, it is not possible to explore the reachability graph exhaustively due to the well
known problem of combinatorial explosion: the size of the state-space (i.e. the size of the
reachability set) may grow exponentially with the size of a system configuration (i.e. the
number of nodes of the Petri net). Many methods have been studied to limit this explosion.
Let us mention the three main families.
 First ones aims at managing the combinatorial explosion without modifying the studied
reachability graph. Classical approaches are graph compressions, particularly bdd encoding
(Gunnarsson, 1998) and forward checking (Fernandez et al., 1992). Both uses depth first
traversal of the reachability graph.

Other techniques construct a reduced reachability graph associated to the original, based
on some properties to preserve: symmetries (Huber et al., 1985), reductions (Berthelot,
1986) and partial order (covering step graphs (Vernadat et al., 1996), stubborn sets

Petri Net: Theory and Applications 406

(Valmari, 1991)) are the main approaches. The logical abstraction technique (Benasser and
Yim, 1999) belongs also to this category.

Last ones are based on the PN state equation (cf. Proposition 1): we can distinguish
parametrized analysis (Lindqvist, 1993) and algebraic methods (Lautenbach, 1987).

Many extensions have been proposed to improve the modelling power of Petri nets. Among
them, several extended Petri nets with ``time’’ have been proposed by assigning punctual
firing times (leading to ``Timed PN’’) or time intervals (``Time PN’’) to the components of
Petri nets (transitions, places, arcs or even tokens). To deal with firing times, two main
methods for modeling timing are used: either the timings are associated with the places (the
PN is said to be P-timed) (Sifakis, 1975), or the timings are associated with the transitions
(the PN is said to be T-timed) (Ramchandani, 1974). Depending on the system to be
modeled, one of the models (P-timed or T-timed) may be easier to use than the other one.
However, Sifakis has shown that the two models are equivalent. In the context of scheduling
problems, (Hillion and Proth, 1989) and (Van Der Aalst, 1995) propose to use T-timed Petri
nets, hereafter called simply Timed PN. We describe this model in the following section.

2.2 Timed Petri nets
Timed Petri nets have been introduced by (Ramchandani, 1974). The following presentation
has been adapted from (Chrétienne, 1984). We start by giving an informal introduction on
Timed Petri nets.

2.2.1 Informal presentation
Timed Petri nets correspond to Places/Transitions Petri nets where a duration *()d t N is

associated to each transition t . A Timed Petri net has the same representation as PN, to

which is added a labelling on transitions. An example of Timed Petri net is given in Fig. 3.

We have: 1() = 3d t , 2() = 4d t , 3() = 5d t , 4() = 2d t .

The firing durations associated to transitions modify the marking validity conditions. As soon
as durations are associated to transitions, the Petri net acts as if tokens ``disappeared’’ at the
time the transition is fired, and then ``reappeared’’ after a delay corresponding to the
duration of the fired transition. Thus, the marking of a Timed Petri net evolves with the
occurences of an external timer. For instance, let's consider the Timed Petri net of Fig. 3. At

date 1, the transition 1t (duration: 3 t.u.) is fired. Then the transition 4t (duration: 2 t.u.) is

fired at date 5. The evolution of marking with time is given in Fig. 3. Note that one could

have fired transition 4t at date 4, since the resource 1r had been released at the end of the

firing of transition 1t . However, the same transition was not fireable at date 3, since the

firing of 1t was not finished.

The firing and ending dates of transitions play a fundamental role in the behaviour of the
Timed Petri net. It is thus necessary to adapt the firing equations according to these firing
dates. In order to respect the underlying semantic of PN, a timed firing sequence is said to be
feasible if and only if, at any time, the transient marking reached is made of non negative
components.

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 407

Date
Marking

(, , , , , , ,)1 2 3 4 5 6 1 2p p p p p p r r ú

Initial date 0 (1,0,0,0,1,0,1,1)ú

Firing of

1t
1 (0,0,0,0,1,0,0,1)ú

 2 (0,0,0,0,1,0,0,1)ú

 3 (0,0,0,0,1,0,0,1)ú

End of 1t 4 (0,1,0,0,1,0,1,1)ú

Firing of

4t
5 (0,1,0,0,0,0,0,1)ú

 6 (0,1,0,0,0,0,0,1)ú

End of 4t 7 (0,1,0,0,0,1,1,1)ú

p4 p5 p6

r1 r2

p1 p2 p3

t3(5) t4(2)

t1(3) t2(4)

p4 p5 p6

r1 r2

p1 p2 p3

t3(5) t4(2)

t1(3) t2(4)

 8 (0,1,0,0,0,1,1,1)ú

Fig. 3. Example of a Timed Petri Net and a Timed Firing Sequence

2.2.2 Timed Petri nets terminology
Definition 7 (TPN -- Timed Petri Net). A Timed Petri net (Ramchandani, 1974) is defined by a

pair (,)R d where R is a Place/Transition Petri Net and *:d T N is a mapping associating

a duration to each transition of the net. The vector = () t
t

d d t e
T

 is called the duration vector of

the Timed Petri net.
Note that one could more generally consider rational valued durations. Nevertheless, after
having them reduced to the same denominator, and by reasoning over numerators, it is the
same as if durations were integer valued. In addition, to simplify the study, we restrict

ourselves to Timed Petri nets without immediate transitions (i.e. , () > 0t d tT), which is

not so restrictive in real world practice and corresponds well to scheduling problems we are
concerned with.
The transition firing semantics in TPN forbids reentrance. In other words, it is not possible to
fire again a transition that has not yet finished to be fired. Again, this semantics is well fitted
to scheduling problems, where transitions are associated to operations on machines. Thus,
one can associate a unique residual duration to each transition without any possible confusion
between several concurrent transitions activations. The residual duration vector is
associated to the marking of a TPN to define its full state.

Definition 8 (TPN State). Let (,)R d be a TPN. Its state = (,)m re E E is given by:

Petri Net: Theory and Applications 408

Its classical marking vector
M

mE N , associating to each place its number of tokens;

A residual durations vector
N

rE N , associating to each active transition its

remaining duration, and zero if the transition is not active.

The set of all states of a TPN is denoted by (,)R dS . The fundamental concept that

governs Timed Petri net behavior is the controlled execution, which associates to each
transition the sequence of its successive firing dates.

Definition 9 (CE – Controlled Execution) Let (,)R d be a TPN and t T a transition. A

firing sequence for the timed transition t : 1() = , ,t t
k Kt

tu u u N is an increasing sequence of

firing dates, such that:

1[[1, 1]], ()t t
t k kk K u d t u (4)

A controlled execution is a family , [[1,]]()t
k t k Kt

u T of firing sequences for all transitions of the TPN.

Note that in the previous definition, equation (4) is used to forbid reentrance. For any

transition t , tk and Kt

tu may be infinite. Hereafter, we only consider finite CEs. We denote

by maxv the ending date of the last firing in the CE: max = ()max Ktt

tv u d t
T

. After

maxv , the state of the TPN under the considered CE will never change and we

have: max() = 0r NE v .

The formal expression of a CE is used to define several characteristic vectors allowing to
verify the feasability of a CE. We assume that no transition is active at the initial state to
simplify the formulation.
Definition 10 (Characteristic Vectors of Controlled Executions) Let (R, d) be a TPN with its

initial state 0 0
= ,0m Ne E given at initial date 0 and

, [[1,
()]]

t
k t k Kt

u
T

 a controlled

execution. Let max[[0,]]v v . We define three characteristic vectors associated to ()t
ku in the

following way:

() NN v N is the vector corresponding to the number of firings that started within the

interval [0,]v , defined by , [[1,]]() = | t
k k K ktt

tN v card u u v ;

() ND v N is the vector corresponding to the number of firings that started within

the interval [0, [v , defined by , [[1,]]() = | <t
k k K ktt

tD v card u u v ;

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 409

() NF v N is the vector corresponding to the number of firings that ended within

the interval [0,]v , defined by , [[1,]]() = | ()t
k k K ktt

tF v card u u d t v .

We have introduced above the definitions of state and controlled execution of a TPN. We
define below how the state of a TPN is modified under a CE.

Definition 11 (Instantaneous State of a TPN under a Controlled Execution) Let (,)R d be

a TPN with its initial state 0 0
= ,0m Ne E given at date 0 and

, [[1,
()]]

t
k t k Kt

u
T

 a controlled

execution. Let max[[0,]]v v . The instantaneous state = () , () v m re E v E v at date v is

given by:

0
() = () () m mE v E C F v C N v (5)

() if [[1,]] . . [[, ()[[
, () =

0 otherwise

t t t
k t k k

r t

u d t v k K s t v u u d t
t E vT (6)

Informally, in the previous definition, the quantity () C F v corresponds to the tokens

produced by the firings of transitions that ended strictly before the date v . Those tokens can

be used to fire transitions at date v . The quantity () C N v corresponds to the tokens

used by the firings of transitions that started until the date v . Thus, the quantity () mE v
corresponds exactly to the tokens remaining in the TPN at date v . The residual durations

vector () rE v denotes the exact remaining time of transitions that are active at date v .

Obviously, there can only be one [[1,]] . . [[, ()[[t t
t k kk K s t v u u d t from equation (4).

Note that (Chretienne, 1984) defines also the quantity

() = (0) () () mm v E C F v C D v . This quantity does not consider the tokens

used by the firings of transitions that occur exactly at date v . Thus, it can be used to

formulate the fireability condition for a transition in a TPN, independently from possible
concurrent activations: under a controlled execution, a transition is fireable at date v
iff () tm v C e .

Obviously, like for Place/Transitions PNs, even if each transition is independently fireable
at every date, the full CE is not necessarily valid as a whole since token may be used by
several transitions at the same time. Thus, an improved condition for a CE to be feasible is
given below.

Petri Net: Theory and Applications 410

Definition 12 (Feasible Controlled Execution). Let (,)R d be a TPN with its initial state

0 0
= ,0m Ne E given at date 0 and , [[1,]]()t

k t k Kt
u T a controlled execution. This controlled

execution is said to be feasible iff:

max[[0,]], () 0m Mv v E v (7)

The previous condition means that there must be enough tokens so that transitions may fire
simultaneously.

2.2.3 Timed Petri Net Reachability Problem
Using the previous notations, the Timed Petri nets reachability problem consists in
searching for a feasible CE allowing to reach a given final state from the initial state.

Definition 13 (Timed PN Reachability Problem). Let (,)R d be a TPN with its initial state

0 0
= ,0m Ne E given at date 0 . Let = ,0f m Nf

e E be a target state. The reachability

problem for Timed Petri nets consists in finding a CE , [[1,]]()t
k t k Kt

u T such that

max maxmax
= () , () =v m r fe E v E v e .

As said before, it is quite simple to see a parallelism between a scheduling problem and a
Timed Petri net reachability problem. Indeed, let's consider for instance the Timed Petri net
of Fig. 4. One remarks obviously that solving a reachability problem between markings

0 1 2 3 1 2 3= { , , , , , }m p p p m m m and 4 5 6 1 2 3= { , , , , , }fm p p p m m m means exactly

finding a schedule of the production presented in the table on the left side.

Production To
Schedule:

job 1:
(,2)(,3)(,4)1 2 3m m m

job 2:
(,3)(,2)(,3)(,3)2 3 1 3m m m m

job 3:
(,2)(,4)(,2)1 3 1m m m

m1

m3

m2

o11(2)

o12(3)

o13(4)

o32(4)

o33(2)

o31(2)

o21(3) o22(2) o23(3) o24(3)
Job 1

Job 3

Job 2

mf

mf

mf

p1

p2

p3

p4

p5

p6

m1

m3

m2

o11(2)

o12(3)

o13(4)

o32(4)

o33(2)

o31(2)

o21(3) o22(2) o23(3) o24(3)
Job 1

Job 3

Job 2

mf

mf

mf

m1

m3

m2

o11(2)

o12(3)

o13(4)

o32(4)

o33(2)

o31(2)

o21(3) o22(2) o23(3) o24(3)
Job 1

Job 3

Job 2

mf

mf

mf

p1

p2

p3

p4

p5

p6

Fig. 4. TPN modelling a Production To Schedule

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 411

Several approaches have been proposed to solve the Timed Petri net reachability problem,
either by restricting their study to a subclass of TPN, like Timed Event Graphs (where a
place has exactly one input and one output transition), either by using dedicated heuristics.
A complete bibliography can be found in (Richard, 2000).
Since the fire of a Timed transition can occur as soon as it is fireable and as late as one wants,
there may exist, from a given state, an infinite number of reachable markings (depending on
the time), and no reachability graph can be built. A first approach needs to consider Timed
PN as a subclass of Time PN, in order to use the state enumeration methods (state class
graphs) proposed by (Berthomieu and Diaz, 1991). On the other hand, when dealing with
early semantics (a transition is fired as soon as it is fireable), it is possible to proceed to an
enumerative and structural analysis (David and Alla, 1992).
The early semantics has been extensively studied for the special class of Timed Event
Graphs, using (max,+) algebra (Bacceli et al., 1992). Since their structure does not handle
conflicts, it is possible to obtain linear equations corresponding to the complete behaviour of
the net.
In the following, we will show that our incremental approach can lead to mathematical
programming models in the most general case.

3. Incremental approaches
As said before, the state equation (3) does not bring enough information to solve the
reachability problem in all cases. This comes from the fact that it does not take into account
the fireability conditions (1) of the individual transitions fired in the sequence .

Incremental approaches improve this formulation by considering a given number of step
firings corresponding to parallel and reentrant transitions. In this section, we discuss the
interest of using steps and a fixed depth formulation.

3.1 Step based reachability formulation
Definition 14 (Step). Let R be a Petri net. A step (Janicky and Koutny, 1991) is a multiset over

the set of transitions T . We denote by *T the set of steps built over T .
Informally, a step is a set that can contain several copies of the same element, e.g.

1 1 2{ , , }t t t , which we would note hereafter simply 1 22 t t . We associate a step

=1
= N

j jj
t and its Parikh vector in the classical way, as a linear combination

with non negative integer coefficients j of the Parikh vectors of each transition, i.e.

=1
 = N

j tj j
e . A step is said empty, when = , i.e. when 1, , = 0jj N .

Note that a step can contain the same transition more than once, corresponding to transition
reentrance. Thus, when working with Timed Petri nets, steps would only mean that several
different transitions are considered to be fired at the same time.
For a step to be fireable, its preceding marking must contain enough tokens so that each
transition of the step may consume its own tokens, as described in the following definition.

Petri Net: Theory and Applications 412

Definition 15 (Step Firings). Let R be a Petri net, m be a marking and be a step . The step
 is fireable from m iff:

.m C (8)

 If this condition is satisfied, the new marking m reached from m by the firing of is

defined as:

= . m m C (9)

 Hereafter, we will use the notations already used previously: [m , 0 1[m m ,

0 1 2[km and 0 1 2[k km m to denote that a step or a step sequence is

fireable, and the marking obtained in each case. The number of steps of a step sequence

1 2= K is denoted by | |= K .

The definition of step firings corresponds naturally to the firing of the underlying
transitions. We will show that its use can lead to a formulation that is still equivalent to the
initial PN behavior, but that can be more conveniently used in a mathematical programming
framework. The following proposition explains the relation between step and transition
firings with respect to reachability issues.

Proposition 2 (Step Reachability Equivalence). Let 0(,)R m be a Petri net and fm a

marking.

fm is reachable from 0m

1
1 2 1

1*
1 2

,
[[1, 1]], [

, , , , . . :
[

, , ,

k k kM
k

k K f
K

k
k K m m

m m m s t
m m

N
N

T
 (10)

Proof. The proof of this proposition is not difficult but quite lengthly and hence is not given
in this chapter. It can be found in a technical report available at url:

http://www.eclille.fr/tomnab/asr07/. W
One must remark that the proof of the proposition 2 shows how it is possible to construct a

firing sequence leading to fm from a corresponding step sequence. Thus, to compute a

firing sequence leading to a target marking, it will be sufficient to compute a step sequence
leading to the same marking.
The main interest of our formulation is to capture the parallelism caused by the interleaving of
actions, which is precisely one of the main advantages of using a Petri net as a model of a
system. This issue has already been followed by (Vernadat et al., 1996), from whom we
borrow the illustrative example of Fig. 5: ``When two (n in the general case) components offer
independent actions in parallel, the interleaving semantics expresses this behaviour by a diamond (an
hypercube in the general case) within which each path lead to the same final state. Since all paths

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 413

converge to the same state, the key idea is to develop only one particular path among the set of possible
equivalent ones’’.
Example 3 (Vernadat's steps). As shown in Fig. 5, there exists several ways to handle 3

independent transitions from the point of view of the reachability graph. One can consider them one
by one, which leads to handle 8 states and 12 firings. If we just refer to their corresponding
Mazurkiewicz's trace (see (Vernadat et al., 1996) for details), we only have to handle 3 transition
firings and 4 states. In the last case, one can capture the whole behavior in one unique firing that is
called a step by Vernadat (with the meaning of ``footstep’’).

e2

e1

e2

e1

e3

e3

e3

e3

e2

e1

e2

e1
e2

e1

e2

e1

e3

e3

e3

e3

e2

e1

e2

e1
e2

e1

e3

e2

e1

e3
{e1,e2,e3}{e1,e2,e3}

Point of view Exhaustive Trace Step
States 2n (1)n 2

Transition
Firings 2 1nn n 1

Fig. 5. Some ways to handle independent transitions, from Vernadat

The characterization given in proposition 2 can be used to build a mathematical programming
model based on steps which can be used to solve reachability-based PN analysis problems:
one has just to express the right side of equation (10) using the linear equations (8) and (9)
over integer variables. Such a model will be presented in section 4.
The advantage of using steps is that they allow to reduce the number of firings in our model
– and then the number of variables – while keeping an equivalence with the initial
properties. Thus it is not a modification of the semantics of PNs, but only a way to capture the
independence of transitions. Of course, this reduction does not systematically holds, since it is
easy to construct a Petri net where only one transition can be fired at a time. Thus, in the
worst of cases, the step firings formulation may not bring any improvement as far as the
number of firings used are concerned. However, this is a quite uncommon situation since it
means that the Petri net does not show any parallelism.

3.2 Incremental search
We have seen the interest of using steps to formulate the reachability problem in PNs as a
search for instanciations of integer variables constrained by a system of linear equations.
This formulation allows us to use the paradigm of mathematical programming to solve the
reachability problem. However, the initial definition of the reachability problem is not well
adapted to the kind of formulation we propose to use, since definition 5 does not make any
assumption concerning the number of steps needed to solve the reachability problem. In
this paragraph, we define two sub-problems associated with the original reachability problem
introduced before, which can be conveniently solved using the characterization of
proposition 2 in a mathematical programming framework.

Petri Net: Theory and Applications 414

Definition 16 (Fixed Depth Reachability Problem). Let 0(,)R m be a Petri net, k N and

fm a marking.

1P ()k
Find a step sequence allowing to reach the marking fm from the marking

0m in at most k steps .

Definition 17 (Shortest Length Reachability Problem). Let 0(,)R m be a Petri net, and fm
a marking reachable from 0m .

2P
Find the minimal length, denoted by minK , of a sequence of steps allowing to

reach the marking fm from the marking 0m .

Of course, each of these sub-problems is directly linked to the initial one defined before, and
each allows to solve a different kind of PN reachability analysis. For instance, the first

formulation 1P ()k is highly useful for model-checking since it can serve to define an

exhaustive search of the reachability graph. On the other hand, the second formulation 2P
is well designed to deal with performance analysis since it returns a firing sequence that
maximizes the parallelism of the system. It can also give an helpful bound for the definition of
additional heuristics. Finally, since it is clear that the complexity of the problem grows (w.r.t.

number of variables and constraints) as the length k of the sequence of steps used

increases, it seems also quite reasonable to search for the smallest value of the parameter k
from which a solution exists.

The fixed depth reachability problem 1P ()k has already been studied by (Benasser, 2000) using

the logical abstraction technique. His approach is based on the same notion of steps , but it
uses constraint programming techniques. His algorithm iterates the number of steps used,
adding one new step at each iteration, in order to test all the lengths of sequences of steps

lower than k . Benasser proved that his algorithm is correct since the sequences found are

effectively sequences of steps which produce the desired final marking. It is also complete
since it can enumerate all the solutions of length smaller than a given integer k . In each

iteration, the algorithm uses a mechanism of linear constraints solving. It has been
implemented using the constraint logic programming software Prolog IV. The interest of
using a constraint logic programming framework is that its resolution mechanism is
incremental (Jaffar et al., 1992). Indeed, it is not necessary to redefine in each iteration the
constraints incorporated into the previous stage. The constraints are added in the constraints
solver so that it can reuse the results of the previous constraints propagation. The search for
the concrete results is made at the end by an enumeration of all the possible integer solutions,

which corresponds exactly to the sub-problem formulation 1P ()k .

In section 4, we will adapt Benasser's algorithm to our own mathematical programming
framework. To achieve the same kind of results, we will prove the correctness and

completeness of our mathematical programming formulation with respect to 1P ()k . These

results will allow us to use integer linear programming techniques to find every solution of

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 415

1P ()k . Some objective functions would also be defined to guide the search directly to an

optimal solution in some way. Since 2P can be easily expressed by iterating 1P ()k instances

for growing values of the parameter k , it will also be solved using the same technique.

Here, Operational Research techniques replace Artificial Intelligence ones, but the algorithm
structure is the same. All techniques based on incremental approaches may share the same
search algorithms. The most basic algorithm consists in searching in an incremental way
amongst sequences the length of which are increased one by one.

3.2.1 Naive algorithm
This algorithm is fed with a bound maxK on what we call the ``search depth’’ in order to

prevent an infinite loop. Once chosen this value, the procedure generates iteratively a
sequence of mathematical models of increasing size, and search for solutions in the
corresponding search spaces using mathematical programming techniques. If there is no

solution in less than maxk steps, the algorithm stops. It is described in Fig. 6.

1: 0k
2: DO
3: 1k k
4: Generate MP()k , a mathematical programming model for the problem 1P ()k (which

corresponds to characterization of proposition 2 with k steps).
5: Solve the model MP()k using branch & bound techniques (e.g. Cplex solver). Let

[[1,]]i kX be an optimal solution of MP()k if it exists.

6: IF (MP()k has a solution), RETURN [[1,]]i kX
7: WHILE (MP()k is infeasible) AND (maxk K)

Fig. 6. Naive Search Algorithm

During the formulation of the mathematical programming model at step 4 , one should take
care of the domain of variables representing the steps . Indeed: the definitions of step and
step firings do not forbid empty steps leaving the markings unchanged. By considering
empty steps valid in our formulations, we get the following result.

Proposition 3 (Satisfaction Monotony) Let k N . If the problem 1P ()k is feasible, then for

any integer k k , the problem 1P ()k is also feasible.

Proof. It is easy to construct a feasible solution for 1P ()k from a feasible solution of 1P ()k
for k k by adding empty steps. W
Note the same result would be true when dealing with the family of mathematical

programming models MP()k : if there exists k N such that MP()k admits a solution,

any model MP()k with k k would be feasible too. This property motivates the jump

search techniques proposed in the next paragraph.

Petri Net: Theory and Applications 416

3.2.2 Jump search
From proposition 3 and the definition of parameter minK , we get:

min 1

min 1

< P () is infeasible
P () is feasible

k K k
k K k

 (11)

This property can help us to define new iterative techniques, since – for example – it shows

that it is not necessary to solve all the problems 1P ()k for mink K , like in the naïve

search described before.
Of course, as said before, we must keep using an incremental procedure in order to avoid the
use of large models if they are not needed. We propose finally some techniques based on
jumps over the values of the search depth. These techniques allow to decrease the number of
iterations needed, thus improving the search efficiency. Several jump strategies are possible.
We describe briefly some elementary ones.

Forward jump search The first family continously increases the value of the search depth.
We can distinguish two main politics, depending on how the amplitude of jumps is
defined.

- Fixed amplitude Its value must be chosen in order to obtain a high exploration
speed while minimizing the possible redundant steps. This type of strategy
allows to estimate the profit precisely.

- Dynamic amplitude This second strategy uses variable amplitudes. Increasing

amplitudes should be used for small values of k , and decreasing ones when

the exploration becomes more difficult. This kind of behavior is less easily
quantifiable.

These politics both can lead to overtake minK when a solution is found. In this

case, it is not anymore possible to answer precisely the problem 2P , since we do

not get the exact value of minK . To compensate this lack of information, one can

use a dichotomic search.

Dichotomic search This kind of procedure needs to know a maximal bound for k . Its

value is given by a previous successful execution of the forward jump search.
The main interest of jump search is that it allows to win in efficiency. Since we do not know
the number of steps needed to find a solution if it exists, the use of such a technique allows
us, when it is possible, not to have to develop the entire set of formulations of length lower

than minK . Numerical experiments show that even if the size of models is increasing, the

corresponding practical complexity does not always follows the same evolution.
Finally, it must be said that the procedure described in Fig. 6 is only a semi-complete one.

Indeed, in the context of unbounded PNs, the value of maxk is set arbitrarily, as we do not

know any information on the number of steps needed to find a possible solution. Thus, if no
solution is obtained before the value of k has been reached, one cannot conclude on the

reachability property.

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 417

To the contrary, when dealing with bounded PNs, it is possible to set maxK to the value of

the sequential depth of the net, a parameter we have defined in (Bourdeaud’huy et al., 2004a)
and which guarantee the complete exploration of the reachability graph. Using this parameter
as search depth, it is always possible to conclude when the algorithm stops.

3.3 Adaptation to timed Petri nets
We have seen in the previous section the awaited benefits from using an incremental
approach made of step firings. Before introducing the mathematical models in section 4, we
propose to adapt the step based formulation to Timed Petri nets.
We start by adapting the previous formalism to Timed Petri nets. The key idea is again to
consider the evolution of a Timed Petri net `` step by step ‘’.
Definition 18 (Timed step). Let (,)R d be a Timed Petri net. A timed step is a pair

= (,)v such that:

[[1,]]
= j jj n

t is a step *T for the Place/Transition Petri net R , such that

1, , {0,1}jj N ;

v is a date N .

The set of all timed steps of a Timed Petri Net is denoted by *
TPNT .

Definition 19 (Timed steps Firings). Let (,)R d be a Timed Petri net. Let = (,)m re E E be a

state given at date v . Let v v and =v v v N . The timed step = (,)v is fireable
from e iff:

, r vt
t E (12)

,

0<

m t
t

Er vt

C E C e
T

 (13)

If this condition is satisfied, the new state = (,)m re E E reached at date v from e by the firing

of = (,)v is defined as:

,

0<

=m m t
t

Er vt

E E C C e
T

 (14)

() if

, = if > 0

0
r r v r vt t t

d t t

t E E E

otherwise

T (15)

Petri Net: Theory and Applications 418

The above definition follows the firing semantics of Timed Petri nets described above, from
the point of view of a punctual firing between two markings. Informally, equation (12)
means that a transition fired within a step must not be active at the time of the firing, in
order to comply with the non-reentrance hypothesis. Equation (13) verifies that there is

enough tokens at date v' to fire the step . The set = { ,0 < }r vt
t EA T used in

equations (13) and (14) denotes the transitions that were active at date v and are no longer

alike at date v . Thus, the quantity tC e
A

 corresponds to the tokens that would

appear between dates v and v . At last, the update of the residual durations vector at

equation (15) is made as follows:

If the transition t is fired in the step , its duration is used to initialize the

corresponding component of the residual vector;

If a transition that was previously active is still active at date v , its residual duration is

updated by taking into account the time elapsed from the previous date;

Otherwise, if a transition was active and has finished, or if a transition was not active
and is not fired in the step , its residual duration is null.

As above, we will use the notations [e , 0 1[e e , 0 1 2[ke and

0 1 2[k ke e to indicate that a timed step or a timed step sequence is fireable, and

the state obtained in each case. We give finally below the main proposition concerning the
use of timed steps in the context of Timed Petri nets.
Proposition 4 (Equivalence between Controlled Executions and timed step firings). Let

(,)R d be a TPN with its initial state 0 0
= ,0m Ne E given at date 0 = 0v . Let

= ,0f m Nf
e E be a state.

There exists a feasible controlled execution allowing to reach fe at date maxv from 0e

1 2
1

1 2
max

1 1 1 2

*
max max TPN

,
, , ,

1, , [
, , , (,). . . :

[
= (,), , , = (,),

 = (0 ,)

K
k k k

K
K f

K K K

N

k
v v v

k K e e
e e e R d s t

e e
v v

v

N
N

T

S (16)

Proof. Here again, the reader is referred to the technical report available at

http://www.eclille.fr/tomnab/asr07/ for the complete proof. W
Following the previous proposition, it is sufficient to search for timed step sequences to
solve the reachability problem in TPN. The advantage of such an approach is obvious: like
for basic PN, it is well adapted to the definition of a mathematical programming model with
a reduced number of variables and constraints, since it allows to consider explicitly parallel

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 419

executions. Moreover, it is incremental since one can progressively increase the number of
steps used in the formulation without redefining the whole set of constraints.
Since reachability by controlled execution or timed step sequence is equivalent, we define
as above a sub-problem of the TPN reachability problem, which can be conveniently solved
using the characterization of proposition 4 in a mathematical programming framework.

Definition 20 (Fixed Depth Timed PN Reachability Problem). Let (,)R d be a TPN with

its initial state 0 0
= ,0m Ne E given at date 0 . Let = ,0f m Nf

e E be a target state.

1TP ()v Find a timed step sequence allowing to reach the state fe from the state 0e
in at most v timed steps.

In the next section, we prove the correctness and completeness of our mathematical
programming model with respect to this formulation.

4. Integer linear programming models
In this section, we give integer linear programming models corresponding to the
characterizations introduced in propositions 2 and 4.

4.1 Place/transition Petri nets
4.1.1 Integer linear programming model
In the previous section, we have shown that step sequences are sufficient to prove that a
marking is reachable and to find the firing sequence leading to it. In this section, we show
how the search for a step sequence can be expressed as a mathematical programming problem.
We prove also that this model is correct and complete with respect to the fixed depth

reachability problem 1P ()k .

Our integer programming model is directly built from equations and inequalities (8), (9)
and (10). Thus we get:

Model 1 (Integer Programming Model). Let 0(,)R m be a Petri net with

1= { , , }Mp pP , 1= { , , }Nt tT , fm a marking and K N . The integer linear program

IP()K is defined by:

Minimize ()X (17a)

subject to:
1

 0
=1

[[1,]],
i

j i
j

i K C X C X M (17b)

0
=1

 =
K

i f
i

C X M M (17c)

IP()K

[[1,]], [[1,]], iji K j N X N (17d)

In the model IP()K , variables ijX represent the components of K steps in the sense of

definition 14. Inequalities (17b) correspond to the combination of fireability (8) and

Petri Net: Theory and Applications 420

reachability (9) conditions presented in definition 15. To reduce the size of the problem, the

variables 1,()i Km of equation (10) have been dropped by using the substitution of

equation (9). Equation (17c) corresponds to the target marking to reach like in (10). The

integrality constraints of variables ijX are expressed by (17d). The expression of objective

function ()X will be described later.

The following proposition is central in our construction: it shows that our model IP()k
characterizes all the solutions of the problem 1P ()k .

Proposition 5 (Correctness and completeness of IP(k) w.r.t. P1(k)). Let 0(,)R m be a PN

and k N . Then we have:
Any solution of IP()k is also a solution of 1P ()k (Correctness)

Any solution of 1P ()k can be expressed as a solution of IP()k (Completeness)

Proof. Those results come directly from the proof of proposition 2. W
According to proposition 5, to solve the fixed-depth PN reachability problem is equivalent
to search for the solutions of an integer linear programming problem. In this way, the
exploration of the reachability graph and the resolution of the corresponding reachability
problems are reduced to the resolution of a system of equations. The ``combinatorially
explosive’’ reachability graph is reduced to a sequence of ``abstract’’ steps . Since IP()k
needs .k n variables and (1)k M constraints, the size of the IP()k model grows

linearly with the value of the parameter k . This having been said, two remarks must be

done.

Of course, we do not pretend that the combinatorial explosion problem has been wiped
out. It is only postponed to the mathematical programming solution phase. Meanwhile,
our formulation allows to benefit automatically from today's best solvers.

On the other hand, compared to many other exploration techniques, one of the interests
of our formulation is to avoid the ``exploration’’ of the branches of the graph which do
not lead to the desired final marking. Indeed, these cases are ``automatically cut off’’ by the
equation (17c).

From these two statements, we have good reasons to think that our method will bring some
improvements on the research topic considered. We have developed several additional
mechanisms to validate our approach and to improve the performance of the solution. All
these improvements have been formally defined in (Bourdeaud’huy et al., 2004a,b,c, 2007;
Bourdeaud’huy, 2004). We describe them below and refer the reader to these papers for
more information.

4.1.2 Practical improvements
Objective Functions: It is obvious that 1P ()k has a solution if and only if the feasible set of

IP()k problem is non empty. This property stays true for any objective function.

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 421

Nevertheless, the efficiency of solving IP()k may depend on the objective function chosen.

Let's remark that some objective functions are more usefull in practice than others.
For example, if there is no difference between solutions, a constant function is valid, which
leads to the selection of the first feasible solution found. We define thus the function
vanishing identically:

1, () = 0X obj X

This objective function leads to the selection of the first feasible solution found, thus to the
best practical performances. We could also use physical sense objective functions according to
the particular context of the studied problem. For example, we could differentiate the

solutions by their norm, considering thus the 1L norm of steps:

2 1
=1 =1 =1

 , () = =
K K N

i ij
i i j

X obj X X XP P (18)

The function 2obj allows to search for the ``fastest’’ sequence, in terms of number of firings.

Relaxations: In order to decrease the time needed to conclude on the infeasibility of the

IP()k problem, we propose to use relaxation techniques. They are useful in the field of

combinatorial optimization. The principle of these techniques is to replace the complex
original problem by one or several simpler ones.

Definition 21 (Relaxation). A relaxation of an optimization problem P of type maximisation is an
optimization problem R such that:

Each feasible solution for P is also a feasible one for R ;
The value of the objective function of any solution of R is greater than or equal to the value of
the objective function of the same solution for P .

Among useful properties of the relaxation and duality techniques in solving an optimization

problem P is that the optimal value of the relaxation problem provides an upper bound on

the optimal value of the corresponding P . Moreover, if the relaxed problem is infeasible

then the problem P is also infeasible. In our context, this second property is used to

conclude that the IP()k problem is infeasible by solving a relaxed problem before

reaching minK .

LP-relaxation consists in relaxing integrality constraints. Bounds derived from other

relaxations can be stronger than those obtained from LP . In the literature (Parker and
Rardin, 1988), Lagrangean relaxation, surrogate relaxation and composite relaxation are
usually used to obtain such upper bounds.

Lagrangean relaxation consists to relax complicating contraints and incorporating them
into the objective function with a so-called Lagrangean multiplier (Geoffrion, 1974).
However, note that relaxing fireability (17b) or reachability (17c) constraints is ``too
strong’’ from the physical point of view. Indeed: without fireability conditions, the
modified model represents only the state equation, which is already supposed to have

Petri Net: Theory and Applications 422

solutions. In the other hand, dealing with a model without the reachability constraint
correspond to study the whole behaviour of the net. Any sequence of fireable transitions
of the correct length is solution to the relaxed problem and do not bring information.

Surrogate relaxation replaces the original constraints by a single new one, called a
surrogate constraint (Glover, 1977).

Binary Programming Model: We propose also a binary programming model denoted by

BIP()K . In this model, equation (17d) is replaced by:

1, , 1, , {0,1}iji K j N X

This formulation is still correct since it corresponds to a restriction of the initial model

IP()K : parallel behaviours are still allowed, but reentrance is forbidden. This formulation

may be more efficient since the domain of variables is reduced. However, it may be necessary

to fire more steps to reach some markings than using the IP()K model. Nevertheless, it is

quite simple to show that this last model preserves an equivalence with the IP()K one.

Indeed, any solution of BIP()K is also obviously a solution of IP()K . Inversely, any

solution of IP()K could be obtained by an aggregation of a solution of BIP()K , with

K K (some steps in a solution of IP()K may have to be splitted into several firings of

what could be called ``binary steps’’ of the solution from BIP()K). Thus we are able to

use the model BIP()K in the same way as IP()K . The only difference is the value of

minK associated to BIP()K which can be greater than minK .

Empty Steps Management: As said before, to consider empty steps valid in our

formulations bring interesting theoretical results. However, practically speaking, empty

steps do not bring useful information considering the resolution of the reachability problem,

since they do not change the markings. We propose thus several additional constraints

dedicated to the management of empty steps .

In the binary model, one can add an extra linear constraint in order to express a notion
of partial order in the steps:

(1)
=1 =1

1, 1 ,
N N

ij i j
j j

i K N X X (19)

These constraints mean that empty steps have to appear at the end of the constrained

sequence. Indeed: if a step iX is empty (i.e. 1, , = 0ijj N X), all its successors

. . 1,kX s t k i K in the step sequence have to be empty in a ``chain reaction’’.

Inversely, since we consider binary steps, equation (19) is obviously true when

1,j N s.t. = 1ijX , because then
=1

N
ijj

N X N .

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 423

We propose also a new objective function, which corresponds to maximize the number
of empty steps in the feasible sequence. This is equivalent to minimize the number of non-
empty steps 3obj defined below:

3
=1

, () = [[1,]] . . 0
N

ij
j

X obj X card i K s t X (1)

The function 3obj allows us to look for the shortest solutions in term of ``equivalent

length’’ when the empty steps have been removed. To model 3obj , we introduce new

intermediate binary variables 1 2, , , k and we incorporate in the linear

programming models the following additional constraints:

=1

[[1,]], 1 (1)

[[1,]], {0,1}

N

i ij i
j

i

i K B X B

i K

where B is a sufficiently big number, chosen much bigger than the number of

transitions and tokens in the net, e.g. B M N K . Since the variables 1,()i K are

binary, it is easy to check that = 0i iff the step iX is empty (a complete proof is

given below in proposition 6). Thus the objective function 3obj can be expressed in the

following way:

3
=1

, () =
K

i
i

X obj X

Finally, one could simply forbid empty steps by adding to the models the following
constraint:

 1[[1,]], 1ii K XP P

Decomposition Technique: To improve the performance of the resolution, we have
proposed constraints corresponding to a decomposition technique based on a partition of the

state space according to the solutions of the PN state equation. For each solution of the

underlying state equation – defined between the same initial and final markings –, we add
the constraint:

=1
[[1,]], =

K

ij t ji
j N X

Petri Net: Theory and Applications 424

Such a decomposition technique allows to adress the complexity of the problem in two
steps:

The first step uses well known T-invariants computation techniques (see for example
(Colom and Silva, 1989a)) which are independent from the initial marking, and thus
allows to reuse the same information for many different initial and final markings.

Given the Parikh vector of the whole firing sequence to discover, the resolution of the
reachability problem should be slighty simple. However, one should note that this
second step remains difficult: it is not sufficient to distribute the firings over the steps
since each step must be fireable. Moreover, developping heuristics methods is
challenging since deadlock situations can occur late after a bad choice has been made.
Finally, the mathematical programming approaches proposed here are well designed to
handle the second step of the search.

4.1.3 Numerical experiments
Numerous practical experiments were led in (Bourdeaud’huy et al., 2004a,b,c, 2007;
Bourdeaud’huy, 2004) in order to assess the efficiency of our mathematical programming
models. There is no space left to copy them all here, but several results must be pointed out.

We have compared the influence of the objective functions 1obj , 2obj and 3obj . The

corresponding results were quite foreseeable: 1obj led to the best results, followed by

2obj and finally 3obj . However, it must be said that the performance of resolution

using 3obj was very weak, even for the smallest instances of our families, since the size

of the corresponding models is large. To the contrary, the performance of models using

2obj were quite close to the basic performance given by 1obj , about 3 times worse in a

pinch.

Our experiments to validate the pertinence of the LP-relaxation shown that for the whole

set of PN studied, the gap between minK for the LP-relaxation and the integer model is

small. Such statement suggests a property of integrality of the kind of problems
considered – i.e. continuous solutions are somehow integer –, which may be interesting
to study.

Compared one with another, model BIP behaves better than IP. Of course, one could
build an example for which the contrary would holds. Nevertheless, this observation
were made over the whole set of our experiments.

Dealing with decomposition technique, preliminary experiments have shown that a
search inside a given equivalence class is 20% faster than for the whole state space.

We have compared our technique with other classical tools from the PN community:
Ina (Roch and Starke, 2002) and Netched (Benasser, 2000).

- Ina means Integrated Net Analyzer. It is an analysis tool which allows the
computation of firing sequences between markings thanks to the exploration of a
covering graph. It implements some reduction techniques, e.g. persistent sets
(Valmari, 1991) and symmetries (Schmidt, 1998).

- Netsched is the implementation of the logical abstraction technique developped
by Benasser. It has been implemented using the constraint logic programming

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 425

language Prolog IV.
Our approach has shown very good results and dominates the other tools on some
instances. However, there exists some special instances – see for example
(Bourdeaud’huy et al., 2004c) – for which our method is dominated by Netsched,
particularly when the underlying reachability graph is sparse.

In the next section, we develop a similar mathematical programming approach for Timed
Petri nets.

4.2 Timed Petri nets
We proceed as for Place/Transition PN, by adapating the characterization proposition 4 to
build a mathematical programming model. For that, we need to linearize the equations
defining timed step firings. We introduce in the next section two operators and the
corresponding linearization variables and equations that we use to obtain the linear integer
programming model.

4.2.1 Discrimination operators
We start by giving a useful proposition, which has been already used above dealing with the

formulation of objective function 3obj .

Proposition 6 (Discrimination Variables). Let X S Z and *B N be ``sufficiently
large’’. Let {0,1} and N such that:

1 (1) B X B (20a)

X (20b)

B (20c)

(1)B X (20d)

Then we have:

> 0 = 1 et =
0 = 0 et = 0

X X
X

Proof. Let's assume that X is strictly positive. The right side of inequation (20a) implies

then 1 X B , i.e.
1 > 0
B

. Thus we have = 1 , and the left side of inequation

(20a) is valid. The inequation (20d) implies then X , and inequation (20b) implies

= X . Inequation (20c) is valid only if B is sufficiently large, namely: ()max
X

B X
S

.

Conversely, if X is negative or null, the left side of inequation (20a) implies

1 (1) 0B , which implies
11
B

 < 1. We have then = 0 and the right

Petri Net: Theory and Applications 426

side of inequation (20a) is valid. The inequation (20c) implies then 0 , i.e. = 0 .

Inequation (20b) is valid and inequation (20d) is valid if B is sufficiently large, again if

(| |)max
X

B X
S

. W

Using 2 variables and 5 equations per unknown X , one can thus obtain linearly sX and

X , corresponding to the ``sign’’ of X and its ``positive component’’. We extend these
operators ``+’’ and ``s’’ to vector objects, by applying them uniformly on each component of
the considered vector.

Definition 22 (Discrimination Operators). Let k N and kx Z . We denote by:

kx N the vector of its positive components, such that [[1,]], () = ()c k x c x c if

() > 0x c and 0 otherwise;

 {0,1}
s kx the vector representing its sign, such that: [[1,]], () = 0

s
c k x c if

() 0x c and () = 1
s

x c otherwise.
Since the operators above are easily expressed using linear equations, we use them to
reformulate the characterization proposition 4. The new formulation will be used to build a
linear programming model corresponding to the firing of a timed step sequence.

4.2.2 Timed steps linear formulation
In this section, we consider the equations (12) to (15) defining timed step firings and
reformulate each of them using the discrimination operators given above. In order to avoid

confusions of notations, we use lower case letters to denote the state vectors (,)m re e
expressed using discrimination operators.

Proposition 7 (Timed step Firings Reformulation). Let (,)R d be a Timed Petri net. Let

= (,)m re e e be a state given at date v . Let v v and =v v v N . Let = (,)v
be a timed step . Then we have:

(21)1 (1)
[

((1)) 0

s
n r v n

s s
m r r v n m

e
e

e C C e e (22)

(23)= ((1))[
[

= (1) ()= (,)

s s
m m r r v n

r r v n tm r tt

e e C C e ee e
e

e e d t ee e e
T

(24)

Proof. To prove the above proposition, one has just to verify that equations (21) to (24)

correspond exactly to equations (12) to (15) from definition 19. W

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 427

4.2.3 Illustrative example

Fig. 7. Intermediary Calculations (Markings)

Fig. 8. Intermediary Calculations (Residual Durations)

In order to help understanding the above equations, we propose to illustrate them using a
particular example. Let's consider the Timed Petri net of Fig. 3. Its initial marking at the date

1 = 0v is given by: (0) = (1,0,0,0,1,0,1,1) , (0) = (0,0,0,0)m re eú ú
.

Petri Net: Theory and Applications 428

We assume that 1t is fired at the date 1 = 1v , then simultaneously 2t and 4t at the date

2 = 4v . We need to calculate the state reached at the date 3 = 6v . The details of the

calculation are given in Fig. 7 and 8. The physical sense of the equations is explained below:

The quantity (1)r v Ne represents the update of the residual durations vector at

the date vv , from its value re at the date v . The ``+’’ operator allows to take into

account only positive values. Moreover, if a transition t is still active at date vv ,

we have: (1) = 1s
r v N t

e ;

The quantity () ttt
d t e

T
 represents the new residual durations coming from the

execution of the firing sequence at the date vv ;

Finally, the quantity (1)
s s

r r v Ne e represents the Parikh vector of the

transitions, the firing of which ends at the date vv . This expression is made from

the comparison between the Parikh vector of the transitions that were pending at the date

v : vector
s

re , and the Parikh vector of the transitions that will be still active at the date

vv : vector (1)s
r v Ne .

4.2.4 Mathematical programming model
Since proposition 7 has been formulated in a linear way, it allows to express the linear
mathematical programming model given below.

Model 2 (TPN Integer Programming Model). Let (,)R d be a TPN with its initial state

0 0
= ,0m Ne e given at date 0 = 0v . Let = ,0f m Nf

e e be a target state. Let V N .

The integer linear programming model TIP()V is defined by:

[[0, 1]]
vi

i V
Minimize (25)

 subject to:

[[1,]],k M 0m ke =
0m

k
e (26)

[[1,]],k M mVke = 0 (27)

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 429

[[1,]],j N 0r je =
0r j

e (28)

[[1,]],j N rVje = 0 (29)

[[1,]],i V [[1,]],j N ij rijB a e 1B (30)

[[1,]],i V [[1,]],j N rij ije B a 0 (31)

[[1,]],i V [[1,]],j N ij rij vi
B e 1B (32)

[[1,]],i V [[1,]],j N rij v iji
e B 0 (33)

[[1,]],i V [[1,]],j N rij v iji
e 0 (34)

[[1,]],i V [[1,]],j N ij ijB 0 (35)

[[1,]],i V [[1,]],j N ij ij rij vi
B e B (36)

[[1,]],i V [[1,]],k M (1)
=1

N

mik m i k kc ic
c

e e C

(1) (1)
=1

()
N

kc i c i c
c

C a = 0 (37)

[[1,]],i V [[1,]],j N (1) |rij i j j ije d = 0 (38)

[[1,]],i V [[1,]],j N (1)ij i j 1 (39)

[[1,]],i V [[1,]],j N ij {0,1} (40)

[[1,]],i V [[1,]],j N ija {0,1} (41)

[[1,]],i V [[1,]],j N ij {0,1} (42)

[[1,]],i V [[1,]],j N ij N (43)

[[1,]],i V [[1,]],j N rije N (44)

Petri Net: Theory and Applications 430

[[1,]],i V [[1,]],k M mike N (45)

[[0, 1]],i V vi N (46)

Equations (26) to (29) correspond to conditions over initial and final states. Equations (30) to
(36) express the constraints over discrimination variables used to compute the ``+’’ and ``s’’

operators. Variables ()ia , ()i and ()i denote respectively the values of ()s
r ie v ,

(() 1)s
r i v ni

e v and (() 1)r i v ni
e v from equations (23) and (24). Equations (37)

and (38) correspond to intermediate state computation equations (23) and (24). Equation (39)
correspond to nonreentrance condition (21). Finally, equations (40) to (46) define the domain
of the used variables.
Again, our model is well defined enough to allow the following proposition.

Proposition 8 (Correctness and completeness of TIP(v) w.r.t. TP1(v)). Let (,)R d be a

TPN and v N . Then we have:
Any solution of TIP()v is also a solution of 1TP ()v (Correctness)

Any solution of 1TP ()v can be expressed as a solution of TIP()v (Completeness)

Proof. Those results come directly from the construction of TIP(V). W
Obviously, the same remarks as for proposition 5 hold. Even if problem 1TP is

parametrized by a given number of timed steps , a large class of scheduling problems can
be adressed using such formulation. We are more particularly interested in flexible
manufacturing systems (FMS) scheduling problems. FMS are characterized by the
simultaneous production of several types of products, and the possibility to use several
methods (flexibilities) to produce the same kind of product. Using TPN, such flexibilities are
modeled by conflicts, which justifies the use of our approach.
Another interest in the framework of FMS is the formulation of cyclic scheduling problems
in a smart way. Indeed: such scheduling problems correspond to reachability between the
same states (Bourdeaud’huy and Korbaa, 2006). Using our approach, one can formulate a
cyclic scheduling problem by considering a timed reachability problem between two
identical unknown states. The corresponding model allows then not only to find the schedule
but also the initial state within the cycle.
Note finally that our mathematical model remains valid to solve the reachability problem
between states defined by not null residual durations. One has just to consider that these
states belong to a bigger problem between states without residual durations.

4.2.5 Numerical experiments
In order to validate the model above, preliminary experiments were carried out using the
linear programming solver CPLEX 9.0. (Bourdeau’huy et al., 2006). They have shown
promising results, but need to be extended in order to assess the efficiency of our approach
compared to concurrent approaches from Operations Research litterature.

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 431

We also propose to develop cutting techniques allowing to improve the resolution
performances. For instance, we suggest to reuse the decomposition technique described
above. A preliminary resolution of the reachability problem between the initial and final state
vectors in the underlying P/T Petri net can be used to obtain the Parikh vector of the firing
sequence of the controlled execution searched for.

5. Conclusion and future work
In this chapter, we present techniques for solving reachability problems in PN and TPN based
on mathematical programming. The approach is based on an incremental search using step
sequences that represent parallel and reentrant firings of transitions. The mathematical
model used allows the formulation and verification of reachability-based analysis problems.
Concerning PNs, we have proposed two formulations of the reachability problem, leading
to integer and/or binary programming models. For each of them, we have developped
some additional procedures, relaxation techniques and objective functions in order to
improve the computational efficiency of the resolution. Numerical experiments have
demonstrated the efficiency of our approach compared to standard ones from Artificial
Intelligence and Petri nets community.
Several promising tracks will be considered in the future, such that:

To develop rules to adjust dynamically the amplitudes of jump search, for example
by exploiting information from the previous iterations and/or from the structure of
the considered PN;

To use heuristic methods to speed up the search or find a good bound on minK .

Concerning TPN, we have shown how a linear integer programming model could be
developped to solve the Timed Petri net reachability problem. This model is very general
since it allows to deal with weighted Timed Petri nets, without restricting ourselves to an
immediate firing semantic or Timed Event Graphs as it is done in the litterature. It can thus
be directly used on flexible manufacturing models.
In the future, we propose to compare our computational results with concurrent approaches
dedicated to scheduling problems. We also propose to develop cutting techniques allowing
to improve the resolution performances.
Finally, we are currently adapting our incremental approaches to Time Petri nets, in order to
be able to model scheduling problems with Time Windows associated to the tasks.

6. References
Baccelli, F., Cohen, G., Olsder, G., and Quadrat, J.-P. (1992). Synchronization and

linearity :
 An algebra for Discrete Event Systems. Wiley, New York
Benasser, A. (2000). L’accessibilité dans les réseaux de Petri : une approche basée sur la

programmation par contraintes. PhD thesis, Université des sciences et
techologies de Lille

Benasser, A. and Yim, P. (1999). Railway Traffic Planning with Petri nets and Constraint
Programming. JESA, 33(8-9), pp. 959–975

Berthelot, G. (1986). Transformations and Decompositions of Nets. Advances in Petri Nets
1986 Part I, Proceedings of an Advanced Course, Vol. 254, pp. 359–376

Petri Net: Theory and Applications 432

Berthomieu, B. and Diaz, M. (1991). Modeling and Verification of Time Dependent
Systems using Time Petri Nets. IEEE Trans. on Software Eng., 17(3), pp. 259–273

Bourdeaud’huy, T. (2004). Techniques d’Abstraction pour l’Analyse et la Synthèse de
Réseaux de Petri. PhD thesis, Ecole Centrale de Lille

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2004a). Efficient Reachability Analysis of
Bounded Petri nets using Constraint Programming. SMC’04, International
Conference on Systems, Man and Cybernetics, La Hague, Hollande

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2004b). Recherche de Séquences
d’Accessibilité dans les Réseaux de Petri utilisant l’Abstraction Logique et une
réduction fondée sur l’équation d’état. CIFA’04, Conférence Internationale
Francophone d’Automatique, Douz, Tunisie

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2004c). Solving the Petri Nets Reachability
Problem using the Logical Abstraction Technique and Mathematical
Programming. CPAIOR’04, International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimisation Problems,
LNCS 3011, pp. 112–127, Nice, France

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2006). Scheduling of Flexible Manufacturing
Systems using Timed Petri nets and Mathematical Programming. WODES’06,
Workshop on Discrete Event Systems, Ann Arbor, Michigan, USA

Bourdeaud’huy, T., Hanafi, S., and Yim, P. (2007). Mathematical Programming
Approach for the Petri Nets Reachability Problem. EJOR, 177(1)

Bourdeaud’huy, T. and Korbaa, O. (2006). A Mathematical Model for Cyclic Scheduling
with Work-In-Progress Minimization. INCOM’06, IFAC Symposium on
Information Control Problems in Manufacturing, Saint Etienne, France

Briand, C. (1999). Solving the Car-Sequencing Problem using Petri Nets. International
Conference on Industrial Engineering and Production Management, Vol. 1, pp. 543–
551

Chrétienne, P. (1984). Exécutions Contrôlées dans les Réseaux de Petri Temporisés.
T.S.I., 3

Colom, J. and Silva, M. (1989a). Convex Geometry and Semiflows in P/T nets: a
Comparative Study of Algorithms for Computation of Minimal P-semiflows.
Proceedings of the 10th International Conference on Application and Theory of Petri
Nets

Colom, J. and Silva, M. (1989b). Improving the Linearly based Characterization of P/T
nets. Proceedings of the 10th International Conference on Application and Theory of
Petri nets, pp. 52–73, Bonn, Germany

David, R. and Alla, H. (1992). Petri Nets and Grafcet: Tools for Modelling Discrete
Event Systems. Prentice-Hall

Fernandez, J.-C., Jard, C., Jéron, T., andMounier, L. (1992). ``On the fly” Verification of
Finite Transition Systems. Formal Methods in System Design

Geoffrion, A. (1974). Lagrangean Relaxation for Integer Programming. Mathematical
Programming Study, Vol. 2, pp. 82–114

Glover, F. (1977). Heuristics for Integer Programming using Surrogate Constraints.
Decision Sciences, Vol. 8, pp. 156–166

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 433

Gunnarsson, J. (1998). Symbolic Tools for Verification of Large Scale DEDS. Proc. IEEE
Int. Conf. on Systems, Man, and Cybernetics (SMC’98), 11-14 October 1998, San
Diego, CA, pp. 722–727.

Hillion, H. and Proth, J. (1989). Performance Evaluation of Job-Shop Systems using
Timed Event Graphs. IEEE Transactions on Automatic Control, Vol. 34

Huber, P., Jensen, A. M., Jepsen, L. O., and Jensen, K. (1985). Towards Reachability
Trees for High-level Petri Nets. Lecture Notes in Computer Science: Advances in
Petri Nets 1984, Vol. 188, pp. 215–233

Jaffar, J., Michaylov, Stuckey, P., and Yap, R. (1992). The CLP (R) Language and System.
ACM Transactions on Programming Languages and Systems, Vol. 14(3), pp. 339–
395

Janicky, R. and Koutny, M. (1991). Optimal Simulations, nets and Reachability Graphs.
Advances in Petri Nets, Lecture Notes In Computer Science, Vol. 524, pp. 205–226

Jensen, K. (1992). Coloured Petri nets - Basic Concepts, Analysis Methods and Practical
Use. EATCS Monographs on Theoretical Computer Science, Vol. 1, pp. 1–234.
Springer

Keller, R. (1976). Formal Verification of Parallel Programs. Comm. of the ACM, Vol. 19(7),
pp. 371–384

Khomenko, V. and Koutny, M. (2000). Verification of Bounded Petri Nets using Integer
Programming, technical report cs-tr-711, Department of Computing Science,
University of Newcastle upon Tyne

Kosaraju, S. R. (1982). Decidability of Reachability in Vector Addition Systems. Proc. Of
the 14th Annual ACM Symp. on Theory of Computing, pp. 267–281

Latvala, T. (2001). Model checking LTL Properties of High-level Petri Nets with Fairness
Constraints. Lecture Notes in Computer Science 2075

Lautenbach, K. (1987). Linear Algebraic Techniques for P/T Nets. Advances in Petri Nets
1986, Part I, Proceedings of an Advanced Course, Vol. 254, pp. 142–167

Lee, D. Y. and DiCesare, F. (1994). Scheduling Flexible Manufacturing Systems using
Petri nets and Heuristic Search. IEEE Transactions on Robotics and Automation,
Vol. 10(2), pp. 123–132

Lindqvist, M. (1993). Parameterized Reachability Trees for Predicate/Transition Nets.
Lecture Notes in Computer Science; Advances in Petri Nets 1993, Vol. 674, pp. 301–
324

Lipton, R. (1976). The Reachability Problem requires Exponential Space. Technical report,
Computer Science Dept., Yale University

Melzer, S. and Esparza, J. (1996). Checking System Properties via Integer Programming.
ESOP’96

Murata, T. (1989). Petri Nets : Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, pp. 541–580

Parker, R. and Rardin, R. (1988). Discrete Optimization. Academic Press
Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Timed Petri

Nets. PhD thesis, Massachusetts Institute of Technology
Richard, P. (2000). Modelling Integer Linear Programs with Petri nets.

RAIRO/Operations Research, Vol. 34(3), pp. 305–312
Roch, S. and Starke, P. (2002). INA Manual, Integrated Net Analyzer, Version 2.2.

Humboldt- Universität zu Berlin, Institut für Informatik

Petri Net: Theory and Applications 434

Schmidt, K. (1998). On the new Low Level Symmetry tool in INA. GI Petri Net Newsletter
54

Sifakis, J. (1975). Performance Evaluation of Systems using Nets. Advanced Course: Net
Theory and Applications, pp. 307–319

Silva, F., Castilho, M. A., and Kunzle, L. A. (2000). Petriplan: A new Algorithm for Plan
Generation (preliminary report). IBERAMIA-SBIA, pp. 86–95

Silva, M., Colom, J., and Campos, J. (1992). Linear Algebraic Techniques for the
Analysis of Petri Nets. Recent Advances in Mathematical Theory of Systems,
Control, Networks, and Signal Processing II

Silva,M., Teruel, E., and Colom, J.M. (1998). Linear Algebraic and Linear Programming
Techniques for the Analysis of P/T Net Systems. Lecture Notes in Computer
Science: Lectures on Petri Nets I: Basic Models, Vol. 1491, pp. 309–373

Valmari, A. (1991). Stubborn Sets for Reduced State Space Generation. Lecture Notes in
Computer Science; Advances in Petri Nets 1990, Vol. 483, pp. 491–515

Van der Aalst,W.M. P. (1995). Petri Net Based Scheduling. Number 95. Eindhoven
University of Technology Computing Science Reports/23

Vernadat, F., Azéma, P., and Michel, P. (1996). Covering Steps Graphs. 17th Int. Conf on
Application and Theory of Petri Nets 96.

Wang, J. (1998). Timed Petri Nets, Theory and Application. Kluwer Academic Publishers

19

Using Transition Invariants for Reachability
Analysis of Petri Nets

Alexander Kostin
Eastern Mediterranean University

N.Cyprus

1. Introduction
Petri nets are an important formal paradigm for modeling and analysis of discrete event
systems. The related areas of application of Petri nets include deadlock avoidance and
prevention, supervisory control, forbidden state detection, different aspects of flexible
manufacturing systems, and many others (Zhou & DiCesare, 1993; Holloway et al., 1997;
Boel et al., 1995). Quite often, given a discrete-event system, the designer is interested in
determining whether the system can transit from an initial state to another, target state as a
result of some operations from a predefined set. In terms of Petri nets, the answer to this
question is obtained as a solution of a reachability problem.
The reachability problem in Petri nets is formulated as follows: for any Petri net PN, with an

initial marking M0, and for some other marking M, determine whether the relation M
R(PN, M0) is true, where R(PN, M0) is the reachability set of PN for its initial marking M0

(Murata, 1989). The decidability of the reachability problem has been proved for a number
of restricted classes of Petri nets, and there are efficient algorithms for such classes as acyclic
Petri nets, marked graphs, and others (Kodama & Murata, 1988; Caprotti et al., 1995;
Kostin, 1997).
It has been shown that the reachability problem is decidable for generalized Petri nets as
well (Mayr, 1984). The fundamental contribution of the paper (Mayr, 1984) is in proving
that the reachability problem for generalized Petri nets is decidable. However, being highly
important theoretically, the practical use of the algorithm described in that paper is limited.
Actually, the algorithm creates a series of so called regular constrained refined graphs, each
of which is a generalization of the basic coverability tree. As the author admits, the first
refined graph would enumerate the whole reachability set of the given Petri net.
In practice, two different approaches are used most often to determine the reachability of a
marking in Petri nets. The first approach is based on the creation and investigation of a
complete or reduced reachability graph. The main drawback of this approach is a state
explosion problem. A closely related technique is the use of stubborn sets. The main purpose of
the stubborn sets technique is to choose, for each marking of the net, a set of transitions to
fire that is large enough to preserve some desired information about the Petri net, but is as
small as possible to get a significant reduction of the resulting reachability graph
(Varpaaniemi, 1998). Unfortunately, generation of minimal or reduced reachability graphs
in finite state systems is known to be an NP-hard problem (Peled, 1993). If Petri net has no

Petri Net: Theory and Applications 436

specific properties like a symmetry or reversibility, the corresponding reduced reachbility
graph will have almost the same size as that of the full reachability graph (Schmidt, 2000).
The second approach is based on methods of linear algebra. Given a pure Petri net (i.e. a net
without self-loops), with sets of transitions T and places P, its structure is represented
unambiguously by the incidence matrix

 D = [d(ti, pj)] = [dij], i = 1, 2, ... , m = |T|, j = 1, 2, ... , n = |P|, (1)

where d(ti, pj) = Post(pj, ti) - Pre(pj, ti), Pre and Post are the input and output functions of the
Petri net, with Pre(p, t) = v if there is a directed arc from p to t with the weight v, and
Post(p, t) = v if there is an arc from t to p with the weight v. Note that, in this matrix, rows
correspond to transitions and columns correspond to places (Murata, 1989).
It is known that a necessary condition for reachability of marking M from some other
marking M0 is the existence of a nonnegative integer solution of the matrix equation

 M = M0 + FD (2)

relative to F, where F = [f1, f2, …, fm] is a nonnegative integer firing count vector. Note that
in this chapter, all vectors are considered as row vectors. In particular, markings of PN will

be expressed as (1 n) vectors, so that we can write

],...,,[00
2

0
1

0
nmmmM and],...,,[21 nmmmM , (3)

where the ith entry in vectors M0 and M denotes the number of tokens in place pi P.
Equation (2), proposed in (Murata, 1977), is called the fundamental equation of Petri net. It is
of the paramount importance for the investigation of the structural and behavioral
properties of Petri nets with methods of linear algebra.
With the use of linear algebra, rachability analysis is usually carried out in two stages. At the
first stage, by solving the equation (2) or its related integer programming form, firing count
vectors are obtained. At the second stage, the computed firing count vectors are used in an
attempt to determine legal firing sequences that transform initial marking M0 into target
marking M.
Unfortunately, the existence of a nonnegative integer solution of equation (2) is not a
sufficient condition for reachability of marking M from M0 (Murata, 1989). That is, it is
quite possible that, in a given Petri net, no legal firing sequences exist for the valid firing
count vectors. In general, the equation (2) can have infinite number of nonnegative integer
solutions. Some of these solutions can correspond to legal firing sequences, while others fail
(Peterson, 1981). Thus, there is a challenging problem to select working firing count vectors.
In (Kostin, 2003), with the use of linear algebra, a method was proposed to restrict the
number of firing count vectors to be tried for the determination of legal firing sequences,
without the loss of reachability information. The method is applicable for reachability
analysis of a particular class of place/transition Petri nets having no transition invariants, or
T-invariants. Algebraically, T-invariants of a Petri net with incidence matrix D are
nonnegative integer (1 × m) vectors F such that FD = 0 (Memmi & Roucairol, 1980).
According to the scheme proposed in (Kostin, 2003), given a Petri net with an initial and a
target markings, a so called complemented Petri net is created that consists of the given Petri
net and an additional, complementary transition with some input and output places of the
original Petri net, which are uniquely determined by the initial and target markings. Then

Using Transition Invariants for Reachability Analysis of Petri Nets 437

the reachability problem is reduced to computation and investigation of T-invariants of the
complemented Petri net. The main result of that paper is that legal firing sequences, if they
exist, can be found using only those T-invariants of the complemented Petri net in which
the complementary transition fires only once. It was shown that this set is finite. This
chapter generalizes the approach described in (Kostin, 2003) for arbitrary place/transition
nets, including Petri nets with T-invariants. The existence of T-invariants in the original Petri
nets considerably complicates the reachability analysis. In contrast with the scheme in
(Kostin, 2003), where the number of T-invariants of any complemented Petri net that are
sufficient for performing the reachability analysis is proven to be finite, in the generalized
scheme the set of T-invariants for investigation is theoretically infinite. Nevertheless, as will
be shown in this chapter, it is always possible to effectively limit this set without the loss of
reachability information and then to use T-invariants from this finite set for reachability
analysis.
This chapter is an extended version of the author’s article published in Lecture Notes in
Computer Science (Kostin, 2006). The use of the material of that article is done with kind
permission of Springer Science and Business Media. The rest of the chapter is organized as
follows. In Section 2, notation and basic statements used in the chapter are given. Section 3
explains how to compute so called minimal singular T-invariants of the complemented Petri
net. In Section 4, a relation graph of T-invariants is introduced. Section 5 describes
realization of T-invariants with borrowing of tokens. In Section 6, a scheme for linear
combining of T-invarians is given. Section 7 illustrates the scheme by two examples. The
most important points in sections are put down as proven statements. Some of the proofs
are just skeletons or, for simple statements, omitted altogether.

2. Notation and basic statements
We adopt here the notation and basic statements from (Kostin, 2003). It is assumed
without losing generality that Petri nets are pure, i.e. they have no self-loops. As was stated
in the previous section, the structure of any pure Petri net is unambiguously represented by
the incidence matrix (1).
Let M0 be an initial marking and M be some other marking of given Petri net PN. If we are
interested in reachability of M from M0 then marking M will be called the target
marking. It is assumed, throughout the chapter, that M0 M.
If marking M is reachable from marking M0 in a Petri net PN, then there exists at least one

sequence of markings = M0 M1 ... Mr with Mr = M, and a legal firing sequence

riii ttt ...
21

, with the two sequences related by the state equation

,][1 DieMM mk
kk k = 1, 2, ... , r. Here e[ik]m is an (1 m) control vector, in

which m - 1 entries are zero and the ikth entry is one, indicating that a transition
ki

t fires at

step k . Sequences and can be combined in one mixed sequence of interrelated markings
and firing transitions that is called a reachability path from marking M0 to marking Mr:

rttt MMM riii ...21 20
. (4)

Its determination is the main problem of reachability analysis. As was stated in Section 1,
with linear algebra methods, this analysis is usually carried out in two stages. At the first

Petri Net: Theory and Applications 438

stage, it is important to limit the number of firing count vectors, without the loss of
reachability information. In the proposed approach, this stage is done with the use of T-
invariants of so called complemented Petri net which is a simple extension of the original
net .
Definition 1. For any Petri net PN with incidence matrix D specified by (1), and initial and
target markings M0 and M represented by vectors (3), there exists a unique complemented
Petri net PNc that has the same set of places P as PN, the set of transitions Tc = T {tm+1},
and is described structurally by the incidence matrix

,
M
D

Dc (5)

where tm+1 is an additional, complementary transition, and M = M0 - M = [m1, m2, …,

mn], with iii mmm 0
, i = 1, 2, …, n (Kostin, 2003).

Using the right side of equation (2) with marking M instead of M 0, control vector e[m
+ 1]m+1 instead of F and incidence matrix Dc instead of D, one can obtain

 M + e[m + 1]m+1 Dc = M + M = M0 . (6)

That is, a single firing of the complementary transition in marking M of PNc results in
marking M0.
It is known that the reproducibility of a firing sequence in a Petri net indicates the existence
of a T-invariant (Memmi & Roucairol, 1980). Thus the following statement holds.
Statement 1. Given a Petri net PN with an initial marking M0, a necessary condition for
reachability of some other marking M is the existence of a T-invariant of the complemented
Petri net PNc, with a single firing of the complementary transition.
Denote by Fc = [f1, f2, …, fm, fm+1] a firing count vector of the complemented Petri net PNc.
Now Statement 1 may be reformulated as follows: given a Petri net PN with the incidence
matrix D and an initial marking M0, a necessary (but generally not sufficient) condition for
some other marking M to be reachable from M0 is the existence of an integer solution of
the matrix equation

 Fc Dc = 0 (7)

relative to Fc, such that Fc 0 and fm+1 = 1. Here Dc is the incidence matrix of PNc as

defined by (5).
In sequel, each T-invariant of the complemented Petri net PNc having the last entry fm+1 = 1
will be called a singular complementary T-invariant.
The importance of Statement 1 is that the reachability analysis of the original Petri net PN
can be reduced to the computation and investigation of T-invariants of the complemented
Petri net PNc. One advantage of this reduction is the existence of efficient techniques for the
calculation of T-invariants (Alaiwan, 1985; Krukeberg & Jaxy, 1987; Silva & Colom, 1991;
Takano et al., 2001). Algorithms for the calculation of T-invariants are implemented in
many Petri net software tools such as INA (Roch & Starke, 2001); GreatSPN (Chiola et al.,
1995), TimeNET (German et al., 1995), and QPN (Bause & Kemper, 1994), to mention only a
few.

Using Transition Invariants for Reachability Analysis of Petri Nets 439

It is known that, in any Petri net with T-invariants, there are minimal-support T-invariants
which can be used as generators of all T-invariants of the given net (Memmi & Roucairol,

1980; Murata, 1989). Let = {F1, F2, …, Fs} be the set of minimal-support T-invariants of

some Petri net consisting of m = |T| transitions, where ,0],...,,[21 imiii fffF and s

is the number of minimal-support T-invariants. We use here, for a vector X, a denotation

0X if X 0 and xi 0 for some ith entry of X . Each Fi specifies a nonempty

subset of transitions Fi T such that tj Fi if and only if fij > 0, with Fi Fk

and Fk Fi for every pair of distinct indices i, k = 1, 2, …, s. Here Fi represents the
minimal support of T-invariant Fi .
Statement 2. In any Petri net the number of minimal-support T-invariants is finite (Kostin,
2003).
Statement 3. For any Petri net PN, its complemented net PNc includes all T-invariants of PN
(Kostin, 2003).
Statement 4. For every reachability path from an initial marking M0 to a target marking M
of a given Petri net PN, there exists a T-invariant F = [f1, f2, …, fm, fm+1] of the corresponding
complemented Petri net PNc, with fm+1 = 1. That is, F is a singular complementary T-
invariant of PNc.
Let

...21 10 MMMM kttt kiii
 (8)

be some reachability path from M0 to M in given Petri net PN, such that Mj M and

1mi tt
j

 for j = 1, 2, …, k-1. Using this path, create an expanded reachability path

0110 121 ... MMMMM ktkttt kikiii
. (9)

Since Mk = M, marking Mk can be transformed, according to (6), into marking M0 by a

single firing of the complementary transition 11 mi tt
k

. Consider now the firing count

vector corresponding to the reachability path (9):

 F = [f1, f2, …, fm, fm+1], (10)

where fi is the number of times transition ti appears in the sequence
121

...
kiii ttt ,

with fm+1 = 1. Since, in the reachability path (9), initial marking M0 is transformed back
into M0, the corresponding firing count vector (10) is a T-invariant. Further, since the last
entry in this vector fm+1 = 1, the vector is a singular complementary T-invariant of the
complemented Petri net PNc.
Note that the reverse of Statement 4 is generally not true. That is, the existence of a singular
complementary T-invariant does not guarantee that there exists a corresponding
reachability path.
Corollary 1. For any Petri net, with given initial and target markings M0 and M
respectively, all existing reachability paths from M0 to M are the paths that can be created
on the set of singular complementary T-invariants. This corollary is a generalization of the
corresponding result for T-invariant-less Petri nets obtained in (Kostin, 2003). It means that,

Petri Net: Theory and Applications 440

to perform reachability analysis of a Petri net, it is sufficient to search for reachability paths
only on the set of singular complementary T-invariants.
The set implied by Corollary 1 is infinite in general and includes singular minimal-support
complementary T-invariants and all linear combinations of minimal-support T-invariants
that yield the last entry fm+1 = 1. As will be shown, it is sufficient to consider in this set,
without losing reachability information, only a finite subset.
Let

c = {F1, F2, …, Fw} (11)

be a set of all minimal-support T-invariants of PNc, where

,0],,...,,[1,21 mjjmjjj ffffF (12)

with j = 1, 2, …, w. Notice that, according to the basic property of a T-invariant, each entry in
vector Fj may be only a nonnegative integer (Memmi & Roucairol, 1980).

Now, depending on the value of the last entry, the minimal-support T-invariants of set c

can be classified into the following three disjoint groups:

 {Fj | fj,m+1 = 0, j Iw}, (13)

 {Fj | fj,m+1 = 1, j Iw}, (14)

 {Fj | fj,m+1 > 1, j Iw}. (15)

where Iw = {1, 2, …, w} is the indexing set of c. According to Statement 2, each of these

groups is finite. Depending on the Petri net and its initial and target markings, some or even

all these three groups can be empty.

Without the last, (m+1)th entry, T-invariants of group (13), by Statement 3, are minimal-

support T-invariants of the original Petri net PN. We will call members of group (13) non-
complementary minimal-support T-invariants of the complemented Petri net PNc. Group (14)

consists of singular complementary T-invariants. Finally, members of group (15) are

nonsingular complementary T-invariants in which the complementary transition fires more

than once. Together, members of groups (14) and (15) are called minimal-support

complementary T-invariants of PNc.

3. Computing minimal singular T-invariants of a complemented Petri net
By Corollary 1, the search for all reachability paths from initial marking M0 to target

marking M in a given Petri net can be carried out only on singular T-invariants of the

corresponding complemented Petri net. These include, first of all, minimal-support T-

invariants of group (14). However, these are not the only singular T-invariants of the

complemented Petri net. Indeed, linear combinations of minimal-support T-invariants of

groups (13), (14), and (15) can yield additional singular T-invariants. The number of such

combinations is infinite in general. In this section, we will show that there exists a finite set

of minimal singular T-invariants of the complemented Petri net. Then an approach to the

computation of such a set will be described. In Section 6, it will be shown how the

Using Transition Invariants for Reachability Analysis of Petri Nets 441

computed minimal singular T-invariants can be combined with non-complementary T-

invariants of group (13) to produce new, non-minimal singular T-invariants.

Consider a linearly-combined T-invariant

j
w

j jmm FkffffF
1121],,...,,[(16)

with rational coefficients kj, where Fj are minimal-support T-invariants of groups (13), (14)
and (15), and w is the number of elements in the three groups. In agreement with Corollary
1, we are looking only for those combined T-invariants F which yield fm+1 = 1. Thus, the
following constraint must hold for each linear combination F in (16):

.1
1 1,1

w

j mjjm fkf (17)

With kj 0, the product kjFj in (16) can be considered as a contribution of firings of
transitions of T-invariant Fj to firings of transitions of the combined T-invariant F. On the
other hand, a negative coefficient kj in (16) may be interpreted as a reverse, or backward
firing of transitions, corresponding to T-invariant Fj, and this is not legal in the normal
semantics of Petri nets. Thus, for T-invariants of groups (14) and (15), taking into account
(17), their coefficients kj must be in the following range:

 0 kj 1. (18)

That is, for groups (14) and (15), in which fj,m+1 1, to satisfy (17) the following inequality
must hold:

1jk . (19)

However, coefficients kj for T-invariants of group (13) in (16) may have arbitrary (non-
negative) values without affecting the constraint (17). As a particular case, these T-

invariants can be combined in (16) with coefficients kj 1. The case when T-invariants of
group (13) can be included into combination (16) with arbitrary large coefficients is
considered in Section 6.
The linearly-combined T-invariants (16), with the constraints (17), (18) and (19), are called
minimal singular T-invariants of the complemented Petri net. As a subset, they include all
minimal-support T-invariants of group (14).
Minimal singular T-invariants of the complemented Petri net can be computed in the
following way. Rewrite (16) as a system of linear algebraic equations

KT = FT, (20)

where is a matrix of size ((m + 1) w) whose columns are transposed minimal-
support T-invariants Fj from groups (13), (14) and (15), K = [k1, k2, …, kw], and F is vector
(16), with fm+1 = 1.
In the system (20), not only coefficient vector K, but also entries fi of F, for i = 1, 2, …, m, are
not known. We will show, however, that the number of different integer-valued vectors F
with fm+1 = 1 is finite. Then we will explain how to compute the valid vectors in (20). The
word "valid" means here that, in addition to the requirement fm+1 = 1, all coefficients kj in

Petri Net: Theory and Applications 442

(16) satisfy the constrains (18) and (19). Taking into account (17) and (18), one can deduce
that

,...,,2,1;...,,2,1),(max0 miwjff jiji (21)

where entries fi are integer-valued components of vector F in (16).
One can see now that the number of different integer-valued vectors F in the system (20) is

]1)(max[
1 jij

m

i
fN . (22)

This number includes one vector F with all zero entries except the last one, and all
minimal-support T-invariants of group (14). Among the remaining vectors F, there can be
additional singular T-invariants. They can be computed in the following way.

Assume that, in the system (20), K is a vector of unknowns. Then can be considered as a

coefficient matrix, so that the augmented matrix of the system (20) is U = ¦ FT. It is
known that, by elementary row operations, each matrix can be transformed to an upper
trapezoidal form (Goldberg, 1991). In particular, for the augmented matrix U the result of its
transformation U~ can be written as follows:

1

3

2

1

~

...

...

...
*...**00
*...***0
*...****

m

m

y
y

y
y
y

U , (23)

where the symbol '*' stands for some value (this value is not zero if the symbol is the first in

the row), the symbol ' ' is a place holder, and yi = yi(f1, f2, …, fm, fm+1) is some linear
function of its arguments, i = 1, 2, …, m+1. Each row in U~ consists of w + 1 elements.
For the system (20) to be consistent, the following equation must hold for each ith row of
matrix U~ with all w leading elements equal to zero (Goldberg, 1991):

 yi (f1, f2, …, fm, fm+1) = 0. (24)

Collecting now all equations (24), we obtain a derived system of linear algebraic equations

0),,...,,(
...................
0),,...,,(
0),,...,,(

121

121

121

2

1

mmj

mmj

mmj

ffffy

ffffy
ffffy

k

 (25)

where k m and fm+1 = 1.

Using Transition Invariants for Reachability Analysis of Petri Nets 443

Integer solutions of this system relative to f1, f2, …, fm can be found using existing algorithms
for integer systems of linear equations (Howell, 1971; Springer, 1986). With the constraints
(21), the system has a finite number of solutions or no solutions at all. Note that, with

nonempty group (14), for all its members],1,,...,,[21 jmjj fff the system (25) has

solutions at least for the trivial linear combinations

],1,,...,,[]1,,...,,[2121 jmjjm ffffffF (26)

since each vector (26) is the solution of (20), for which vector K has some entry kj = 1, with
all other coefficient entries equal to zero.
To illustrate this method, consider a Petri net of 6 transitions and 6 places having the
incidence matrix

010000
111000
011100
000101
110110
000111

D

with the initial and target markings M0 = [2, 0, 0, 0, 0, 0] and M = [0, 0, 0, 0, 0, 2],

respectively. The corresponding complemented Petri net has two minimal-support T-

invariants F1 = [0, 0, 2, 2, 2, 0, 1] and F2 = [2, 2, 0, 0, 0, 2, 1]. Both are singular T-invariants

(that is, they have fm+1 = f7 = 1). We will try to determine whether there are some other

minimal singular T-invariants. For this example, with w = 2, the augmented matrix of the

system (20) and its upper trapezoidal form are

111
20
02
02
02
20
20

6

5

4

3

2

1

f
f
f
f
f
f

200
00
00
00
00
20

111

31

61

54

43

21

1

ff
ff
ff
ff
ff

f

.

Thus, the system (25) is

2
0
0
0
0

31

61

54

43

21

ff
ff
ff
ff
ff

Petri Net: Theory and Applications 444

With the constraints 0 f1, f2, f3, f4, f5, f6 2, this system has the following three nonnegative
integer solutions: [0, 0, 2, 2, 2, 0, 1], [2, 2, 0, 0, 0, 2, 1] and [1, 1, 1, 1, 1, 1, 1]. Clearly, the fist
two solutions are minimal-support T-invariants F1 and F2, and the third solution is a
minimal singular T-invariant that is the linear combination F3 = 0.5F1 + 0.5F2. Neither F1 nor
F2 are realizable in given initial marking. However, their linearly combined T-invariant F3

is realizable. One legal firing sequence is t3 t1 t2 t4 t5 t6 t7.

4. Relation graph of T-invariants
In general, each singular T-invariant should be tested for the creation of a reachability path
(or a legal firing sequence) not only alone, but also in different linear combinations with non-
complementary T-invariants (13), since these T-invariants can “help” the singular T-
invariant to become realizable in given initial marking M0 and to eventually provide a
reachability path from M0 to a target marking M. As will be shown in this section, in general
not all non-complementary T-invariants can affect realization of the given singular T-
invariant.
Definition 2. Let F be a T-invariant of a Petri net, with the support F . Then

 P(F) = {pj | ti F , dij 0} (27)

is a set of places of this Petri net affected by F when it becomes realizable in some marking.

Here, dij is an element of the incidence matrix of the Petri net as specified by (1).
Statement 5. Let F1 and F2 be some T-invariants of a Petri net, and let P1 and P2 be sets of

places affected by F1 and F2 respectively. If P1 P2 = , then T-invariants F1 and F2 have
no direct effect on the realizability of each other.
Assume that, contrary to the statement, F1 can directly affect the realizability of F2. This is
possible only if F1, during its realization, will change the number of tokens in some places

affected by F2. This can happen only if P1 P2 . The contradiction proves the statement.

Even if P1 P2 = , T-invariants F1 and F2 can indirectly affect the realizability of each
other through other T-invariants having common affected places with F1 and F2.

Corollary 2. Let
k

ncncnc FFF ,...,, 21
 be some non-complementary T-invariants of a

complemented Petri net, with sets of places
k

ncncnc PPP ,...,, 21
 affected by these T-

invariants, respectively. Let further Fc be a singular complementary T-invariant of this Petri

net, with the set of affected places Pc. Denote by
k

i
i

ncnc PP
1

 a set of places of this Petri

net affected by mentioned non-complementary T-invariants.

If Pc Pnc = , then realization of any linear combination of T-invariants
k

ncncnc FFF ,...,, 21

has no effect on realization of Fc. Therefore these T-invariants may be excluded from

consideration in the reachability analysis with T-invariant Fc in given Petri net.
To represent formally the effects of different T-invariants on each other in a Petri net, it is
instructive to introduce into consideration a relation graph of T-invariants. Nodes in this
graph are T-invariants. Two nodes corresponding to T-invariants Fi and Fj are connected by

a non-oriented edge if P(Fi) P(Fj) , and the corresponding T-invariants Fi and Fj are
called directly connected T-invariants.

Using Transition Invariants for Reachability Analysis of Petri Nets 445

For a Petri net, such a graph generally consists of a number of connected components. A
connected component may include complementary and non-complementary T-invariants,
or only one type of T-invariants. We say that two T-invariants Fi and Fj can affect

realizability of each other if they belong to the same connected component, even if P(Fi)

P(Fj) = . On the other hand, if Fi and Fj belong to different connected components, they can
not affect each other in no way, directly or indirectly.
The algorithm for determining all connected components of a graph is well known
(Goodrich, 2002). In our problem, the algorithm will determine a connected component
consisting of nodes representing a given singular T-invariant and non-complementary T-
invariants. For this purpose, the algorithm will use the incidence matrix of the original Petri
net and the array of T-invariants.

5. Realization of T-invariants with borrowing of tokens
In this section, the meaning of the help provided by one T-invariant to another one to
become realizable is explained. Let p be a place affected by two T-invariants Fi and Fj in a
given Petri net. Assume that, in a given initial marking of the net, Fi is realizable, but Fj can
become realizable if place p accumulates rj tokens during realization of T-invariant Fi.
Suppose further that, at some intermediate step during realization of Fi, ri tokens will be
created in place p. If ri rj then, by temporary borrowing of rj tokens in place p, T-invariant
Fj becomes realizable and, at the end of its realization, will return the borrowed tokens to
place p, so that T-invariant Fi can complete its started realization.
With ri < rj, T-invariant Fj cannot borrow the necessary number of tokens in place p.
However, if T-invariant Fi, after creation of ri tokens in p at some step of its first realization,
can start a new realization before the completion of the first one, then additional ri tokens
will be created in place p, so that this place will now accumulate 2ri tokens. In general, if Fi

can start z realizations before the completion of the previous ones, then place p will
accumulate zri tokens. If, for some z, zri rj then, after borrowing rj tokens in p, T-invariant
Fj becomes realizable. After the completion of its realization, all tokens borrowed by Fj will
be returned to place p, and T-invariant Fi can complete all its started realizations.

Fig. 1. Illustration of borrowing of tokens by a T-invariant.

Borrowing of tokens by a T-invariant is illustrated with a Petri net shown in Fig. 1, with arcs
(p2, t3) and (t4, p2) having multiplicity 2. This net has two minimal-support T-invariants F1 =
[1, 1, 0, 0] and F2 = [0, 0, 1, 1]. In the initial marking M0 = [2, 0, 1, 0], F1 is realizable, but F2

p1

2

2

t1

t2

p2 p4

t4p3 t3

Petri Net: Theory and Applications 446

becomes realizable only if it can borrow two tokens in place p2, affected by the both T-
invariants. These two tokens will be created here after T-invariant F1 starts two realizations
by firing transition t1 two times. Afterwards, F2 becomes realizable by borrowing two tokens
in p2. Then, after firing t3 and t4, the borrowed tokens reappear in p2, and F1 can complete its
two started realizations. The corresponding sequence of transition firings for this example is
t1t1t3t4t2t2.
To represent the relationship between connected T-invariants, when some non-realizable T-
invariants can become realizable in given initial marking of a Petri net by borrowing tokens
in places affected by other T-invariants, we will introduce a two-dimensional borrowing
matrix G. In this matrix, rows correspond to T-invariants and columns correspond to places
of the given Petri net. Formally, for a group of connected T-invariants,

 G = [gij], i = 1, 2, …, s; j = 1, 2, …, n, (28)

where s is the number of connected T-invariants in the group and n is the number of places
in the net. The elements of matrix G are integers and have the following meaning. If gij > 0
then, for its realization, T-invariant Fi needs to borrow gij tokens in place pj affected by some
other T-invariant of the considered group. If gij < 0 then T-invariant Fi, at some intermediate
step of its single realization, creates |gij| tokens in place pj. Finally, gij = 0 means that Fi does
not affect place pj.
As an example, matrix G for minimal-support T-invariants of the Petri net shown in Fig. 1 is:

p1 p2 p3 p4

F1 -1 -1 0 0

F2 0 2 -1 -1

One can see from this matrix that the number of tokens created in place p2 during a single
realization of F1 is 1 and is not sufficient for F2 to borrow two tokens. In this example
borrowing is possible if T-invariant F1 starts two interleaved realizations. The maximal
number of realizations that can be started by F1 depends on the initial marking of place p1. In
particular, if this place initially contains only one token, then F1 is still realizable, but it will
never create, during its realizations, more than one token in p2.
 For a group of connected T-invariants of a complemented Petri net, the borrowing matrix
can be created with the use of the incidence matrix of the given original Petri net. Due to a
relative simplicity of the underlying procedure and to space limitation, the details of this
procedure are omitted.

6. Combining a singular complementary T-invariant with
 non-complementary T-invariants

Denote by Fc a singular T-invariant of some complemented Petri net. It can be a member of
group (14) or a minimal T-invariant calculated as was described in Section 3. Clearly, if
group (13) is not empty, then the following linear combination

j
ncjc FkFF , (29)

Using Transition Invariants for Reachability Analysis of Petri Nets 447

with coefficients kj 0, is also a singular T-invariant, if components of F are nonnegative

integers. Here
j

ncF is a T-invariant of group (13). According to Corollary 2, it is sufficient to

include in (29) only those T-invariants from (13) that belong to the same group of connected
T-invariants together with Fc.
The expression (29) implies that the singular T-invariant Fc in general should be tested for
the determination of a reachability path not only alone, but also in different linear
combinations with non-complementary T-invariants (13), since these T-invariants can
“help” the non-realizable T-invariant Fc to become realizable in given initial marking M0

and to eventually provide a reachability path from M0 to a target marking M of the given
Petri net.
Without loosing generality, we assume that coefficients kj in (29) are nonnegative integers.

Indeed, if a singular T-invariant Fc is realizable with some non-integer values of coefficients

kj in (29), then it will remain realizable when these coefficient values are replaced by the

nearest integer values not less than kj. The case when kj 1 was considered in Section 3.

With integer coefficients kj > 1, the product
j

ncjFk in (29) corresponds to a multiple

realization of T-invariant
j

ncF . A multiple realization is a series of kj sequential or

interleaved single realizations. Interleaved realizations of a T-invariant, if they are possible,

can have a different effect on place marking in comparison with sequential realizations.

Consider, for example, a simple Petri net consisting of two transitions t1, t2 and one place p
that is the output place for t1 and the input place for t2. This Petri net has a T-invariant F =

[1, 1] realizable in any initial marking of p. In particular, with the zero initial marking, place

p will never have more than one token if single realizations of F are strictly sequential as in

t1t2t1t2t1t2. However, if single realizations of F are interleaved, place p can accumulate an

arbitrary large number of tokens at some intermediate step.

In general, the number of valid combinations (29) is infinite. This section describes how to

limit the values of coefficients kj in (29) without the loss of reachability information using

the concept of structural boundedness of Petri nets.

It is known (Murata, 1989) that a Petri net is structurally bounded if and only if there exists a

(1 × n) vector Y = [y1, y2, …, yn] of positive integers, such that

 D Y T 0, (30)

where D is the (m n) incidence matrix of the Petri net with m transitions and n places.

A Petri net is said to be not structurally bounded if and only if there exists a (1 × m) vector of

(nonnegative) integers ,0],...,,[21 mxxxX such that

TTT MXD (31)

for some ,0M where m is the number of transitions in the Petri net, and M is a (1 × n)

vector of marking increments as a result of firing of all transitions corresponding to vector
X.

Petri Net: Theory and Applications 448

In a structurally unbounded Petri net, at least one place is structurally unbounded. A place

pi in such a Petri net is said to be structurally unbounded if and only if there exists a (1 × m)

vector 0X of nonnegative integers, such that

TTT MXD (32)

for some mi > 0 in 0),...,,...,,(21 ni mmmmM .

The structural unboundedness can be tested separately for each place pi of the Petri net, by

setting an appropriate integer mi > 0 and mj = 0 for all j i in (32) and then trying to

solve the system (32). The test may be done also simultaneously for a few desired places or

even for all places of the net.

It is known that, according to Minkowski-Farkas' lemma (Kuhn & Tucker, 1956), one of the

systems (30) or (31) has solutions. For our problem, we do not need to know all solutions of

(30) or (31). Rather, it is sufficient to find only one, "minimal" solution of (30) or (31).

The minimal solutions of (30) or (31) can be found as solutions of integer linear

programming (ILP) problems. For the system (30), the corresponding ILP problem can be

formulated as follows:

 minimize ,
1

n

i iya (33)

subject to: .,...,2,1,1,0 niyDY i
T

For the system (31), the corresponding ILP problem is:

 minimize ,
1

m

i ixb (34)

subject to: .,...,2,1,0,1,0
1

mixxXD i
m

i i
TT

The property of structural boundedness can be considered also for subnets of a Petri net.

We are interested in this property only for the subnets corresponding to non-

complementary T-invariants
j

ncF in (29). For a non-complementary T-invariant
j

ncF , the

related subnet consists of transitions of the support |||| j
ncF and places)(j

ncFP affected

by
j

ncF . The expressions (30) - (34) remain valid for the subnet corresponding to
j

ncF with

the following restrictions: in the incidence matrix D rows are taken for transitions

corresponding to nonzero entries in
j

ncF , and columns are taken for places affected by
j

ncF .

Let us consider initially the case when the subnet corresponding to
j

ncF is not structurally

bounded and describe how to determine coefficients kj for non-complementary T-invariants
j

ncF in the linear combination (29). If
j

ncF and cF belong to different connected

Using Transition Invariants for Reachability Analysis of Petri Nets 449

components of the graph of relation of T-invariants then j
ncF should be ignored at all, by

setting kj = 0 in (29).

If j
ncF and

cF belong to the same connected component of the graph of relation of T-

invariants then the subnet corresponding to j
ncF will have common places with the subnets

corresponding to
cF or other non-complementary T-invariants belonging to the same

connected component. Thus, j
ncF can affect realizability of

cF , directly or indirectly, and

therefore should be included in (29) with kj > 0.

Suppose for definiteness that T-invariant j
ncF has the support {t1, t2, …, tl}, l m, and the

set of affected places

 {p1, p2, …, pq}, q n, (35)

where m and n are the numbers of transitions and places in the original (non-
complemented) Petri net. Assume that Fc, to become realizable, needs to borrow ni > 0, i =
1, 2, …, h, tokens at least in places

 {p1, p2, …, ph}, h q, (36)

that belong to the set (35) and in which j
ncF can create tokens during its realization. Then, to

facilitate the realizability of
cF , j

ncF should be included in the linear combination (29) with

a positive integer coefficient kj determined by applying the following steps.
1. Try to solve an ILP problem:

 minimize ,
1

l

i ixb (37)

subject to: ,0,1,
1 i

l

i i
TTT xxMXD

where M = [m1, m2, .., mh, mh+1, …, mq] = [n1, n2, …., nh, 0, …, 0] is a vector of the
desired numbers of tokens which are expected to be created in places (36) as a result of

one or more realizations of
j

ncF , l is the number of transitions in the subnet

corresponding to
j

ncF , and q is the number of places affected by
j

ncF . In the matrix

multiplication, only those rows and columns of D are used which correspond to the

support of
j

ncF and to places affected by
j

ncF .

2. If, for the specified vector M, the problem (37) has a solution],,...,,[**
2

*
1

*
lxxxX

then components of
*X represent the total numbers of firings of respective transitions

sufficient to accumulate the desired number of tokens in places of set (36) in a few

realizations of
j

ncF , and ratio j
i

i

f
x*

 is the number of realizations of
j

ncF to provide

the necessary number of firings of transition ti, i = 1, 2, …, l. In this case,

Petri Net: Theory and Applications 450

)....,,2,1|max(
*

li
f
xk j

i

i
j (38)

3. If, on the other hand, the problem (37) has no feasible solution then it means that at
least one of places in set (36) pi is structurally bounded and can not accumulate the

desired number of tokens mi in multiple realizations of
j

ncF . In this case, using (32),

determine all structurally unbounded places in set (36). Since, as is assumed, the subnet

for
j

ncF is not structurally bounded, there is at least one structurally unbounded place

in this subnet.
4. Solve the ILP problem (37) simultaneously for all structurally unbounded places found

at the previous step, to obtain a solution vector .*X That is, in solving (37), vector M
should have nonzero entries mi = ni only for structurally unbounded places. According
to Minkowski-Farkas’ lemma, this solution always exists. Then coefficient kj is
determined by the use of expression (38).

In case, when the subnet for
j

ncF is found to be structurally bounded, then the number of

tokens in each of its places is bounded. However, this bound generally depends on
realizations of other, connected T-invariants and is not known in advance. For such a
subnet, coefficient kj can be evaluated with the use of the borrowing matrix (28) computed

for Fc and all its connected non-complementary T-invariants, including
j

ncF . Let, in this

matrix, c and j be indexes of rows corresponding to
j

ncF and Fc, respectively. Then it is

sufficient to include
j

ncF in the linear combination (29) with coefficient kj computed with the

use of the expression

|| ji

ci
j g

gk , (39)

where gci and gji are entries in the borrowing matrix, and the sum is computed for all pairs
gci > 0 and gji < 0. Indeed, with this coefficient, the sufficient number of interleaved

realizations of
j

ncF are allowed to accumulate the required numbers of tokens in places

which are common for Fc and
j

ncF and in which T-invariant Fc can borrow them during its

realization.

However, the possibility of realizations of
j

ncF depends on marking of places in its subnet.

For example, in the Petri net of Fig. 1, T-invariant F2 can become realizable only with the
help of T-invariant F1 for which the corresponding subnet is structurally bounded. The
borrowing matrix for this example has only one pair of non-zero entries g12 = -1 (for F1) and
g22 = 2 (for F2). Thus, using (39), one can obtain k1 = 2. That is, two interleaved realizations of
F1 are sufficient to create two tokens in place p2 to make F2 realizable. But this is possible
only if place p1 holds initially at least two tokens. If this place holds one token, F1 is

Using Transition Invariants for Reachability Analysis of Petri Nets 451

sequentially realizable but it can never create two tokens in p2 to facilitate the realizability of
F2.
In general, coefficient kj calculated as was described for the two cases can result in a larger

number of realizations of T-invariant
j

ncF than is actually necessary. The reason is that

other T-invariants in (29) can also create tokens in places (36) and contribute to the
realizability of Fc.
After computing coefficients kj in (29), an appropriate method can be applied to find a
reachability path (or a legal firing sequence) for the combined T-invariant F if such a path
exists. The task here is the following. For a Petri net with given initial and target markings
M0 and M and a combined T-invariant F, find a legal firing transition sequence. To find a
legal firing transition sequence, or reachabiity path as defined in (4), known computational
techniques can be used (Kostin, 2003; Taoka et al., 2003; Watanabe, 2000; Huang & Murata,
1998).

7. Examples
This section illustrates the proposed reachability analysis scheme by two examples. The
examples were tested in Windows XP OS with a prototype C program that implemented

t3

p9

2

2

t1

p1

t2

p2

p4

t4

p3

t5

t6

t7

p6

t8

t9

t10

p7

p8

2

Petri Net: Theory and Applications 452

111200000
010100000
001100000
000100001
000010000
000121000
000021100
000000101
000110110
000000111

D

Fig. 2. Petri net of Example 1 and its incidence matrix.

almost all steps of the scheme, with the major exception of the sub-algorithm for solving an
ILP problem. To solve this problem, the interactive system QS was used (Chang & Sullivan,
1996). For the first example, Fig. 2 shows a Petri net consisting of m = 10 transitions and n
= 9 places, with its incidence matrix (recall that rows correspond to transitions), and the
initial and target markings M0 = [2, 0, 0, 0, 0, 0, 0, 0, 0] and M = [2, 0, 0, 0, 0, 0, 0, 0, 1],

respectively. To get the complemented Petri net, the algorithm appends a row M =
M0 – M = [0, 0, 0, 0, 0, 0, 0, 0, -1] to the original incidence matrix. Minimal-support T-
invariants of the corresponding complemented Petri net are two non-complementary T-
invariants F1 = [0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] and F2 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], and one
singular complementary T-invariant F3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], with the sets of affected
places {p1, p3, p4, p5, p6}, {p1, p2, p3, p5, p6} and {p6, p7, p8, p9}, respectively. Thus, all these T-
invariants are connected and should be considered together. The borrowing matrix G for
this example contains the following data:

p1 p2 p3 p4 p5 p6 p7 p8 p9

F1 -1 0 -1 -1 2 -1 0 0 0

F2 -1 -1 1 0 -1 -1 0 0 0

F3 0 0 0 0 0 2 -1 -1 -1

Thus, each of these T-invariants can become realizable if it borrows tokens in some of
common affected places. Specifically, F1 needs to borrow two tokens in place p5, F2 needs to
borrow one token in place p3, and F3 borrows two tokens in place p6. Note that a token
borrowed by F2 in place p3 can be produced by F1 in a single realization. In its turn, F2 is
capable, in a single realization, to lend one token to F1, instead of necessary two tokens.
Therefore, F1 and F2 can help each other to become realizable. Together, they are capable to
produce 2 tokens in place p6 to be borrowed by F3.
The desired number of tokens in p5 can be accumulated if the subnet corresponding to F2 is
not structurally bounded. To check this, the ILP problem (33) for F2 is solved, in the
following form:

Using Transition Invariants for Reachability Analysis of Petri Nets 453

minimize a = y1 + y2 + y3 + y5 + y6,

subject to: -y1 + y2 – y3 0, -y2 + y3 + y5 + y6 0, -y5 0, y1 – y6 0, y1, y2, y3, y5, y6 1.

This ILP problem has no feasible solution. Thus, the subnet corresponding to F2 is not
structurally bounded, so that at least one of its affected places is not structurally bounded.

We are interested in accumulating two tokens in p5, so that M = [0, 0, 0, 2, 0]. Therefore,
now the ILP problem (37) should be attempted, in the following form:

minimize b = x1 + x2 + x6 + x7,

subject to: -x1 + x7 0, x1 – x2 0, -x1 + x2 0, x2 – x6 2, x2 – x7 0,

x1 + x2 + x6+ x7 1.

This ILP problem has the optimal (minimal) solution

].0,2,2,2[],,,[*
7

*
6

*
2

*
1

* xxxxX

Now, using (38), one can find that

.2)7,6,2,1|max(
2

*

2 i
f
xk

i

i

Since T-invariant F2 borrows only one token in place p3 and this token can be created during
a single realization of F1, it is sufficient to have k1 = 1. Thus, the combined T-invariant (29),
with Fc = F3, is F = F1 + 2F2 + F3 = [2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1]. For this T-invariant, a legal
firing sequence can be found consisting of 15 firing transitions t3t1t2t7t1t2t4t5t6t6t8t9t10t7t7 and
transforming M0 into M. This is the shortest sequence although there exist other sequences
of the same length. Using the computed sequence, the corresponding reachability path (4)
from M0 to M can be easily found.

3

2

t1 p1

t2 p2

p4 t4

p3

t3

t5t6

p5

t7
p6t8 t9 t10

p7

p8

p9

3

t12 t13

2

Petri Net: Theory and Applications 454

.

112010000
012010000
001000300
001000000
001100000
001100300
000000100
000010000
000011000
000011100
000000110
000000111
000010001

D

Fig. 3. Petri net of Example 2 and its incidence matrix.

Fig. 3 shows the second example of a Petri net, consisting of m = 13 transitions and n = 9
places. With the initial and target markings M0 = [1, 0, 0, 0, 0, 0, 0, 0, 0] and M = [1, 0, 0, 0, 0,
0, 0, 0, 1], there are seven minimal-support T-invariants in the corresponding
complemented Petri net: six non-complementary T-invariants F1 = [1, 1, 1, 2, 2, 3, 0, 0, 0, 0, 0,
0, 0, 0], F2 = [2, 2, 2, 1, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0], F3 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0], F4 = [0,
0, 0, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0], F5 = [0, 0, 0, 3, 3, 6, 0, 1, 1, 0, 2, 0, 0, 0], F6 = [2, 2, 2, 1, 1, 0, 0, 1,
1, 2, 0, 0, 0, 0], and one singular complementary T-invariant F7 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1], with the sets of affected places {p1, p2, p3, p4, p5}, {p1, p2, p3, p4, p5}, {p3, p6, p7}, {p3, p6, p7},
{p3, p4, p5, p6, p7}, {p1, p2, p3, p4, p5, p6, p7}, and {p5, p7, p8, p9}, respectively.
Thus, all these T-invariants are connected. Linear combinations of F7 with non-
complementary T-invariants, according to Section 3, yield four additional minimal singular
T-invariants F8 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1], F9 = [2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1], F10

= [0, 0, 0, 2, 2, 4, 1, 1, 1, 0, 2, 1, 1, 1] and F11 = [0, 0, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 1, 1].
For reachability analysis, consider the singular complementary T-invariant F7. For F7 and its
connected non-complementary T-invariants, the borrowing matrix G contains the following
data:

p1 p2 p3 p4 p5 p6 p7 p8 p9

F1 -1 -1 -2 -1 -2 0 0 0 0

F2 -1 -1 -2 -1 -2 0 0 0 0

F3 0 0 3 0 0 -1 -2 0 0

F4 0 0 6 0 0 -1 -2 0 0

F5 0 0 6 -1 -2 -1 -2 0 0

F6 -1 -1 -2 -1 -2 -1 -2 0 0

F7 0 0 0 0 1 0 2 -1 -1

Using Transition Invariants for Reachability Analysis of Petri Nets 455

Thus, T-invariant F7 can become realizable if only it borrows tokens. Specifically, F7 needs to
borrow one token in place p5 and two tokens in place p7. The necessary number of tokens in
the both places can be produced by realizable T-invariant F6 alone. Indeed, F6 creates, in a
single realization, two tokens in place p5 and two tokens in place p7. However, at this point
we cannot say that there exist a state of the Petri net in which places p5 and p7 hold at least
one and two tokens, respectively. To learn this possibility, it is necessary initially to test the
structural boundedness of the subnet corresponding to F6, by attempting to solve the ILP
problem (33), in the following form:

minimize a = y1 + y2 + y3 + y4 + y5 + y6 + y7,

subject to: y1 – y5 0, -y1 + y2 + y3 0, -y2 + y3 0, -y3 + y4 + y5 0, -y4 + y5 0,

-3y3 + y6 + y7 0, -y6 + y7 0, -y7 0, y1, y2, y3, y4, y5, y6, y7 1.

This ILP problem has no feasible solution. Thus, the subnet corresponding to F6 is not
structurally bounded, so that at least one of its affected places is not structurally bounded.

We are interested in having at least one token in p5 and at least two tokens in p7, so that M
= [0, 0, 0, 0, 1, 0, 2]. Therefore, now it is necessary to try to solve the ILP problem (37), in
the following form:

minimize b = x1 + x2 + x3 + x4 + x5 + x8 + x9 + x10,

subject to: x1 – x2 0, x2 – x3 0, x2 + x3 – x4 - 3x8 0, x4 – x5 0, -x1 + x4 + x5 1,

x8 – x9 0, x8 + x9 – x10 2, x1 + x2 + x3+ x4 + x5 + x8+ x9 + x10 1.

This ILP problem has the optimal (minimal) solution

].0,1,1,2,2,2,3,3[],,,,,,,[*
10

*
9

*
8

*
5

*
4

*
3

*
2

*
1

* xxxxxxxxX

 Now, using (38), we can find that

.2)10,9,8,5...,,2,1|max(
6

*

6 i
f
xk

i

i

Thus, the combined complementary T-invariant (29), with Fc = F7, is F = 2F6 + F7 = [4, 4, 4, 2,
2, 0, 0, 2, 2, 4, 0, 1, 1, 1]. For F, a legal firing sequence can be found consisting of 26 transition
firings and transforming M0 into M. This is not the shortest sequence. The shortest sequence
exists for the decremented value of coefficient k6 = 1 and consists of 14 transition firings
t2t3t4t1t2t3t5t8t9t12t13t1t10t10.
Although non-complementary T-invariants F1 and F2 are realizable as well, they are not
appropriate to be combined with F7 to create a realizable combined complementary T-
invariant since they cannot produce tokens in place p7. The necessary number of tokens
could be produced in p7 also by F5 but it needs itself to borrow six tokens in place p3.
In this way, one can proceed with the remaining singular T-invariants F8, F9, F10, and F11.
Calculating coefficient k6 = 2 and combining each of these T-invariants with F6, it will be
possible to successfully find the corresponding legal firing sequences and, if necessary,
reachability paths. In all cases, coefficient k6 can be decremented to one, to get the shortest
legal firing sequence.

Petri Net: Theory and Applications 456

This example shows that, in general, it is not necessary to compute coefficients kj for all T-

invariants
j

ncF in (29). The reachability test can be done as soon as coefficient kj is computed

for the first
j

ncF . If this test fails, then coefficient kj is computed for the next
j

ncF , until the

reachability test is successful or all connected non-complementary T-invariants in (29) are
considered.

8. Conclusion
A new approach to reachability analysis in general Petri nets is proposed, formally
described, and illustrated by examples tested with a prototype program. For a given
original Petri net, the reachability analysis is reduced to the computation and investigation
of T-invariants of the complemented Petri net consisting of the original Petri net and an
additional, complementary transition with input and output arcs depending on the given
initial and target markings. It is shown that, without the loss of reachability information, one
can carry out reachability analysis using only a finite number of T-invariants.
We did not address, in this chapter, complexity aspects of the proposed approach to
reachability analysis. Complexity of some problems of Petri nets, including the reachability
problem, was investigated elsewhere (Jones et al., 1977). Most of the running time in the
proposed reachability analysis scheme will be spent in computing minimal-support T-
invariants and their linear combinations, solving ILP problems, and trying to find legal
firing sequences for the computed T-invariants. This can be done with the use of existing
methods (Watanabe, 2000; Yamauchi & Watanabe, 1998; Huang & Murata, 1998).

9. References
Alaiwan, H. & Toudic, J.-M. (1985). Recherche des semi-flots, des verrous et des trappes

dans les reseaux de Petri. Technique et Science Informatique, Vol. 4, No. 1, 1985, pp.
103 – 112, ISSN 0752-4072.

Bause, F. & Kemper, P. (1994). QPN-Tool for the Qualitative and Quantitative Analysis of
Queuing Petri Nets. Lecture Notes in Computer Science, Vol. 794, 1994, Springer,
Berlin, pp. 321 – 334, ISBN 3540580212.

Boel, R.K.; Ben-Naoum, L. & van Breusegem, V. (1995). On Forbidden State Problems for a
Class of Controlled Petri Nets. IEEE Transactions on Automatic Control, Vol. 40, No.
10, October 1995, pp. 1717 – 1731, ISSN 0018-9286.

Chang, Y.-L. & Sullivan, R.S. (1996). QS: Quant System, Version 2.1, Prentice-Hall,
Englewood Cliffs, 1996, ISBN 013239054X.

Caprotti, O.; Ferscha, A. & Hong, H. (1995). Reachability Test in Petri Nets by Groebner Bases,
Technical Report No. 95-03, Johannes Kepler University, Austria.

Chiola, G.; Franceschinis, G.; Gaeta, R. & Ribaudo, M. (1995). GreatSPN 1.7: Graphical Editor
and Analyzer for Timed and Stochastic Petri Nets. Performance Evaluation, Vol. 24,
No. 1&2, 1995, pp. 47 – 68, ISSN 0166-5316.

German, R.; Kelling, C.; Zimmerman, A. & Hommel, G. (1995). TimeNET: A Toolkit for
Evaluating Non-Markovian Stochastic Petri Nets. Performance Evaluation, Vol. 24,
No. 1&2, 1995, pp. 69 – 87, ISSN 0166-5316.

Using Transition Invariants for Reachability Analysis of Petri Nets 457

Goldberg, J.L. (1992). Matrix Theory With Applications, McGraw-Hill Education - Europe,
1992, ISBN 0071129282.

Goodrich, M.T. & Tamassia, R. (2002). Algorithm Design: Foundations, Analysis and Internet
Examples, John Wiley & Sons, ISBN 0471383651.

Holloway, L.E.; Krogh, B.H. & Giua, A. (1997). A Survey of Petri Net Methods for
Controlled Discrete Event Systems. Discrete Event Dynamic Systems, Vol. 7, No. 2,
April 1997, pp. 151 – 190, ISSN 0924-6703.

Howell, J.A. (1971). Exact Solution of Linear Equations Using Residue Arithmetic.
Communications of the ACM, Vol. 14, No. 3, 1971, pp. 180 – 184, ISSN 0001-0782.

Huang, J.S. & Murata, T. (1998). A Constructive Method for Finding Legal Transition
Sequences in Petri Nets. Journal of Circuits, Systems, and Computers, Vol. 8, No. 1,
1998, pp. 189 – 222, ISSN 0218-1266.

Jones, N.D.; Landweber, L.H. & Lien, Y.E. (1977). Complexity of Some Problems in Petri
Nets. Theoretical Computer Science, Vol. 4, 1977, pp. 277 – 299, ISSN 0304-3975.

Kodama, S. & Murata, T. (1988). On Necessary and Sufficient Reachability Condition for Some
Subclasses of Petri Nets, Technical Report #UIC-EECS 88-8, University of Illinois at
Chicago, June 1988.

Kostin, A.E. (1997). The Novel Algorithm for Determining the Reachability in Acyclic Petri
Nets. SIGACT News, Vol. 28, No. 2, June 1997, pp. 70 – 79, ISSN 0163-5700.

Kostin, A.E. (2003). Reachability Analysis in T-Invariant-less Petri Nets. IEEE Transactions. on
Automatic Control, Vol. 48, No. 6, 2003, pp. 1019 - 1024, ISSN 0018-9286.

Kostin, A.E. (2006). A Reachability Algorithm for General Petri Nets Based on Transition
Invariants. Lecture Notes in Computer Science, Vol. 4162, 2006, pp. 608 – 621,
Springer, Berlin, ISBN 978-3540377917.

Krukeberg, F. & Jaxy, M. (1987). Mathematical Methods for Calculating Invariants in Petri
Nets. Lecture Notes in Computer Science, Vol. 266, 1987, Springer, Berlin, ISBN
3540180869.

Kuhn, H.W. & Tucker, A.W. (1956). Linear Inequalities and Related Systems. Princeton
University Press, 1956, Princeton, NJ.

Mayr, E.W. (1984). An Algorithm for the General Petri Net Reachability Problem. SIAM
Journal of Computing, Vol. 13, No. 3, 1984, pp. 441 – 459, ISSN 0097-5397.

Memmi, G. & Roucairol, G. (1980). Linear Algebra in Net Theory, Lecture Notes in Computer
Science, Vol. 84, 1980, pp. 213 – 223, Springer, Berlin, ISBN 978-3540100010.

Murata, T. (1977). State Equation, Controllability, and Maximal Matchings of Petri Nets.
IEEE Transactions on Automatic Control, Vol. 22, No. 3, June 1977, pp. 412 – 416, ISSN
0018-9286.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
Vol. 77, No. 4, 1989, pp. 541 – 580, ISSN 0018-9219.

Peled, D. (1993). All from One, One from All. Lecture Notes in Computer Science, Vol. 697,
1993, pp. 409 – 423, Springer, Berlin, ISBN 978-3540569227.

Peterson, J.L. (1981). Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981, ISBN
0136619835, Englewood Cliffs, N.J., ISBN 0136619835.

Roch, S. & Starke, P.H. (2001). INA: Integrated Net Analyzer, Version 2.2, Humboldt-
Universitat zu Berlin, Berlin, 2001.

Schmidt, K. (2000). Stubborn Sets for Model Checking the EF/AG Fragment of CTL.
Fundamenta Informaticae, Vol. 43, No. 1 – 4, 2000, pp. 331 – 341, ISSN 0169-2968.

Petri Net: Theory and Applications 458

Silva, M. & Colom, J.M. (1991). Convex Geometry and Semiflows in P/T Nets. In:
Rozenberg, G. (Ed.). Advances in Petri Nets 1990, Springer, Berlin, 1991, pp. 79 – 112,
ISBN 0387538631.

Springer, J. (1986). Exact Solution of General Integer Systems of Linear Equations. ACM
Transactions. on Mathematical Software, Vol. 12, No. 1, March 1986, pp. 51 – 61, ISSN
0098-3500.

Takano, K.; Taoka, S.; Yamauchi, M. & Watanabe, T. (2001). Experimental Evaluation of Two
Algorithms for Computing Petri Net Invariants. IEICE Transactions on
Fundamentals, Vol. E84-A, No. 11, 2001, pp. 2871 – 2880, ISSN 1745-1337.

Taoka, S.; Furusato, S. & Watanabe, T. (2003). A Heuristic Algorithm FSDC Based on
Avoidance of Deadlock Components in Finding Legal Firing Sequences of Petri
Nets. Lecture Notes in Computer Science, Vol. 2679, Springer, Berlin, 2003, pp. 417 –
439, ISSN 0302-9743.

Varpaaniemi, K. (1998). On the Stubborn Set Method in Reduced State Space Generation, PhD
Thesis, Dept. of Computer Science and Engineering, Helsinki University of
Technology, Finland, 1998.

Watanabe, T. (2000). The Legal Firing Sequence Problem of Petri Nets,” IEICE Transactions
on Information & Systems, Vol. E83-D, No. 3, March 2000, pp. 397 – 406, ISSN 1745-
1361.

Zhou, M. & DiCesare, F. (1993). Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems, Kluwer, 1993, ISBN 0792392897.

20

Reliability Prediction and Sensitivity Analysis of
Web Services Composition

Duhang Zhong, Zhichang Qi and Xishan Xu
School of Computer Science, National University of Defense Technology

P.R.China

1. Introduction
Web services are emerging as a major technology for deploying automated interactions
between distributed and heterogeneous applications. It aims at the transparent integration
of Web applications, based on XML-related standards (F.Curbera et al., 2002). Until now,
many research efforts have been made in the field of Web services composition. Moreover,
many composition languages have recently emerged, including BPEL, BPML or ebXML,
these languages focus on tracking and executing collaborative business processes by
business applications.
An important issue for business process built in this way is how to assess the degree of
trustworthiness, especially their performance and dependability characteristics. In this
paper we focus on reliability aspects, and propose an approach to predict the reliability of
web services composition.
Stochastic Petri Nets (SPNs) can be used to specify the problem in a concise fashion and the
underlying Markov chain can then be generated automatically. In this paper, we propose
the usage of CSPN model, an extension of stochastic Petri nets as a solution to the problems
of predicting the reliability of web service composition. The choice of Petri nets was
motivated by the following reasons: (a) Petri nets are a graphic notation with formal
semantics, (b) the state of a Petri net can be modelled explicitly, (c) the availability of many
analysis techniques for Petri nets.
The remainder of this paper is organized as follows. Section 2 provides general information
about BPEL and stochastic Petri net. In Section 3 we describe our reliability prediction
model and propose an approach to transform BPEL process into CSPN model. Section 4
discusses the result of this mapping on an example BPEL process models. Next, Section 5
discusses the sensitivity analysis of the reliability prediction model. Finally, we discuss the
related works and conclude this paper.

2. Background
2.1 BPEL
BPEL, also known as BPEL4WS, build on IBM’s WSFL (Web Services Flow Language) and

Microsoft’s XLANG (Web Services for Business Process Design). It combines the features of

a block structured process language (XLANG) with those of a graph-based process language

(WSFL). BPEL is intended to describe a business process in two different ways: executable

Petri Net: Theory and Applications 460

and abstract processes. An abstract process is a business protocol specifying the message

exchange behaviour between different parties without revealing the internal behaviour of

any of them. An executable process specifies the execution order between a number of

constituent activities, the partners involved, the message exchanged between these partners,

and the fault and exception handling mechanisms (Axel Martens, 2005).

A composite service in BPEL is described in terms of a process. Each element in the process

is called an activity. BPEL provides two kinds of activities: primitive activities and

structured activities. Primitive activities perform simple operations such as receive (waiting

for a message from an external partner), reply (reply a message to a partner), invoke (invoke

a partner), assign (copying a value from one place to another), throw (generating a fault),

terminate (stopping the entire process instance), wait (wait for a certain time), empty (do

nothing).
To enable the representation of complex structures, a structured activity is used to define the
order on the primitive activities. It can be nested with other structured activities. The set of
structured activities includes: sequence (collection of activities to be performed
sequentially), flow (specifying one or more activities to be performed concurrently), while
(while loop), switch (selects one control path from a set of choices), pick (blocking and
waiting for a suitable message). The most important structured activity is a scope. A scope is
a means of explicitly packaging activities together such that they can share common fault
handling and compensation routines. It consists of a set of optional fault handlers
(exceptions can be handled during the execution of its enclosing scope), a single optional
compensation handler (inverse some effects which happened during the execution of
activities), and the primary activity of the scope which defines its behaviour. (Sebastian
Hinz et al., 2005)
The sequence, flow, switch, pick and while constructs provide a means of expressing
structured flow dependencies. In addition to these constructs, BPEL provides another
construct known as control links which, together with the associated notions of join
condition and transition condition, support the definition of precedence, synchronization
and conditional dependencies on top of those captured by the structured activity constructs.
A control link between activities A and B indicates that B cannot start before A has either
completed or has been skipped. Moreover, B can only be executed if its associated join
condition evaluates to true, otherwise B is skipped. An activity X propagates a positive
value along an outgoing link L if and only if X was executed (as opposed to being skipped)
and the transition condition associated to L evaluates to true. Transition conditions are
Boolean expressions over the process variables. The process by which positive and negative
values are propagated along control links, causing activities to be executed or skipped, is
called dead path elimination.

2.2 Stochastic Petri nets
Petri Nets (PNs) is a modeling formalism used for the analysis of a wide range of systems
coming from different domains (e.g., distributed computing, telecommunication, control
systems, workflow management) and characterized by situations of concurrency,
synchronization, causality and conflict (Simona Bernardi, 2003). A PN is basically
characterized by places, transitions and weighted arcs defining its structure and it is
graphically represented by a directed bipartite graph in which places are drawn as circles,
transitions are drawn as bars, input and output arcs are drawn as arrows and inhibitor arcs
are drawn as circle headed arrows.

Reliability Prediction and Sensitivity Analysis of Web Services Composition 461

In the original definition of PNs do not include time concepts; temporal specification in PN
models was introduced with different approaches, mostly by associating a delay to
transitions. In particular, in Stochastic Petri Nets (SPNs) transitions firing delays are
exponentially distributed random variables.
Generalized Stochastic Petri Nets (GSPNs) (Marsan A et al., 1995) are an extension of SPNs
proposed by M. Molloy in which stochastic timing is mixed with deterministic null delays.
In a GSPN model, there are two types of transitions: immediate transitions and timed
transitions. Immediate transitions are fired in zero time and used to model logical actions or
activities that require a negligible time; while timed transitions are characterized by
exponentially distributed firing delays.

Definition 2.1 A GSPN model is a 6-tuple 0(, , , , ,)P T F W M , where P is a finite set of places.

T is a finite set of transitions partitioned into two subsets: IT (immediate) and DT (timed)

transitions, where transitions Dt T are associated with rate . (*) (*)F P T T PU is a set of

arcs. 0 01 02 0{ , ,..., }kM m m m is an initial marking. :W T R is a function defined on the set

of transitions. Timed transitions are associated with priority zero, whereas all other priority
levels are reserved for immediate transitions. The immediate transitions are drawn as thin
bars, while the timed transitions are drawn as rectangles.
SRNs are an extension of GSPNs (Gianfranco Ciardo et al., 1992), i.e., they include all the
features of GSPNs and many more such as guards, timed transition priorities, variable
cardinality arcs, halting conditions, and reward rates etc. None of these extensions enhance
the modelling power since every SRN model can be converted to a continuous-time Markov
chain(CTMC) and CTMCs are isomorphic to GSPNs(although SRNs allow calculation of
some reward-based measures which are not possible through GSPNs). Thus any system that
can be modelled by a SRN can also be modelled by a GSPN. However, SRNs and GSPNs
differ in the conciseness of model specification. SRNs permit a much more concise
description of system dependability than GSPNs do.

3. Reliability prediction using CSPN models
3.1 The CSPN model
A basic principle of the SOC paradigms is that each service composition can iteself become a
service that can be recursively used in other services’ composition. So we distinguish two
kinds of service (Vincenzo, 2005):

Atomic services don’t require the services of any other resources to perform their tasks.
They include, for example, the services offered by basic processing and communication
resources but also the services offered by self-contained software components strictly
tied to a particular computing platform.

A composite service is realized as a composition of other dynamically selected services
that it requires to perform its tasks.

From the reliability prediction viewpoint , the basic difference between these two service
types is that the atomic service provider can publish complete reliability information that’s
directly useful in a service composition’s reliability analysis, whereas a composite service
provider is only aware of reliability information concerning the part of service
implemention under its direct control. The provider must combine this information with the
reliability of the other dynamically selected services to get overall service reliability. Hence,
to support a service composition’s reliability prediction, composite service must provide
their service-usage profile, a description of the generated pattern of external service requests

Petri Net: Theory and Applications 462

As pointed out by Jens Happe (Jens Happe&Viktoria Firus, 2005), most of the reliability
prediction models are based on Markov models. A Markov model can be seen as a finite
state machine, whose transitions are annotated with a probability of taking the transition
from its source states. These models can be appropriate when dealing with sequential
systems. However, as soon as a concurrent or parallel software system (e.g. web service
composition) has to be analyzed, different influences come into play, which can hardly be
expresses by finite state machines or the corresponding Markov model.
To represent the service-usage profile of web services composition, we propose the
Composite Service Process Net model(CSPN) based on the Stochastic Petri Net. In the CSPN
model, the basic activity is represented by timed transition, the structure is represented by
the immediate transitions and firing rules.

Definition 3.1 A CSPN model is a 4-tuple (, , ,)N s t ,where:

N is a GSPN or SRN;

 is the set of external services’ operation;

s represents the starting place of process, a token in the place indicates the service is

ready to start.

t represents the finished place of process, a token in the place indicates the service is

terminated.
In the CSPN model, we can distinguish two types of transitions: operation transition
represents the invoke of external services; while internal transitions represent the internal
activity.

3.2 Transformation of BPEL process into CSPN model
The transformation details of primitive and structured activities into CSPN can be
illustrated by these examples in Fig.1. Each primitive activity is represented by one
transition. A sequence of activities is represented by the sequential concatenation of one
Petri net pattern for each of the activities. A flow activity provides parallel execution and
synchronization of activities, two immediate transitions are used to split the control flow
into concurrent threads and join them at the end. A switch activity supports conditional
routing between activities; the probability of each branch is represented by the weight of
immediate transition. BPEL's while activity supports iterative performance of a specified
iterative activity. The iterative activity is performed until the given Boolean while conditions
no longer holds true. A pick activity exhibits the conditional behaviour where decision
making is triggered by external events or system timeout. It has a set of branches in the form
of an event associated with it, and exactly one of the branches is selected upon the
occurrence of the event associated with it.
Control links are non-structural constructs used to express control dependencies between
activities. Each activity within a flow can be source and/or target of several links. Fig 2
depicts the mapping of a linked activity X. The activity X has two incoming and two
outcoming links. Each link is transformed into two places lst("link status true") and lsf("link
status false") reflecting the Boolean value of that link. Before the activity X can be executed,
all incoming links have to be evaluated with respect to the join condition. In Fig 2, the
subnet enclosed in the box labelled specifies the mapping of incoming links to activity X,
Here the join condition "AND" is defined. In general, each join condition over n links could
be expressed by immediate transitions. The subnet enclosed in the box labelled specifies
the mapping of outgoing links from activity X, once it is complete; it is ready to evaluate
transition conditions to determine the link status for each of the outgoing links.

Reliability Prediction and Sensitivity Analysis of Web Services Composition 463

started

completed

activity

Primitive activity

activityA

activityB

started

completed

Sequence

started

completed

activityA activityB activityC

Flow

started

completed

activityA activityBactivityC

Switch

started

completed

activity

While

started

completed

activityA activityB activityC

Pick

Fig 1. Transformation of BPEL into CSPN

If the join condition evaluates to true, the activity X can start as normal. Otherwise, a fault
called join failure occurs. A join failure can be handled in two different ways, as determined
by the suppressJoinFailure attribute associated with activity X. If this attribute is set to "yes",
the join failure will be suppressed, as modelled by transition "sjf"("suppress join failure"). In
this case, the activity will not be activated and the status of all outgoing links will be set to
FALSE. If the activity lies on a path of an alternative branch that was not chosen, all
outgoing links have to be set to false too. In that case, the activity will not be activated.
Instead, it will get a token on the place negLink("propagate negative link values"). The
negLink pattern sets all outgoing links to FALSE and propagates the negLink token towards
the embedded activities. This is known as dead path elimination.

Petri Net: Theory and Applications 464

3.3 Computing the reliability prediction
In the next step, we annotate the CSPN model with the dependability attributes, and derive
the reliability prediction of web service composition. There are three kinds of dependability
attributes to be annotated:

For every timed transition which represents the execution of a primitive activity, we
annotate the execution time of the activity, which is assumed to be exponentially
distributed with mean.
For every immediate transition which represents the control structure relationship (eg.
switch or while), we annotate to describe the weight assigned to the firing of enabled
immediate transition t.

In this paper, the reliability measure of a web service we use is the probability of its ability
to successfully carry out its own task when it is invoked. To associate the failure behaviour
with the activities, we extend the CSPN model transformed from BPEL in section 3.2. For
each transition representing the execution of an activity offered by a web service, two
immediate transitions added to represent the events that results produced by the activity are
correct and incorrect respectively, and have weights (the reliability of the web service) and
. This process is depicted as Fig. 3, Place "Fail" represents the failure of the BPEL composite
web service.

ls t l s f ls t l s f

ls t l s f

jc t jc f

s j f

n e g l in k

lin k 1 l in k 2

ls t l s f

in
XL

out
XL

X

< f l o w >
 < l i n k n a m e = " l i n k 1 " / >
 < l i n k n a m e = " l i n k 2 " / >
 < l i n k n a m e = " l i n k 3 " / >
 < l i n k n a m e = " l i n k 4 " / >
 . . .
 < a c t i v i t y X s u p p r e s s J o i n F a i l u r e = " y e s " >
 < t a r g e t s >
 < j o i n C o n d i t i o n >
 l i n k 1 A N D l i n k 2
 < / j o i n C o n d i t i o n >
 < t a r g e t l i n k N a m e = " l i n k 1 " / >
 < t a r g e t l i n k N a m e = " l i n k 2 " / >
 < / t a r g e t s >
 < s o u r c e s >
 < s o u r c e l i n k N a m e = " "/ >
 < t r a n s i t i o n C o n d i t i o n >
 P (. . .)
 < / t r a n s i t i o n C o n d i t i o n >
 < s o u r c e l i n k N a m e = " "/ >
 < t r a n s i t i o n C o n d i t i o n >
 N O T P (. . .)
 < / t r a n s i t i o n C o n d i t i o n >
 < / s o u r c e s >
 < . a c t i v i t y X >

Fig. 2. Transformation of linked activity

Reliability Prediction and Sensitivity Analysis of Web Services Composition 465

started

completed

activity

started

completed

activity

Failsuccess

Fig. 3. Associate the failure behavior

The last step is to solve the stochastic Petri net model and compute the reliability prediction

of web service composition. In this paper, we use the Stochastic Petri Net Package (SPNP)

(C.Hirel et al., 2000) to computation of the reliability measures. SPNP is a versatile

modelling tool for stochastic Petri net model; it allows the specification of SPN models, the

computation of steady-state, transient, cumulative, time-averaged, and up-to-absorption

measures and sensitivities of these measures. The most powerful feature of SPNP is the

ability to assign reward rates at the net level and subsequently compute the desired

measures of the system being modelled. Here we assign reward rate 1 to all markings in

which there is no token in place "Fail"; all other markings are assigned a reward rate equal

to zero. And the reliability of BPEL composite web service is the expected reward rate in

steady state.

4. Examples
The following example shows how the structure of a BPEL process model is transformed

into a stochastic Petri nets model. Fig.4 is the schematic illustration of the example taken

from the section on structured activities of the BPEL 1.1 specification (BEA et al., 2003).

This example considers a simple loan approval web service that provides a port where

customers can send their requests for loans. Customers of the services send their loan

requests, including personal information and amount being requested. Using this

information, the loan service runs a simple process that results in either a “loan approved”

message or a “loan rejected” message. The approval decision can be reached in two different

ways, depending on the amount requested and the risk associated with the requester. For

low amounts (less than $10,000) and low-risk individuals, approval is automatic. For high

amounts or medium and high-risk individuals, approval is to be studied in greater detail.

The corresponding stochastic Petri nets model is depicted as Figure 5.

In this example, the following parameters must be assigned a value before the SRN model

can be evaluated:

the reliability of each partner

the probability weights of the immediate transitions

the execution time of each primitive activity
We assume the values given in Table 1. Using the SPNP 6.0, we compute the reliability

prediction for the loan approval process as 0.948 94.8%Rel

Petri Net: Theory and Applications 466

customer
<<receive>>
 receive

||Entry/approve(request)

<<reply>>
 reply

||Entry/approve():=approvalinfo

[request/amount>=10000]

[request/amount<10000]

[riskAssessment/risk='low']
[riskAssessment/risk!='low']

assessor

approver

 <<invoke>>
invokeAssessor

 <<invoke>>
 invokeApprover

<<assign>>

||Entry/riskAssessment:=check(request)

||Entry/approveInfo:='yes'

||Entry/approveInfo:=approve(request)

Fig. 4. Loan approval process

Reliability Value

0.98

0.99

0.99

Probability Value

0.4

0.6

0.3

0.7

Execution
time Value

4

4

1

10

15

replyT

assignT

receiveT

_invoke AssessorT

_invoke ApproverT

CustomerR

AssessorR

ApproverR

{ 10000}pr amounts

{ 10000}pr amounts
{ }pr risk low

{ }pr risk high

Table 1. The parameters of loan approval process

Reliability Prediction and Sensitivity Analysis of Web Services Composition 467

receive AssignAssess Approval Reply

Failed

start

completed

Fig. 5. The SPN model of loanapproval process

5. Sensitivity analysis
In this section, we illustrate some sensitivity analyses that can be performed for our
reliability prediction technique: (1) as a function of the component service’s reliability and
(2) as a function of the usage profile. These analyses are exemplified using the loan approval
process example.

5.1 System reliability as a function of component services’ reliability
This analysis consists in varying the system reliability as a function of the component
services’ reliabilities with the purpose of identifying the component service that have the
greatest impact on the reliability of the composite service. The method consists of varying
the reliability of one component service at a time and fixing the others to 1. The probability
distribution of the usage profile is same as section 4. Fig 6 shows the graphs of the reliability

Petri Net: Theory and Applications 468

of the composite service as a function of the component services’ reliabilities. Note that the
component service Approver has a large impact on the composite service’s reliability, as the
composite service invokes Approver more frequently than Assessor.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Assessor

Approver

Fig. 6. Reliability as a function of component services’ reliabilities

5.2 System reliability as a function of usage profile
This analysis consists in varying the system reliability as a function of the usage profile, as
depicted in the graphs of Fig 7. The reliabilities of component services are same as section 4.
If we vary the probabilities of low amounts and low risk from 0.3 to 0.9, the result is shown
in Fig 7. Note that the usage profile does not have much impact on the system reliability, as
the reliabilities between the component service Approver and Assessor are very close in this
simple example.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pr{amount
s<10000}
Pr{risk=lo
w}

Fig. 7. Reliability as a function of service-usage profile

6. Related works
Approaches to the reliability analysis of service- and component-based system have been
already presented. According to the classification proposed by Goseva Popstojanova
(Goseva Popstojanova, 2001), they can be divided into two main categories: state-based
approaches and path-based approaches. For the sake of brevity, we provide here a brief
view of the approaches of greatest interest to the scope of this work.
State-based models (R.C.Cheung, 1980) use a control flow graph to represent the system
architecture. In such models it is assumed that the transfer of control among the components

Reliability Prediction and Sensitivity Analysis of Web Services Composition 469

can be modelled as a Markov chain, with further behaviour of the system dependent only
on the current state. The architecture of software has been modelled as a discrete time
Markov Chain (DTMC), continuous time Markov Chain (CTMC), or a semi-Markov process
(SMP). These can be further classified into absorbing and irreducible. The former represents
applications that operate on demand which software runs that correspond to terminating
execution can be clearly identified. The latter is well suited for continuously operating
software applications, such that in real time control systems, where it is either difficult to
determine what constitutes a run or there maybe very large number of such runs if it is
assumed that each cycle consists a run.
Path-based models (S.M.Yacoub et al., 1999) compute the reliability of the system by
enumerating possible execution paths of the program. The model used in their approach is
the component dependency graph (CDG), this reliability analysis technique is specific for
component based software whose analysis is strictly based on execution scenarios. A
scenario is a set of component interactions triggered by specific input stimulus, and it is
related to the concept of operations and run-types used in operational profiles (D.Musa,
1993).
Vincenzo Grassi present an approach to the reliability prediction of an assembly of services,
that allows to take into account in an explicit and composition way the reliability
characteristics of both the resources and interaction infrastructures used in the assembly
(Vincenzo Grassi, 2005). What distinguishes their approach is the exploitation of a “unified “
service model that helps in modelling and analyzing different architectural alternatives,
where the characteristic of both “high level” services and “low level” services are explicitly
taken into consideration. Moreover, this work also point out the importance of considering
the impact on reliability of service sharing.
Apostolos focused on the development of a principled methodology for the dependability
analysis of composite Web Services (Apostolos Zarras et al., 2004). The first step involves a
UML representation for the architecture specification of composite web services. The
proposed representation is built upon BPEL and introduces necessary extensions to support
the dependability analysis. The automated mapping of this extended UML models to
traditional dependability analysis models such as Block Diagrams, Fault Trees and Markov
models is the core of the methodology.

7. Conclusion
In this paper, we introduce an approach to predict the reliability of Web services
composition. We present the transformation algorithms from BPEL, which is the de facto
industry standard of Web services composition specification, to CSPN models. Using the
model, we can compute the reliability prediction of the web service composition. The major
contribution of this paper is a reliability prediction technique that takes into account the
structure of BPEL specification and the concurrent nature of service composition. For future
work, we will transform all control-flow constructs of BPEL (including link, scope,
faultHandler etc) into Petri nets. And we will use our CSPN model to give a more precise
estimation of the reliability and performance of web service composition.

8. References
Axel Martens (2005), Analyzing Web Service based Business Processes. In Proc. of FASE'05,

Edinburgh, Scotland.

Petri Net: Theory and Applications 470

Apostolos Zarras, Panos Vassiliadis, and Valerie Issarny(2004), Model-Driven Dependability
Analysis of Web Services, In Proceedings of the International Conference on Distributed
Objects and Applications (DOA),LNCS3291.

BEA, IBM, Microsoft, SAP AG, and Siebel Systems (2003), Business process execution
language for web services (version 1.1). ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf.

C. Hirel, B. Tuffin, and K. S. Trivedi (2000), SPNP: Stochastic Petri Nets. Version 6.0, in
Computer performance evaluation: Modelling tools and techniques, 11th
International Conference; TOOLS 2000, Schaumburg, Il., USA, B. Haverkort, H.
Bohnenkamp, C. Smith(eds.), LNCS 1786.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana(2002),
Unraveling the web services web: An introduction to SOAP, WSDL, and UDDI,
IEEE Internet Computing, 6(2). pp86–93.

Gianfranco Ciardo, Jogesh K. Muppala and Krishor S. Trivedi (1992), “Analyzing
Concurrent and Fault-Tolerant Software using Stochastic Reward Nets”, Journal of
Parallel and Distributed Computing, Vol. 15, pp. 255-269.

H.M.W. Verbeek and W.M.P. van der Aalst(2005), Analyzing BPEL Processes using Petri
Nets, In Proceedings of the Second International Workshop on Applications of Petri Nets to
Coordination, Workflow and Business Process Management, Florida International
University, Miami, Florida, USA, pp.59-78.

JD.Musa (1993), Opeartional profiles in software reliability engineering, In IEEE Software
10(2).

Jens Happe, Viktoria Firus (2005), Using Stochastic Petri Nets to Predict Quality of Services
Attributes of Component-Based Software Architectures, the Tenth International
Workshop on Component-Oriented Programming, Glasgow, Scotland.

K.Goseva-Popstojanova, A.P. Mathur, K.S.Trivedi(2001), Comparison of architecture-based
software reliability models, In Proc. Of the 12th Int. Symposium on Software Reliability
Engineering (ISSRE 2001).

Marsan A, Balbo G, Conte G, Donatelli S, Franceschinis G (1995), Modelling with
Generalized Stochastic Petri Nets, Wiley, Chichester, England.

R.C.Cheung (1980), A User-Oriented Software Reliability Model, In IEEE) Transactions on
Software Engineering, volume 6(2), PP 118-125.

R.H. Reussner, H.W.Schmidit, I.H.Poernomo (2003), Reliability prediction for component-
based software architectures., Journal of Systems and Software, no.66,pp241-252.

Sebastian Hinz, Karsten Schmidt, and Christian Stahl (2005), Transforming BPEL to Petri
Nets, In Proc. 3rd Int. Conf. on Business Process Management (BPM 2005), LNCS 3649,
Nancy, France, pp. 220-235.

S.M.Yacoub,B.Cubic, and H.H.Ammar (1999), Scenario-Based Reliability Analysis of
Component-Based Software, In Proc. of the 10th ISSRE, Boca Raton, FL, USA.

Simona Bernardi (2003), Building Stochastic Petri Net models for the verification of complex
software systems, PHD Paper, Torino.

Vincenzo Grassi(2005), Architecture-Based reliability Prediction for Service-Oriented
Computing, Architecting Dependable Systems III, LNCS 3549,pp.279-299.

W-L,Wang, Y.Wu, M-H Chen(1999), An Architecture-based software reliability model, Proc.
IEEE Pacific Rim Int. Symposium on Dependable Computing, Hong Kong China.

Zhangxi Tan, Chuang Lin, Hao Yin, Ye Hong, and Guangxi Zhu(2004), Approximate
Performance Analysis of web Services Flow Using Stochastic Petri Net, In GCC
2004, LNCS 3251,pp.193-200.

21

Petri Nets for Component-Based Software
Systems Development

Leandro Dias da Silva1, Kyller Gorgônio 2 and Angelo Perkusich2

1Paraiba State University, 2Federal University of Campina Grande
Brazil

1. Introduction
The Software Engineering discipline was created to try to apply techniques and methods of
others engineering disciplines to software systems development. To achieve this goal it was
necessary to change the way software was developed, not only at code level, but also at the
process level. Like in other engineering disciplines, one of the major objectives of software
engineering is to develop artifacts in a systematic way. Several building block approaches
were proposed and developed along the years. Nowadays one of the most researched and
used approach are software components (Crnkovic and Grunske, 2007. Nierstrasz et al.,
2002). Components are autonomous units with independent life cycle that represent an
specific functionality. A component consists of functionality, interface and possibly other
non functional characteristics.
The development of bigger systems with components as building blocks is called
Component Based Development (CBD). To make this possible it is necessary to adapt the
traditional software engineering techniques and methods, or even defined new ones, to
attend to specific CBD requirements. In the context of Component Based Software
Engineering (CBSE) the objective is to define a set of practices that promotes the CBD.
Formal methods improve the development process of software and hardware systems by
helping designers to achieve dependability at different levels of abstractions such as
requirements, specification, modeling and design. This is mainly due to the fact that the
application of formal methods helps discovering and removing errors by performing
automatic analysis and verification (Clarke and Wing, 1996). Petri nets (Murata, 1989), and
more specifically Hierarchical Coloured Petri Nets (HCPN) (Jensen, 1992. Jensen, 1997) are a
very powerful tool that has been widely studied and applied for the specification and
analysis of complex concurrent systems (Donatelli and Thiagarajan, 2006. Kleijn and
Yakovlev, 2007. Jensen, 2005. Jensen, 2006). It has a graphical representation that helps the
design of complex software systems. There are several advantages of using a formal method
in systems design such as, automatic simulation, proof of properties and unambiguous
documentation.
In the context of software engineering, the reuse of artifacts in the development of new
software systems increases the productivity. Also, the reuse of artifacts that are well known
to be correct is an effective way to increase the dependability on the system under
development. Reuse is not restricted to pieces of source code, but it can be also be applied to

Petri Net: Theory and Applications 472

requirements, documentation, project decisions and specifications. During the last few
years, component based software engineering has been applied to promote the development
of software systems based on reuse (Szyperski, 1999. Crnkovic , 2001. Crnkovic et al., 2002.
Crnkovic and Grunske, 2007. Nierstrasz et al., 1992. van Steen et al., 1998).
The basic premise during the reuse process is that the designer should observe that in
specific application domains, different software systems share some common characteristics.
These characteristics can be represented by any kind of artifact, such as source code or a
model described using some formal language, HCPN in the context of this chapter.
Therefore, the identification of such common characteristics is a very important task. Firstly,
when an artifact that has been already modeled is identified, it is possible to search for it in a
repository and reuse it with some adaptations, instead of modeling it from scratch.
Secondly, after an artifact is modeled and verified, it can be made available to be reused in
the future.
The main goal of this chapter is to introduce a systematic and automatic approach to the
reuse of HCPN models in the specification and verification of complex software systems.
The focus is on the study and development of techniques that help the automation of the
modeling phase, reducing time and money costs of the project. This approach is an
alternative to ad-hoc reuse practices in which the reuse process is of the entire responsibility
of the developer. In order to achieve this goal the approach for the specification and analysis
of components, frameworks for components composition, and component-based software
systems is presented. The proposed approach is guided by a reuse process and software
tools for automatic manipulation of the models. Moreover, a case study is used to illustrate
its application. The work presented in this chapter is based on the use of temporal logic
(Emerson, 1990), model checking (Clarke et al., 1999. McMillan, 1993) and supervisory
control theory (Ramadge & Wonham, 1989) in order to support: adaptation, integration and
use verification of HCPN models. It is fully implemented in CPN/ML language
(Christensen & Haagh, 1996) for a well known set of tools for HCPN models called
Design/CPN (Des, 2006). From the application point of view, the introduced approach is
used to develop models in the context of complex embedded software systems. Embedded
systems have been applied in several kinds of computing devices (Nierstrasz et al., 2002)
such as automobiles, cellular phones and control and automation devices. Due to the
evolution of the technology, more complex devices executing more complex tasks are being
developed, making it difficult to deal with the increasing complexity from the software
point of view (Lee, 1999. Lee, 2002). As discussed by Knight (Knight, 2001. Knight, 2002.
Knight, 2004), two major problems that must be tackled in this domain are specification and
verification. The first one is mainly related to the need to build models that are more
dependable. The later one is related to the difficulty in performing tests on embedded
software systems. Therefore techniques such as model checking can help to early detect
design errors. The approach introduced in this chapter is an effective approach to deal with
these two problems.
The rest of the chapter is organized as follows. In section 2 the basics of the formal tools
used in the present work are introduced, including a discussion about Coloured Petri nets,
temporal logic and model checking. The application of reuse techniques to build formal
models is discussed in Section 3. In Section 4 an example of an embedded system to
illustrate the reuse process is presented. The adaptation, integration, and use verification

Petri Nets for Component-Based Software Systems Development 473

steps are described in Sections 5, 6, and 7, respectively. Finally, in Section 8 the chapter is
concluded with suggestions for future work.

2. Preliminaries
2.1 Petri nets
Petri nets are a formal method with strong mathematical foundation and a graphical
representation. The mathematical foundation promotes the use of automatic analysis and
verification techniques. On the other hand the graphical notation avoids the use of possibly
ambiguous textual notations or hard to understand mathematical notations. Petri nets can
be used in the design of complex systems, expressing properties such as precedence
relationships, conflicts, concurrency, synchronization, deadlocks, and resource sharing
among others. Also, the state and action locality characteristic allow the modeling of
complex systems using either bottom-up or top-down approaches. Therefore, it promotes
modularity and reusability that are important characteristics for the modeling solution
presented in this work.
As mentioned in the introduction, in the context of this chapter an extension of Petri nets
called Hierarchical Coloured Petri Nets (HCPN) is used as a description language. This
extension incorporates complex data types and hierarchy concepts to Petri nets. An HCPN is
a set of non-hierarchical CPN models, and each CPN model is called a CPN page. Therefore,
an HCPN is an extension of the concept of CPN that allows the modeling in hierarchical
levels. This is possible due to the inclusion of two mechanisms: substitution transition and
fusion places. A substitution transition is a transition that represents a CPN page. The page
in which the substitution transition belongs to is called superpage and the page represented
by that transition is called subpage. The association between subpages and superpages is
done by means of sockets and ports. Sockets are all the input and output places of the
substitution transition in the superpage. Ports are the places in the subpage associated to the
sockets. The ports can be of input, output, or input-output type. For simulation and state
space calculation, sockets and ports are glued together and the resulting model is a flat CPN
model.
The fusion places are physically different but logically only one, defined by means of a
fusion set. Therefore, all the places belonging to a fusion set have always the same marking.
A marking of a place is the set of tokens in that place in a given moment. And the marking
of a net is the set of markings of all places in the net, in a given moment. When a marking of
a place belonging to a fusion set changes, the marking of all places belonging to that set also
changes.
Indeed, these two additional mechanisms, substitution transition and fusion places, are only
a graphical notation that promotes the organization and visualization of a CPN model more
efficiently. They favor the modeling of larger and more complex systems because the
designer can obtain a model by either abstraction or composition, or even both. In order to
manipulate tokens in a CPN, it is defined the concept of multi-set, that is, a set where it is
possible to have several occurrences of the same element. This concept allows similar parts
of the model to be modeled as token information instead of structure replication.
In the following, the definition of CPN according to (Jensen, 1992) is presented.
Definition 1: A Coloured Petri net is a tuple CPN = (, P, T, A, N, C, G, E, I) satisfying the
requirements below:
1. is a finite set of non-empty types, called colour sets.

Petri Net: Theory and Applications 474

2. P is a finite set of places,
3. T is a finite set of transitions,
4. A is a finite set of arcs such that:

P T=P A=T A=0

5. N is a node function defined from A into (P x T) U (T x P).
6. C is a colour function defined from P into S.
7. G is a guard function defined from T into expressions such that:

8. E is an arc expression function defined from A into expressions such that:

9. I is an initialization function defined from P into closed expressions such that:

The definition of HCPN according to (Jensen, 1992) is presented as follows.
Definition 2: A Hierarchical CPN is a tuple HCPN = (S, SN, SA, PN, PT, PA, FS, FT, PP)
satisfying the following requirements:
1. S is a finite set of pages such that:

Each page s S is a CPN:

(S, PS,Ts, As, Ns, Cs, Gs, Es, Is)
The set of net elements are pair wise disjoint:

2. SN T is a set of substitution nodes,
3. A is a page assignment function defined from SN into S such that:

No page is subpage of itself:

4. PN P is a set of port nodes.
5. PT is a port type function defined from PN into {in, out, i/o, general},
6. PA is a port assignment function defined from SN into binary relations such that:

Socket nodes are related to port nodes:

Socket nodes are of the correct type:

Related nodes have identical colour sets and equivalent initialization
expressions:

7. FS Ps is a finite set of fusion sets such that:

Members of a fusion set have identical colour sets and equivalent initialization
expressions:

8. FT is a fusion type function defined from fusion sets into {global, page, instance} such
that:

page and instance fusion sets belong to a single page:

Petri Nets for Component-Based Software Systems Development 475

9. PP Sms is a multi-set of prime pages.
Based on Definitions 1 and 2 several activities are defined to manipulate nets using the
Design/CPN tool in order to develop and maintain a reuse-based modeling process for
complex software system, as detailed in the following sections. Detailed explanations for
these definitions, as well as the dynamic behavior of CPN and HCPN are omitted. For more
information the reader can see the references (Jensen, 1992. Jensen, 1997).

2.2 Temporal logic
Temporal logic is a modal logic that can be used to describe how events occur over the time.
There are operators to describe safety, liveness and precedence properties, providing a
framework to specify software systems, particularly concurrent systems (Pnueli, 1977).
Temporal logics are used to predicate over the behavior of a system defined by a Kripke
structure. This behavior is obtained starting from an initial state and then repeatedly
moving from one state to another following the transition relation. It means that such
relation should be total, and as consequence all the behaviors of the system are infinite.
Since a state can have more than one successor, the structure can be thought of as
unwinding into an infinite tree, representing all the possible executions of the system
starting from its initial states.
Two useful temporal logics are Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL). They differ in how they handle branching in the underlying computation tree. The
CTL operators permit to quantify over the paths departing from a given state. In LTL,
operators are intended to describe properties of all possible computation paths. It is an
agreement that the temporal logic provides a good framework to describe and to reason
about the behavior of concurrent systems. However, it is not the case when the question is
which one is more appropriate, linear or branching time logic, to do it. But this is a question
that is outside of the scope of this chapter. Along this chapter, we use a Computation Tree
Logic (CTL) (Clarke et al., 1999) defined for Coloured Petri Nets named ASK-CTL
(Christensen and Haagh, 1996). In what follows the basic concepts of both logics are
introduced.
The CTL temporal logic combines path quantifiers with linear time temporal logic
operators. The path quantifiers A ("for all paths") and E ("for some paths") should be used
as a prefix of one of the operators G ("globally"), F ("sometimes"), X ("nexttime") and U
("until"). Let AP be set of atomic propositions, then the syntax of CTL is given by the
following rules:

The others CTL operators are expressed using the three operators EX, EG and E[U].
Therefore:

Petri Net: Theory and Applications 476

The semantic of CTL is defined with respect to paths in a Kripke structure. A path is an
infinite sequence of states (s0, s1,...) such that si+1 is reached from si for all i 0. So, if is a
CTL formula M, s is used to denote that holds for s0 of M.
The four most used CTL operators are EF, AF, EG, and AG. In Fig. 1 the interpretation for
such operators is illustrated in an intuitive way, and they are interpreted as follows.

Fig. 1. Basic CTL operators.

EF E[true U] means that exists a path starting from s0 in which holds at some state
along this path.

AF A[true U] means that for all paths starting from s0, holds at some state along
the path. In other words, is inevitable.

EG ¬AF¬ means that exists a path starting from s0 in which holds at every state
along this path.

AG ¬EF¬ means that for all paths starting from s0, holds at every state along that
paths. In other words, holds globally.

2.3 ASK-CTL
ASK-CTL is a CTL-like logic useful to specify properties for CPNs (Coloured Petri Nets)
state spaces, represented by occurrence graphs. Occurrence graphs carry information on
both nodes and edges. Hence, a natural extension for CTL is to include the possibility to

Petri Nets for Component-Based Software Systems Development 477

express properties about the information labeling for the edges (e.g., edge information is
needed when expressing liveness properties since liveness is expressed by means of
transition occurrence information). For this purpose two mutually recursively defined
syntactic categories of formulae are defined: state and transition formulae, which are
interpreted over the state space for states and transitions respectively (Cheng et al., 1997).
As in CTL, quantified state formulae and transition formulae are interpreted over paths.
Path quantification is used in combination with the until operator to express temporal
properties.
The ASK-CTL library has two parts: one which implements the ASK-CTL logic language
and another one which implements the model checker (Christensen and Haagh, 1996). The
syntax of ASK-CTL is minimal and in order to increase the readability of the formulae we
make use of syntactic sugar, e.g., POS() means that it is possible to reach a state where
holds, INV() means that holds in every reachable state, and EV() means that for all paths

 holds within a finite number of steps.

2.4 Model Checking
The need to increase the dependability of software systems motivates the definition and
application of more dependable developing methods and techniques. This need is more
evident when dealing with critical real-time systems. With the increasing complexity of the
systems the traditional methods based on tests, for example, are not enough anymore to
guarantee dependability.
The use of formal methods can increase the confidence in the behavior of the system. In the
specification, formal methods can be used to find difficult errors before developing the real
system. Traditional methods based on tests and simulation can detect initial errors. But after
the simplest errors are fixed, more rigorous methods are needed.
Model checking is used to verify specifications (Clarke et al., 1999) in an exhaustive way.
That is, where tests and simulations analyze some possibilities, formal methods analyze all
possible behaviors.
One great advantage of model checking is that it is fully automatic. Moreover, the model
checking algorithms generate a counter-example generation in case of negation of a
property indicating a path where the property is false.
The disadvantage of model checking is the state explosion problem. That occurs when the
system has several concurrent components, or when it manipulates complex data types.
Some techniques have been researched and developed to deal with this problem such as
symbolic model checking (McMillan, 1993) and partial order reduction (Peled, 1994.
Valmari, 1991).
The verification activity consists in checking if a property is satisfied by a model or not. The
properties are described in temporal logic, and the models can be described as a finite
automaton or as a Petri net, for instance. Let M be a model and f be a temporal logic formula
that express some property of M. The model checking consists in verify if M models f, which
is noted by M f.
The model checking consists of the following three activities:
Modeling: The modeling consists in describing the system in some formalism. The
formalism to be used depends on the tool to be used in the verification, the designer
knowledge, or the culture in the institution that is developing the project. It is still possible
to transform a given formalism into another to perform the verification.
Specification: The specification is usually done in temporal logic that is used to specify how
a system's behavior evolves over time. It is not possible to guarantee the completeness of
the specification, that is, it is not possible to guarantee that all the properties to be verified

Petri Net: Theory and Applications 478

are specified. But once a property is specified it can be checked against the model for all its
possible behaviors.
Verification: Given a model and a specification the verification is fully automatic. In the case
of a property is negated the designer must analyze the counter-example to solve possible
modeling errors, or to reformulate the specification. Moreover, abstraction and modular
techniques depend on the designer to allow that the verification can be performed
dealing with the state explosion problem.

3. Reuse based software modeling

Fig. 2. Diagram for the systematic reuse solution.

Petri Nets for Component-Based Software Systems Development 479

When using a reuse based modeling method it is not always necessary to build the hole
system from the scratch, it is possible that some of the required models of the system are
already modeled. The reuse process defined in this chapter is illustrated by Fig. 2. The main
reuse activities are recovery, adaptation, integration and use verification. A detailed
discussion of the repository management activity, recovery and insertion of models, can be
found in (Lemos & Perkusich, 2001). In this work the adaptation of a recovered model
(Gorgdnio & Perkusich, 2002) and the integration of such model into an architectural
framework are detailed. The functionality of the reuse process as a whole, unifying all the
activities in a systematic modeling method is also discussed.
Besides the reuse activities, a use verification step is taken into account. This step consists in
performing model checking in the integrated models in order to verify whether the specific
use case is correct, that is, to verify if they were correctly used.
As pointed out in the introduction, an embedded system is used to illustrate the process as
well as to guide the definition of the activities.
The designer must think on how and where to search for models that can be directly reused,
and adapted if necessary, while building a new system. Moreover, the designer must try to
identify potential candidates for reuse and store them in a repository of models. The
following reuse activities are identified during the formal modeling of systems:

Identification of the parts of the new model;

Definition of a framework;

Detection of the parts that need to be constructed and those that can be reused;

Description and recovery of the models that can be reused;

Adaptation of the recovered models;

Integration of the recovered/adapted/constructed models;

Identification of new reusable models and storing them in the repository
It is important to point out that, besides the fact that this technique is fully supported by a
set of tools the methodology itself is not completely automatic. The designer plays an
important role and is required to create the framework on which the recovered and adapted
models are integrated. Moreover, she is required to write down a set of temporal logic
formulae describing the behavior of the models to be recovered and adapted.

4. Case study: A component-based embedded system
The application domain considered in the scope of this work is an embedded transducer
network control system (Silva & Perkusich, 2005). As shown in Fig. 3, this system is
composed by a set of transducers, a controller, named the communication server, and a real-
time server.
The environment signals acquired by the sensors are transformed and controlled in a way
that the real-time server can access and modify the information to control the actuators
according to the application requirements. Observe that the transducers are connected to a
controller and that besides control functions it also acts as a front end communication
server. Therefore, different applications can be specified and verified by changing the
components. Several different applications may access the real-time server to acquire data
and to control devices. For instance, it is possible to have temperature, ventilation and
humidity sensors. The signals that are acquired and processed can be used to control an
HVAC (Heating, Ventilation and Air Conditioning) system in an intelligent building.

Petri Net: Theory and Applications 480

It is important to note that a system defined as shown in Fig. 2 is very common in many
other kinds of command and control systems and therefore it is possible to define a software
architecture that can be reused in other applications.

Fig. 3. System structure.

Fig. 4. Communication server

According to the requirements of the applications, defined based on the command and
control problem, and the transducers used, different systems can be built. Based on the

Petri Nets for Component-Based Software Systems Development 481

approach introduced in this work a system does not need to be specified and verified
always from the scratch. What is necessary to do is to recover a model from a repository,
modify it to satisfy the new requirements and integrate it on the new project. Only in the
case that no model can be found, the designer must specify a new one. To promote this
approach, a product line to this specific domain using some specific software architecture to
reuse common components is defined. The main advantages are time and money savings,
and the reduction or even elimination of errors, and therefore, faults can be avoided. Also, it
is possible to maintain and evolve a repository of reusable components for a given domain
improving the dependability on the models.
An important observation s that the details related to specific technologies to implement the
components are abstracted. The focus is on the specification and analysis of the architecture
of a target system. Therefore, properties for the interfaces and architectural level of the
components are verified regardless internal details of them. For instance, the protocol used
by the communication server to communicate with the control system running in the real-
time server is abstracted.
In Figs. 4 and 5 is illustrated the component diagrams for the communication server and the
real-time server, respectively. The communication server consists of four components. The
IO Interpreter instantiates raw data from sensors to objects. The Data Converter transforms
the data to an specific format. Device Controller is used to calibration, initialization and
other control tasks. The Synchronizer is the communication channel with the real-time
server. The real-time server is composed by three components. The data controller is used to
control data flow among several applications accessing the server. The access to the server is
available through the UI component. The real-time server Synchronizer is the counterpart to
the communication server Synchronizer.

Fig. 5. Real-time server

4.1 Framework
In Fig. 6 the HCPN framework that specifies the architecture of the system is illustrated.
There, it is possible to identify how the entities communicate with each other. The System
page models the sensors and actuators. They communicate only with the communication
server represented by the CommServer page.
There are several components defined for the communication server page. Data from the
devices to the embedded system and output data to devices are communicated using a
blackboard mechanism. The input and output interpreter, lOlnterpreter, is used to instantiate
the data written in the blackboard as objects. Also, this component receives objects from the
system and translates them to the data format used by the devices. This component is fixed
in the architecture. That is, it is not necessary to change it from one project to another.

Petri Net: Theory and Applications 482

The next component is the data converter, DataConvert. This component transforms data
from the I/O interpreter to a format used by the real-time server, according to the
requirements of the applications. Since data formats are dependent of the applications that
access the server this component must be changed to satisfy the requirements of each
project. The data converter decides the data flow. If data in the data converter is a control
requisition, such as an initialization or calibration request, that data is sent to the device
controller. If data is an information signal it is sent to the synchronizer, EmbChannel, to be
transmitted to the realtime server.
The device controller component, DeviceControl, is used to control devices, that is, as said
before to perform calibration and initialization tasks. Moreover an application can request
changes in the attributes for a device, such as, the sampling time. This is done also by the
device controller. The synchronizer is a realization of the communication between the
communication server and the real-time server. When a sensor sends an information signal
and not a control signal, it must be transmitted to the real-time server through the
synchronizer. Thus, there is a synchronizer for the communication server and another one
for the real-time server. Since this communication does not change, the synchronizer is fixed
in the architecture.

Fig. 6. Model hierarchy (framework).

The real-time server, RealTime, intermediates the communication between the
communication server and the applications. A database with information about the net and
the applications is used to promote this communication. The applications can read or write

Petri Nets for Component-Based Software Systems Development 483

information to control the system. In the real-time server we have several components also.
The synchronizer, RTCHannel, is identical to the one in the embedded system. The data
controller, DataContoller, is used to control data flow from and to the applications. The user
interface module component, UIModule, is used to make services available. The applications
use this component to access the system.

Fig. 7. Embedded system.

Petri Net: Theory and Applications 484

In Fig. 7 the dashed lines define components that must be replaced, or hot spots, based on
the application, and the continuous lines define components that do not need to be changed
or frozen spots. It is possible to see all the components for the communication server. The
top part is the blackboard where messages are exchanged between the sensors and actuators
and the server. The first component is the I/O interpreter. After this component the signal is
sent to the Data Converter and at this point it can take two different destinations, the Device
Controller, or the Synchronizer.
Using this architecture, it is possible to specify any control system as defined here,
promoting a product line evolution based on the reuse of component models. Moreover, this
strategy allows the practice of refactoring at a model level.
The specification described in this section is a general explanation of the model. This model
was constructed using the reuse process described in Section 3.

5. Model adaptation
Once a model, that is a candidate to be reused, is identified and recovered from the
repository, it is necessary to verify if it is ready to be integrated on the system framework.
Usually it is necessary to adapt the recovered model to satisfy some special conditions that
holds in the new system. The adaptation technique presented here is based on the use of
temporal logic, model checking and supervisory control theory. The basic idea is that for a
given CPN model that satisfies some properties, it should be possible to refine it in order to
obtain a new model whose behavior is a refinement of the behavior of the original one. Note
that on the context of this work, adaptation is a refinement relation. Basically, it means that
all the possible behaviors of the adapted model are also allowed in the original model, and
in some sense, the models can be related trough a preorder relation (Long, 1993).
In (Ramadge and Wonham, 1987) an algorithm to obtain the supremal controllable sub-
language for a given language is described. They assumed that a system, described as a
finite automaton, is composed of some events that can be controlled and others that cannot.
If the occurrence of a controllable event leads to an undesired situation, it is possible to
disable it. However, if the event is not controllable, then it is not possible to do it. For
example, in the case of the environmental controller the changes in the temperature of the
room, i.e. the data received by the sensors, are not an event that can be controlled by the
system. And it makes no sense to change the behavior of the model by avoiding the
occurrence of an event that cannot be controlled.
The supremal controllable sub-language algorithm receives as input two finite automata.
One modeling the system, m1 and other modeling the desired behavior of the system, m2,
and the set of events is divided into controllable and uncontrollable. The algorithm returns
an automata m3 that is the maximal, with respect to the behavior allowed by m2, automata
that can be controlled without reaching any undesirable state. In general terms, the
algorithm works by removing the undesired states from m1 until a fix point is reached.
The problem with this direct approach is that it is not possible to know in advance if such
m3 exists or not. It may be the case that it is not possible to refine m1 until the resulting
model satisfies the properties specified by m2. This is known only after the execution of the
algorithm when it returns an empty model. Since it is executed over the state space of the
models, if such state space is too large, it is possible that the entire process takes a long time
to be executed without generating any useful output.

Petri Nets for Component-Based Software Systems Development 485

Model checking techniques can be used to avoid this problem. The idea is to model the
automata m2 as set of temporal logic formulae, more specifically CTL, and use them to
check if m1 can be refined to satisfy the CTL properties or not. Note that it is necessary to
determine if there is a subset of m1 that satisfies the properties. If the model checker outputs
a positive result, the synthesis procedure is executed.
Observe that the models to be adapted are given as CPN models. So, the first step in the
adaptation procedure is the generation of its state space. Then, it is possible to verify and
refine it as described above.
After the execution of the supremal controllable sub-language algorithm, an occurrence
graph that is isomorphic to the original one is obtained. The only difference is that the states
that should not be reached are marked as undesirables. They are not removed from the
occurrence graph of the Petri net.
Next it is necessary to modify the input CPN model in such a way that the state graph of the
new model will be isomorphic, considering the label of each arc, to a sub-graph of the
original state graph of the input model. Once it is done, the new CPN model is generated.

Fig. 8. Adaptation of reusable models.

The adaptation technique introduced here is illustrated in Fig. 8 and the steps required to
perform the adaptation are:
1. Generate the occurrence graph of the CPN model;
2. Verify if the CPN model may satisfy the new specification by applying model checking

techniques;

In the negative case, ask for human intervention and terminate;
3. Execute the supremal controllable sub-language algorithm;
4. Adapt CPN model to generate the new occurrence graph.
Adapting the CPN model consists in adding some control information on it in such a way

that the states marked as undesirables are not reached in the new model. In the

Design/CPN, each state of the occurrence graph of a model has a unique label. Taking this

into consideration, control can be added to the CPN model by creating a new place, called

control place, which should be input and output place of all transitions of the CPN model.

The initial marking of this control place will be the label of the initial state of the adapted

Petri Net: Theory and Applications 486

occurrence graph. Every time a transition occurs, it removes the token on the control place

and puts a new one with the label of the new reached state.

The value of the new state is determined by a function that is constructed from the adapted

occurrence graph. This function receives as input the value of the token in the control place

that represents a state s in the adapted graph and the label t of the transition being executed.

The output is the label of the state s' in the adapted graph that is reached from s through the

occurrence of t. This control function should be attached to all transitions in the model, i.e.

every time a transition occurs the function is executed and the value of the token in the

control place is updated.

Finally, it is necessary to add guards to some transitions of the CPN model in order to
disable them if its execution in the current state leads to an undesirable state. Note that a
transition may be enabled or disabled depending on the value of the marking of the control

place. Therefore, if si sj belongs to the adapted state graph, sj is marked as an undesirable

state, and t models a controlled event defined for the system, a guard is added to transition t

to disable it whenever the marking of the control place is the label of si. Observe that if t

models an uncontrollable event, no guard can be added to it. However, t should always be

connect to the control place due to the fact that even if t cannot be controllable, it should be

observable.

5.1 Implementation

Before presenting the algorithm, the adaptation problem can be stated as follows:
"Given a CPN model, called CPN, and a set of behavioral restrictions described as CTL formulae, the
adaptation problem consists in the synthesis of a new CPN model, called CPNadp, that satisfies these
new restrictions taking CPN as the starting point."

Petri Nets for Component-Based Software Systems Development 487

The adaptation strategy described above is defined by Algorithm 1, which is implemented
in CPN/ML (Christensen and Haagh, 1996. Ullman, 1998), and it is executed inside the
Design/CPN tool as a loadable module.
Lines 1 and 2 define the computation of the occurrence graph (OCCGRAPH) and the
strongly connected components graph (SCCGRAPH) of the CPN model. Lines 3 and 4
define the invocations of the ASKCTL model checker and to the implementation of the
Ramadge and Wonham algorithm respectively. The other functions are defined to
manipulate the internal structures of the Design/CPN models to add the objects used to add
control to the model. In Fig. 9 it is illustrated how the adaptation can be performed for the
specification of a system.

Fig. 9. Adapted CPN model.

For this example, the component DataController (see framework on Fig. 2) is adapted in
order to limit the capacity of the output buffers, DIntBP and DlntP, in such a way that each
of them never store more than one token at a given time. This property is expressed in the
ASKCTL language by formula:

POS(NOT(MoreThanOne));

Petri Net: Theory and Applications 488

Such formula captures the notion that there is a path in the OCC graph for which the
evaluation of the function MoreThanOne is false. Such function receives as input a node of
the OCC graph and checks if the number of tokens in the places DIntBP and DlntP are greater
than one. MoreThanOne is also written in CPN/ML, and it makes explicit references to the
elements of the component DataController. This means the designer does not see the
component as a black box, and she should have some acknowledgment of the model
candidate to be reused.
The code bellow is part of the control function generated by the adaptation procedure. This
function takes the label of the current state of the CPN model as input and returns the label
of the next state. This information is used to decide whether a transition can be allowed to
fire or not.

And finally the guards of transitions DataContB and ToDataCont are added in order to
disable them when necessary. Observe that there are no guards on transitions DContOutBP
and DContOutP. This is due to the fact that there no situation in which their occurrence
leads to an undesirable state, i.e. they cannot increase the amount of tokens in places DlntBP
and DlntP.

6. Model integration
After a model is recovered from the repository, and possibly adapted, it has to be integrated
into the framework. The integration, as well as the other activities, are fully implemented
using the CPN/ML language (Christensen and Haagh, 1996) for the Design/CPN tool set.
First, the designer is asked the name of the file with the CPN model to be integrated into the

framework. Then, some functions are automatically executed to build the integration

environment, that is, the places, transitions, arcs, and its respective names, color sets, and

inscriptions. The next step executed by the algorithm is the definition of the input and

output ports in the diagram being integrated. After this step, the substitution transition is

defined, and the sockets in the superpage are associated to its respective ports, previously

defined in the subpage. The last step is to select the box with the model declarations, in the

model page, to define the color set of the ports based on the sockets colors, and to append

this information in the global declaration node.

The file selection needs the user interaction, while all other steps are fully automatic

executed. To define the algorithm some restrictions are considered. They are:

Petri Nets for Component-Based Software Systems Development 489

Unique page name;

Prefix in the color sets names indicates the page name;

Suffix in the place names indicates whether it is a port or not;

Dot-dashed line patter for the auxiliary box with model declarations;

Model declarations box must to be unique;

Declarations of the port places must be the first ones in the model declarations box.
The first restriction to be considered ensures that the page name of the integrated model is
unique, and it is the responsibility of the designer. The model being integrated must have a
prefix in its color set names with the page name. Another restriction is about port places.

The places that are ports must have a suffix IN or OUT, to input and output ports,

respectively, in its names. This restriction is to allow the algorithm to recognize which places

are ports and which type of port they are.

The last integration restriction is that in the model being integrated there must exist an

auxiliary box with dot-dashed line pattern. This box must contain all the declarations for

this page. The declaration of the ports color set must be the first ones in this box. This is

necessary to the algorithm be able to adapt correctly the color set to successfully integrate

the model.

It is important to note that it is the responsibility of the designer to ensure that the

restrictions are satisfied in order to the algorithm works properly.

6.1 Implementation
Before presenting the algorithm, the integration problem can be stated as follows:
"Given a CPN model called CPN, and a Framework called CPNFramework, the integration
problem consists in creating places, transitions, arcs, and their respective inscriptions, as well as the
hierarchy and append the declarations of CPN to the global declarations of CPNFramework to have
a new integrated model taking CPN and CPNFramework as the starting point."
The integration is implemented as defined by the Algorithm 2. Steps 2 to 7 are fully

automatic. Step 1 needs the user interaction to select the file name of the model to be

integrated.

The integration depends on the framework. Therefore, for each application domain it is

necessary to define the architecture of the system and to model it as a CPN framework. For

each domain and framework, it is necessary to implement specific functions for the

integration step of the reuse process. But this implementation has to be done just one time,

and it is used throughout the evolution of the product line in the specific domain with the

framework.

Petri Net: Theory and Applications 490

Now, it is illustrated how the integration phase of the process is performed. In Fig. 10 it is
shown an example where the DataController is integrated into the CommunicationServer model. In
this example it is possible to see part of the integration phase, because some parts are
internal to the algorithm and to the global declaration node. It is possible to see, for
example, how the sockets in the superpage are associated to the ports in the subpage, and
how a substitution transition in the superpage represents another CPN model, the page of
the component model.

Fig. 10. Integration example.

7. Use verification
Besides adaptation and integration, the specific use case of recovered models performing an
use verification step is also considered. This activity is defined in the context of this work
because when modeling based on reuse it is necessary to guarantee that the semantic of the
resulting model respects the semantics of the reused models. Some parts of the resulting
model can lead a reused model to behave in a different way than expected. This problem
can compromise the modeling activity and the facility, and flexibility that the reuse process
promotes.
The use case verification activity consists in performing model checking for the framework
with the individual models to be verified already integrated on it. To do this, the temporal
logic formulae for the properties of an individual model is specified in a file,. The model
checking is then performed in the whole model to ensure that the integrated models were
correctly used. The idea is to use the same specifications used in the recovering step, or the
specification supplied together with the model.

Petri Nets for Component-Based Software Systems Development 491

Considering that it is necessary to define a new framework for each modeling domain. The
framework can be developed without any considerations, or even violations, to the specific
functionalities of the individual models to be integrated following the reuse process.
Moreover, the models can be reused in several different domains. The interface between the
framework and the models can be changed to reflect the needs of each domain and to satisfy
the specific use alternatives of each model. Therefore, as the framework is being built the
changes in the interface can result in a wrong use case of the integrated models. Because of
the problems discussed above, it is necessary to define the use verification activity for the
reuse process. Indeed, the use verification activity is essential when building models from a
new framework.
Another justification for the definition of the use verification activity is that in the case that
no reuse candidate is found in the repository, a new model has to be built. The use
verification is also performed to validate a new model to be inserted in the repository.

7.1 Implementation
Before presenting the algorithm, the use verification problem can be stated as follows:
"Given a CPN model, called CPNFramework, and some properties of an individual component
model integrated on CPNFramework, described as temporal logic formulae, the use verification
problem consists in performing model checking to verify if the new integrated model respects the
individual properties of the integrated component taking CPNFramework and the properties as the
starting point."
In Algorithm 3 the use verification is defined. Initially, the designer must execute the
occurrence graph tool in the Design/CPN. The next step is to select the file that has the
properties specifications for the model to be verified. The algorithm executes at this point
the model checking in the framework including all the models already integrated on it. If the
properties hold in the resulting model the use verification is successful. In the opposed case
the designer receives a warning that there exist errors in this specific use case.
The steps 1 to 3 must be done by the user. All other steps are automatically executed. After
the execution, a message is shown saying whether the properties are satisfied or not.

When the SCC graph is generated and the ASK-CTL library loaded, the use verification is
performed. To do this, it is necessary to specify the properties we want to prove. At this
moment the designer is asked for the file name with the specifications. After the designer
indicates this file name, the model checking is performed.
An important task in verifying systems is to identify and define properties to be proved. As
the goal is to prove properties for the architecture and for the interface of the components,
the framework model should be used regardless the internal component details to prove
properties about the whole system. In order to do that, a technique to identify functional
system scenarios is used to define interesting properties to prove. To illustrate the scenarios

Petri Net: Theory and Applications 492

Message Sequence Charts (MSC) are used. MSCs are automatically generated during the
simulation of the HCPN model. The verification strategy defined in this work consists of the
following steps:
1. Identification of scenarios;
2. Automatic MSC generation for each scenario based on simulation;
3. Properties identification based on the MSCs and scenarios;
4. Atomic propositions and formula specifications in temporal logic;
5. Model checking.
When performing the use verification activity of the reuse process described in Section 3,
only steps 4 and 5 are done. The strategy above is a more generic approach to verify models
of systems, specifically for planning and flow properties. In the rest of this section the
verification is considered as the more general approach, but the reader must have in mind
that the use verification activity for reused models of specific components are captured by
steps 4 and 5.
Suppose that the devices send an initial signal when the system is turned on or a new device
is plugged in. Also, suppose that the system perform some task when it receives this kind of
message and send back to the device an acknowledgement, calibration, or even an
initialization message. Such scenario is illustrated in Fig. 11.

Fig. 11. Data converter flow to control signal.

When a device sends an initialization signal, the data converter sends it to the device
controller to perform the associated control tasks. Since a MSC diagram is generated based
on simulation it captures only a single execution sequence for the information flow in the
model. It might be the case that there is some situation where this expected sequence or flow
is violated. Therefore, the scenario for all possible model behavior must be verified
performing model checking to guarantee that the expected flow is always respected.
Considering again the scenario shown in Fig. 10, the property that when an initialization
message is sent by some device the flow should be through the device controller must be
provedL The following ML code fragment specifies atomic propositions and the temporal
formula to prove this property.

Petri Nets for Component-Based Software Systems Development 493

The proposition PA is true if there is a token in place lODConln of page CommServer. The

proposition PB is to true if there is a token in place DConOutDevC of page CommServer.

Therefore, the formula is true if PA is true and eventually PB is true. It means that if there is

a token in the data converter input, this token is sent to device controller input, which is the

component that implements control tasks such as initialization, calibration, and changing

devices working parameters. The evaluation of this formula to true means that this part of

the model behaves as expected for all possibilities of model execution. We can proceed with

the same reasoning to prove that the flow of information back to device also behaves as

expected for all possibilities.

The strategy illustrated above can be used for several different properties. It is used together

with the framework, and the reuse of CPN models process to promote a formal and

systematic approach for the specification and verification of systems.

8. Concluding remarks
In this chapter a component-based software development approach using Coloured Petri

Nets (CPN) was presented. Components promote the software development using building

blocks as in other engineering disciplines. In order to develop component-based systems it

is necessary to define a process.

The implementation of a reuse-based modeling process for CPN, including all the activities

in a fully automatic way was introduced. The model reuse activities considered were

adaptation, integration and use verification. For different application domains only the

integration step is affected because of the need to define different integration strategies and

a specific framework. Due to the use of the framework concept, the designer does not need

to explicitly care about the model structure.

The application of the introduced methodology for the design of dependable software is

natural in a context in which adaptation means refinement. The introduced approach is very

useful whenever the CPN model is used in order to provide control information to some

other system. The approach introduced in this work has been applied to the embedded

systems domain. The adaptability is achieved in a controlled, formal and systematic way.

Therefore, the process can be used in the context of critical and dependable systems, such as

embedded systems. The two major problems related to the software development for

embedded systems, namely specification and verification, can be effectively tackled based

on the approach introduced in this chapter.

One extension of this work is to diversify the repository. This can be done in several ways.

One way is to have several models for a domain and even several domains. Examples of

other possible domains are communication systems, and integrated circuits. Another way is

to put in the repository other kinds of artifacts like code segments, and other modeling

formalisms. Furthermore, it is also needed to be able to derive source code from the CPN

models. One possible idea to do this is to associate pieces of code (in C or Java) to the

transitions of the models. Also, distributed repositories can be considered.

Petri Net: Theory and Applications 494

10. References
[Cheng et al., 1997] Cheng, A., Christensen, S., and Mortensen, K. H. (1997). Model checking

Coloured Petri Nets exploiting strongly connected components. Technical
report, Computer Science Department, Aarhus University, Aarhus (Denmark).

[Christensen and Haagh, 1996] Christensen, S. and Haagh, T. B. (1996). Design/CPN
Overview of CPN ML Syntax. University of Aarhus, 3.0 edition.

[Clarke et al., 1999] Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. The
MIT Press, Cambridge, MA, USA.

[Clarke and Wing, 1996] Clarke, E. M. and Wing, J. M. (1996). Formal methods: State of the art
and future directions. ACM Computing Surveys, 28.

[Crnkovic, 2001] Crnkovic, I. (2001). Component-based software engineering - new
challenges in software development. Software Focus, 2(4):127-133.

[Crnkovic and Grunske, 2007] Crnkovic, I. and Grunske, L. (2007). Evaluating dependability
attributes of component-based specifications. In ICSE Companion, pages 157-158.

[Crnkovic et al., 2002] Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z. (2002).
Specification, implementation, and deployment of components. Communications of
the ACM, 45(10):35-40.

[Des, 2006] Design/CPN 4.0. Meta Software Corporation and Department of Computer
Science, University of Aarhus, Aarhus, Denmark. On-line version:
http://www.daimi.aau.dk/ designCPN/.

[Donatelli and Thiagarajan, 2006] Donatelli, S. and Thiagarajan, P. S., editors (2006). Petri
Nets and Other Models of Concurrency - ICATPN 2006, 27th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency,
Turku, Finland, June 26-30, 2006, Proceedings, volume 4024 of Lecture Notes in
Computer Science. Springer.

[Emerson, 1990] Emerson, E. A. (1990). Temporal and modal logic. In Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995-1072. Elsevier Science
Publisher B.V.

[Gorgônio and Perkusich, 2002] Gorgônio, K. C. and Perkusich, A. (2002). Adaptation of
Coloured Petri Nets models of software artifacts for reuse. In Gacek, C.,
Software Reuse: Methods, Techniques and Tools. VII International Conference
on Software Reuse, number 2319 in Lecture Notes in Computer Science, pages 240-
254, Austin, Texas (USA). Springer-Verlag.

[Gorton et al., 2006] Gorton, I., Heineman, G. T., Crnkovic, I., Schmidt, H. W., Stafford, J. A.,
Szyperski, C. A., and Wallnau, K. C, editors (2006). Component-Based
Software Engineering, 9th International Symposium, CBSE 2006, V"aster°as,
Sweden, June 29 - July 1, 2006, Proceedings, volume 4063 of Lecture Notes in
Computer Science. Springer.

[Jensen, 1992] Jensen, K. (1992). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 1 of EACTS - Monographs on Theoretical Computer Science.
Springer-Verlag.

[Jensen, 1997] Jensen, K. (1997). Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 2 of EACTS - Monographs on Theoretical Computer Science.
Springer-Verlag.

[Jensen, 2005] Jensen, K., editor (2005). Sixth Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, volume PB-576, Aarhus (Denmark). DAIMI.

Petri Nets for Component-Based Software Systems Development 495

[Jensen, 2006] Jensen, K., editor (2006). Seventh Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, volume PB-579, Aarhus (Denmark). DAIMI.

[Kleijn and Yakovlev, 2007] Kleijn, J. and Yakovlev, A., editors (2007). Petri Nets and Other
Models of Concurrency - ICATPN 2007, 28th International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency, ICATPN
2007, Siedlce, Poland, June 25-29, 2007, Proceedings, volume 4546 of Lecture Notes
in Computer Science. Springer.

[Knight, 2001] Knight, J. C. (2001). Dependability of embedded systems. In Proceedings of the
23rd International Conference on Software Engineering, page 688.4. IEEE
Computer Society.

[Knight, 2002] Knight, J. C. (2002). Dependability of embedded systems. In Proceedings of the
24th International Conference on Software Engineering, pages 685-686. ACM
Press.

[Knight, 2004] Knight, J. C. (2004). An introduction to computing system dependability. In
Proceedings of the 26th International Conference on Software Engineering, pages
730-731. IEEE Computer Society.

[Land and Crnkovic, 2007] Land, R. and Crnkovic, I. (2007). Software systems in-house
integration: Architecture, process practices, and strategy selection. Information
& Software Technology, 49(5):419-444.

[Lee, 1999] Lee, E. A. (1999). Embedded software - an agenda for research. Technical Report
UCB/ERL No. M99/63, University of California at Berkeley.

[Lee, 2002] Lee, E. A. (2002). Embedded software. In Zelkowitz, M., editor, Advances in
Computers, volume 56. Academic Press, London (UK).

[Lemos and Perkusich, 2001] Lemos, A. J. P. and Perkusich, A. (2001). Reuse of Coloured
Petri Nets software models. In Proc. of The Eighth International Conference
on Software Engineering and Knowledge Engineering, SEKE'Ol, pages 145-152,
Buenos Aires (Argentina).

[Long, 1993] Long, D. L. (1993). Model Checking, Abstraction, and Compositional
Reasoning. PhD thesis, Carnegie Mellon University.

[McMillan, 1993] McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic
Publishers, Boston/ Dordrecht/ London.

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541-580.

[Nierstrasz et al., 2002] Nierstrasz, O., Arevalo, G., Ducasse, S., Wuyts, R., Black, A. P.,
Miiller, P. O., Zeidler, C, Genssler, T., and van den Born, R. (2002). A component
model for field devices. Lectures Notes in Computer Science, 2370:200-216.

[Nierstrasz et al., 1992] Nierstrasz, O., Gibbs, S., and Tsichritzis, D. (1992). Component-
oriented software development. Communications of the ACM, 35(9):160-165.

[Peled, 1994] Peled, D. (1994). Combining partial order reductions with on the fly model
checking. In CAV '94: Proceedings of the 6th International Conference on Computer
Aided Verification, pages 377-390, London, UK. Springer-Verlag.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57,
Providence, Rhode Island. IEEE, IEEE Computer Society.

Petri Net: Theory and Applications 496

[Ramadge and Wonham, 1987] Ramadge, P. J. G. and Wonham, W. M. (1987). On the
supremal controllable sublanguage of a given language. SLAM Journal on Control
and Optimization, 25(3):637-659.

[Ramadge and Wonham, 1989] Ramadge, P. J. G. and Wonham, W. M. (1989). The control os
discrete event systems. Proceedings of the IEEE, 77(l):81-97.

[Silva and Perkusich, 2005] Silva, L. D. and Perkusich, A. (2005). A Model-Based Approach to
Formal Specification and Verification for Embedded Systems Using Coloured Petri
Nets. In: Colin Atkinson; Christian Bunse; Hans-Gerhard Gross; Christian Peper.
(Org.). Component-Based Software Development for Embedded Systems: An
Overview on Current Research Trends. Berlin: Springer-Verlag, v. 3778, p. 35-58.

[Szyperski, 1999] Szyperski, C. (1999). Component Software: Beyond Object-Oriented
Programming. Addison-Wesley.

[Ullman, 1998] Ullman, J. D. (1998). Elements of ML Programming. Prentice Hall, 2 edition.
[Valmari, 1991] Valmari, A. (1991). A stubborn attack on state explosion. In CAV '90:

Proceedings of the 2nd International Workshop on Computer Aided
Verification, pages 156-165, London, UK. Springer-Verlag.

[van Steen et al., 1998] van Steen, M., van der Zijden, S., and Sips, H. (1998). A view on
components. In Proceedings of the 9th International DEXA Workshop on Database
and Expert Systems Applications, IEEE Computer Society, Los Alamitos, California.

22

Formalizing and Validating UML Architecture
Description of Service-Oriented Applications

Zhijiang Dong1, Yujian Fu2, Xudong He3 and Yue Fu4

1Department of Computer Science, Middle Tennessee State University
2Department of Computer Science, Alabama A&M University
3School of Computer Science, Florida International University

4Department of Technology, Fuyuan High Technology Co.,Ltd.
1,2,3USA

4P.R. China

1. Introduction
Service-oriented applications, especially web systems, are self-descriptive software
components which can automatically be discovered and engaged, together with other
web components, to complete tasks over the Internet. The importance of service-
oriented application architecture descriptions has been widely recognized in recently
year. One of the main perceived benefits of a service-oriented application architecture
description is that such a description facilitates system property analysis and thus can
detect and prevent web design errors in an earlier stage, which are critical for service-
oriented applications. Software architecture description and modeling of a service-
oriented application plays a key role in providing the high level perspective, triggering
the right refinement to the implementation, controlling the quality of services of
products and offering large and general system properties. While several established
and emerging standards bodies (e.g., [5, 4, 3, 1, 2] etc.) are rapidly laying out the
foundations that the industry will be built upon, there are many research challenges
behind service-oriented application architecture description languages that are less
well-defined and understood [33] for the large number of web service application
design and development.
On the other hand, Unified Modeling Language (UML), a widely accepted object-
oriented system modeling and design language, has been adapted for software
architecture descriptions in recent years. Several research groups have used UML
extension to describe the service-oriented application’s architecture ([7, 29]). However,
it is hard to detect the system problems, such as correctness, consistency [30] etc., of the
integration of Web services without a formal semantics of web services architecture.
Currently, although a software architecture description using UML extension contains
multiple viewpoints such as those proposed in the SEI model [39], the ANSI/IEEE
P1471 standard, and the Siemens [31]. The component and connector (C&C) viewpoint
[42], which addresses the dynamic system behavioral aspect, is essential and necessary
for system property analysis.

Petri Net: Theory and Applications 498

To bridge the gap between service-oriented application architecture research and practice,

several researchers explored the ideas of integrating architecture description languages

(ADLs) and UML [8, 13, 14, 35]. Most of these integration approaches attempted to describe

elements of ADLs in terms of UML such that software architectures described in ADLs can

be easily translated to extensions of UML. There are several problems of the above approach

that hinder their adoption. First, there are multiple ways to describe ADLs in terms of UML

[24], each of which has advantages and disadvantages; thus the decision on which extension

of UML to use is not unique. Second, modifications on UML models are difficult to be

reflected in the original ADL models since the reverse mapping is in general impossible.

Finally, the software developers are required to learn and use specific ADL to model

software architecture and use the specific extension of UML, which is exactly the major

cause of preventing the wide use of ADLs. Currently, there is less work involved to apply

these methodologies to the service-oriented applications.

In this paper, we present an approach opposite to the one mentioned above and apply our

approach to the web applications, i.e. we translate a UML architecture description into a

formal architecture model for formal analysis. Using this approach, we can combine the

potential benefits of UML’s easy comprehensibility and applicability with a formal ADL’s

analyzability. Moreover, this approach is used to formally analyze the integration of web

services. The formal architecture model used in this research is named SO-SAM, an

extended version of SAM [27], which is based on Petri nets and temporal logic; and supports

the analysis of a variety of functional and non-functional properties [28]. Finally, we

validate this approach by using model checking techniques. This approach presents an

effective way of the Service-Oriented Architecture (SOA) in a logical format so that stake

holders can better use artifacts to leverage Unified Modeling Language (UML) components

in their architecture and design efforts.

The remainder of this paper is organized as follows. In section 2, we review SO-SAM with

predicate transition nets and temporal logic for high-level design. After that, we presented

our approach in section 3 and the validation of the approach is demonstrated in section 4.

Finally, we draw conclusions and describe future work in section 6.

2. Preliminaries
2.1 Overview of SO-SAM
SO-SAM [20] is an extended version of SAM [44] with the web service oriented features. SO-

SAM [20] is a general formal framework for specifying and analyzing service-oriented

architecture with two formalisms – Petri Net model and temporal logic, which is inherited

from SAM.

In addition, SO-SAM extended the net inscriptions with servicesorts and net structure with

initial and final ports that carry service triggering information. Furthermore, SO-SAM

restricted SAM connector without hierarchical architecture. Finally, SO-SAM component is

described by WSDL or XML. Also, the message in ports is defined by XML message. For the

more information, please refer to [20]. In this paper, we choose algebraic high level nets [17]

and linear time first order temporal logic as the underlying complementary formalisms of

SAM. Thus, next we simply introduce the algebraic high level nets used in our approach.

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 499

2.2 SAM
SAM [44] is an architectural description model based on Petri nets [37], which are well-
suited for modeling distributed systems. SAM [44] has dual formalisms underlying – Petri
nets and Temporal logic. Petri nets are used to describe behavioral models of components
and connectors while temporal logic is used to specify system properties of components and
connectors.
SAM architecture model is hierarchically defined as follows. A set of compositions C =
{C1,C2, …,Ck} represents different design levels or subsystems. A set of component Cmi and
connectors Cni are specified within each composition Ci as well as a set of composition
constraints Csi , e.g. Ci = {Cmi ,Cni ,Csi }. In addition, each component or connector is
composed of two elements, a behavioral model and a property specification, e.g. Cij = (Sij,
Bij). Each behavioral model is described by a Petri net, while a property specification by a
temporal logical formula. The atomic proposition used in the first order temporal logic
formula is the ports of each component or connector. Thus each behavioral model can be
connected with its property specification. A component Cmi or a connector Cni can be refined
to a low level composition Cl by a mapping relation h, e.g. h(Cmi) or h(Cmi) = Cl.
Figure 1 shows a graphical view of a simple SAM architecture model. The formal analysis
and design strategy of the SAM model on the software architecture is given in work [27].

Fig. 1. A SAM Architecture Model

SAM gives the flexibility to choose any variant of Petri nets and temporal logics to specify
behavior and constraints according to system characteristics. In our case, Predicate
Transition (PrT) net [25] and linear temporal logic (LTL) are chosen.
In summary, although our work was strongly influenced by SAM, we have enhanced the
state of the art by supporting modern software engineering philosophies equipped with
component-based and object-oriented notations and applied to web services-oriented
systems, as well as integrated with WSDL and XML.

2.3 Algebraic high-level nets
An algebraic high-level net [17] integrates Petri net with inscription of an algebraic

specification defining the data types and operations. Instead of specifying a single system

Petri Net: Theory and Applications 500

model, an algebraic Petri net represents a class of models that often differ only in a few

parameters. Such a compact parameterized description is unavoidable for modular

specification and economic verification of net models in the dependable system design.

Generally speaking, an algebraic high-level (AHL) nets N = (SPEC, A, X, P, T,W+,W-, cond,
type) consists of following parts:

An algebraic specification S PEC = (S,OP, E), where SIG = (S,OP) is a signature, and E
is a set of equations over SIG;

A is an S PEC algebra;

X is an family of S-sorted variables;

P is a set of places;

T is a set of transitionssuch that P T = ;

Two functions W+,W- assigning to each t T an element of the free commutative
monoid1 over the cartesian of P and terms of SPEC with variables in X.

cond is a function assigning to each t T a finite set of equations over signature SIG.

type is a function assigning to each place a sort in S.
Fig. 2 shows an algebraic high-level net of sender-receiver. Its algebraic specification is

defined as following:
SPEC =

sorts: nat, bool, data, queue

opns: err: data

nil: data

inq: data queue queue

deq: queue queue

first: queue data

empty: queue bool

length: queue nat
eqns: deq(nil) = nil

deq(inq(x,nil)) = nil
deq(inq(x,inq(y,q))) = inq(x,deq(y,q))
first(nil) = err
first(inq(x,nil)) = x
first(inq(x,inq(y,q))) = first(inq(y,q))
empty(nil) = true
empty(inq(x,q)) = false
length(nil) = 0
length(inq(x,q)) = length(q) + 1

From the figure, we can see transition send is enabled if place p1 contains a data and the

queue in place p has space. As a result of the firing of send, the data is added to the queue.

Whenever place p4 has a token and the queue in p is not empty, transition receive is

enabled. When it fires, the first data in the queue is output to place p3 and the first data in

the queue is removed.

1 A set M with an associative operation _ and an identity element for that operation is called

a monoid. A commutative monoid is a monoid in which the operation is commutative. A
commutative monoid is a free commutative monoid if every element of M can be written
in one and only one way as a product (in the sense of _) of elements of subset P M.

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 501

Fig. 2. Sender-Receiver Model by Algebraic High-Level Net

2.4 Linear temporal logic
Temporal formulas are built from elementary formulas using logical connectives and

(and derived logical connective , , and , universal quantifier (and derived existential

quantifier), and temporal operators always , future , and until U.
The semantics of temporal logic is defined on behaviors (infinite sequences of states). The
behaviors are obtained from the execution sequences of petri nets where the last marking of
a finite execution sequence is repeated infinitely many times at the end of execution

sequence. For example, for an execution sequence M0, ,, Mn, the following behavior = <<
M0, …, Mn, Mn, … >> is obtained, where Mi is a marking of the Petri net.

Let = << M0, M1, … >> be the behavior, where each state Mi provides an interpretation for

the variables mentioned in predicates. The semantics of a temporal formula p in behavior

and position j is denoted by (, j) j= p. We define:

For a state formula p, (; j) |= p Mj |= p;

(; j) p (, j) p;

(; j) p q (, j) p or (, j) q;

(; j) p , (, i) p for all i j;
(; j) p , (, i) p for some i j;
(; j) pUq i j : (, i) q, and j k <I, (; k) p.

2.5 Component and connector view
Component and connector view was one of the four views proposed in [31, 32], which is
described as an extension of UML. The component and connector view describes
architecture in terms of application domain elements. In this view, “the functionality of the
system is mapped to architecture elements called components, with coordination and data
exchange handled by elements called connectors.” [31]
In the component and connector view, components, connectors, ports, roles and protocols
are modelled as UML stereotyped classes. Each of them is represented by a special type of
graphical symbol, as summarized in Fig. 3. A component communicates with another
component of the same level only through a connector by connections, which connect
relevant ports of components and roles of connectors that obey a compatible protocol. In
addition to the connections between components and connectors, ports (roles, resp.) of a
component (connector, resp.) can be bound to the ports (roles, resp.) of the enclosing

Petri Net: Theory and Applications 502

component (connector, resp.).
In order to present our approach we use an image processing example used in the
distributed web application that was adapted from [31]. Fig. 4, 5, 6 from [31] shows a
concrete and complete component and connector view, which is the running example of this
paper. Fig. 4(a) is a configuration of ImageProcessing component. Fig. 4(b) shows another
aspect of the configuration. Both of them are UML class diagrams and model different
aspects of the system. From these two figures, we can see the component ImageProcessing
contains two components: Packetizer and ImagePipline, and one connector Packet-Pipe. The
ports of component ImageProcessing, raw-DataInput, acqControl, and framedOutput are bound
to ports rawDataInput of component Packetizer, acqControl and framedOutput of component
ImagePipeline respectively. Component Packetizer communicates with component
ImagePipeline through connector PacketPipe. Component Packetizer and connector PacketPipe
is connected by a connection between port PacketOut and role source, which obey (conjugate)
protocol DataPacket. Component ImagePipeline and connector PacketPipe is connected by a
connection between port PacketIn and role dest, which obey (conjugate) protocol
RequestDataPacket. Being a conjugate means that the ordering of the messages is reversed so
that incoming messages are now outgoing and vice versa.

Fig. 3. UML Extension for component and connector View

Fig. 4. alone is not enough to illustrate component and connector view since only
components and connectors of the system and corresponding connections among them are
demonstrated. Additional diagrams are needed to define protocols and functional behavior
of components and connectors. A protocol, represented by a stereotyped class, is defined as

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 503

a set of incoming message types, a set of outgoing message types and the valid message
exchange sequences. The valid message exchange sequence is represented by a sequence
diagram. Fig. 5 shows the definition of RawData, DataPacket, and RequestDataPacket
protocols. From Fig. 5(c), we can see protocol RequestDataPacket has one incoming
message: packet(pd), and three outgoing messages: subscribe(c), desubscribe(c), and
requestPacket(c) where c; pd are parameters of messages. In order to communicate with
object B based on protocol RequestDataPacket, object A first sends object B a message
subscribe(c) where c indicates the sender A. Then a message requestPacket is sent to B to
request a packet. Later, object A may receive a packet pd from B. The symbol “*” in the
figure indicates that the pair of message requestPacket and packet(pd) may occur many
times. Finally, object A sends a message desubscribe(c) to B to stop requesting packet.

Fig. 4. Structural Aspect of Component and Connector View

The behavior of components/connectors may be described formally by UML statechart
diagrams, for example the behavior of component Packetizer and connector PacketPipe in
Fig. 6. Statechart diagrams describe the dynamic behaviors of objects of individual classes
through a set of conditions, called states, a set of transitions that are triggered by event
instances, and a set of actions that can be performed either in the states or during the firing
of transitions. From Fig. 6(b), we can see the statechart diagram of connector PacketPipe
contains two states: waiting and “assign packet to ready client” and seven transitions. When
connector PacketPipe receives an event subscribe(c), it invokes its operation AddClient(c)
although we do not know exactly the functionality of this operation. When the connector
receives an event packet(pd), it saves the packet pd. And the response of connector
PacketPipe to an event requestPacket(c) is up to the condition: the client c has read current
packet or not. If yes, the connector treats it as a request for next packet; otherwise it sends
current packet to client c through an event c.packet(pd). If all clients have read current
packets, the connector updates its packet queue and enter state ”assign packet to ready

Petri Net: Theory and Applications 504

client” in which the connector sends current packet to clients that has submitted their
requests. If all requests are processed, the connector returns to state waiting. As we can see
from this figure, connectors and components mainly handle incoming messages of protocols
they obey (conjugate).

Fig. 5. Protocols in Component ImageProcessing

2.6 Service oriented software architecture model
Definition 1 (Web Service) A web service is defined by a service component (composition of sub-
services) as a tuple such that S N =< SID, f, Pt, ST > where

SID is the service identification. When a service component is a composition of sub-services, each
sub-service has its service id and service component’s id.
f is SO-SAM structure mapping function.
and Ptini Ptf nl = Pt. A service net does not have internal ports compared to service
component, i.e., Ptinternal = .
S T is a set of service constraints.

The behavior of each web service S i in SO-SAM is defined by a service net SN, which must
starts when the initial ports Ptini has messages and ends when the final ports receive
messages. The properties are defined using a set of temporal logic formulae ST. The relation
between service net and the behavior model of a service component can be summarized as

A service net SN is a subset of the behavior model of a service component S NCm, i.e., S
N _ S NCm. A service net can be a single activity of a service component that describes
only a sub-service of that service component, or a composite service of all subservices of
that service component. The relation between a service net and other service nets of a
service component can be publishing, binding, discovery, integration, etc.

Fig. 6. State Chart Diagram of Elements

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 505

Ports of a service net is a subset of ports of its service component, i.e., Pt PtCm.

If a service net SN is the behavior model of a service component SNCm, then the service

component does not have internal ports, i.e., Ptinternal = .

Set of service constraints of a service net ST is a subset of service constraints of its

service component, i.e., ST STCm.
Definition 2 (SO-SAM) Service-Oriented Software Architecture Model, SO-SAM, is an extended
version on the SAM, and defined by a set of service components CSm , a set of connectors Cn, a set of
service constraints CSs and a structure mapping function f , i.e., SO-SAM , < CSm,Cn,CSs >.

2.7 Net specification
In the SO-SAM model we define three different group of sorts for three purposes: service
description and publishing (SDP), service communication and binding (SCB), and service
discovery or finding (SDF). In the service description and publishing (SDP) group, we
identify four sorts in the net specification of a PrT net as portSpec, msg-Parameter,
connection, and operation. Message is to specify the data identification flow through a port.
Operation is to describe the operation can be imposed on messages. PortSpec is used to
specify the parameters and functions of the service output from a port. Connection is to
describe the protocol that used for the data flow through the port (which can be described
by SOAP or HTTP). This group of sorts can be mapped to WSDL specification in the Table 1.

Table 1. Mapping Relation between SDP (in SO-SAM) and WSDL

In the service discovery or finding (SDF) group, we concern two participants – service
provider (SP) and service registry and broker (SR). Service provider has to have
identification, contact info, category, service description, and so on. Service registry
provides access point, communication protocol, and information about the company itself,
including contact information, industry categories, business identifiers, and a list of services.
Moreover, the binding process can be defined on the above specification. Let us use symbol
S DF =< SP,SR > denote all possible sorts using for the SDF group. After identifying these
sorts, we can map a sort to a tag in the UDDI specification. However, reverse mapping from
UDDI tags to SDF sorts is impossible. Because some tags such as bindingTemplate need
functional description instead of signatures.
The behavior model in a SO-SAM refers to a Petri net, in this paper we use PrT net. The
binding can be formally specified by the constraint function R. Checking the sat isfiability of
R is to checking the each data in a message, data type matching, protocol conformation, and
so on between web services from requestor and provider. Since a web service may have
multiple binding templates, a mutual exclusion choice occurs.
The group of service communication and binding (SCB) is more related to the
communication protocol (SOAP/HTTP). SOAP is a simple XML based protocol to let
applications exchange information over HTTP. The communication protocol constructs the
connection between parties. The specific sorts for the protocol signature can be message

Petri Net: Theory and Applications 506

definition of header, body and fault, encoding style etc..
All the above three groups are called service sorts SS = {SSDP, SSCB, SSDF}. For instance,
SName, SDesc, portS pec, message,URL are service sorts, where S Name is the name
(identification) of the service, S Desc is the service description, URL is the Uniform
Resource Locator. We use OPS S to denote the operations on the service sorts. We call the
sorts defined in SAM model data sorts SD.
The extension on the signature of the sorts and operations is very convenient for the
specification and modeling of the web services architecture, binding, substitution, and the
composition of sub-services and their integration of legacy code.
Each architectural component is either statically or dynamically realized by a web services
component. Architectural components are connected to each other via XML-based message
passing through Simple Object Access Protocol (SOAP) [3]. The behavior of the connection
is specified by SAM architectural connectors. The message passing mediates the interactions
between architectural components via the rules that regulate the component interactions. In
our model, connectors carry the tasks of service compositions. Thus our model supports
both executable and dynamic web service compositions.
Ports in each component are either input ports or output ports. In the extension to web
applications, ports are used to transfer messages among services, same as in SAM model.
However, we regulate messages as a tuple with the information of service name, service
description, location, URL, etc., so that the message carries service information.
A component is composed of the above ports that carry service information, behavior
description and property specification. The behavior of a component is defined by a Petri
net, which is called a service net. In the service net, tokens in a place has to have specific sort
to be consistent with the above port and message definition. A basic component is one that
does not have sub-components and non-empty connectors, otherwise, it is a composition. A
composition is a composite service. The relation between a composition and its
subcomponents and connectors is defined by a mapping function f . Mapping function f is a
set of maplets from super component(connector)’s identities to sub-
components’(connectors’).
Service integration and composition can be done through connectors. Connectors have the
same definition as in SAM. The Petri net for a connector is a regular Petri net that describe
the integration and composition of services. A connector cannot be a composition.

2.8 Net structure
There is a relation between the architecture elements of a component/connector and the
elements in its behavior model (a PrT net). For each port of a component/connector, we
have a corresponding one place defined in its PrT net. The sort of the port is same as the sort
of the corresponding place. The relation between port and place can be defined as a port-

place mapping function as follows.
Definition 3 (Port-Place Mapping Function) The behavior mapping function _ is a mapping
relation from the set of ports of a component or a connector Ci to the set of places of its behavior
model, a PrT net Ni. Let Pt be the set of ports, and P be the set of places in the behavior model, we
simply use Pt and P to represent the set of identifications of ports (places), we have, : Pt P,

1. =
pi P: pti Pt

(p): (pti) (Pt)

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 507

2. If there is a message sent out from a port (pti), M’(pi) < M(pi), where f(pti) = pi; if there is
a message received in a port (pti), M’(pi) > M(pi), where f(pti) = pi.

Obviously, this port-place mapping relation is also suitable for the SAM model. The port-

place mapping function connects a component/connector with its behavior model
explicitly.
The behavior model of a component/connector of a SOSAM model, a PrT net, is called a
service net. A service net is different from the behavior model of SAM in following aspects:
1. We identify the initial places and final places for a service net.
2. The set of sorts includes both service sorts and data sorts, i.e., S = SS, SD.

3. The behavior mapping function defined a relation between a components/connector

and its service net and is reversible. In other words, function -1 exists.
Definition 4 (Port) Ports in SO-SAM are communication interfaces of each service and graphically
represented by semi-circles. Messages in ports are modeled by tokens. The sort of each token is defined
by two parts, service sort SS and data sort SD. Data sort are the sorts defined in SAM [26].
Thus we have sort S of a port is defined by S SS, S D
A port may have a PrT net that associated to it by a function : pti Npti , where Npti is a PrT net
that used to describe the operations that can be performed on the sorts of the port pti.
Service sort S S is a service description, query or binding requestor, which can include a
service name, operation, description, URL, etc.. Service sort must be carried by all tokens in
the service net. A token may be described or represented by a PrT net since it carries service
information and some service information includes both messages and functions. If the port
has an associated net N, the net is actually used to describe some of the tokens or some sort
of the port. The net can be a service net. A service net is a PrT net that carries service
characters, and is defined as follows.

Definition 5 (Service Net) A service net is a Petri net defined by 8-tuple, SN < P, T, F, , R, L,
M0,Mp >, where

P, T are finite set of places and transitions; F is flow relation: P T T P.
 is sort assignment: P (S) ([26]), but sorts S are extended to carry service information.

The final ports Ptfnl of a service net communicate with a set of initial ports Ptini of another
service net through a connector.
R (guard function), L (label function), and M0 (initial markings) follow the definitions in the
paper [26].
Mp is place mapping function, Mp : Pt P

where each sort must contain SS . Mapping function Mp associates each port to a place in the service
net. It is a one-to-one mapping function, because in the SAM model the place and ports share the
same name, and two ports between upper level and lower level share the same name. It is also an onto
mapping function because all places that are identified as communicators to the other service nets will
not be increased for a basic service component.

2.9 Architecture structure
We first give the definition of the architecture structure mapping function as follows.
Definition 6 (Architecture Structure Mapping Function) The architecture structure mapping
function is defined as a relation from a composition to the element set of its subelements. We use Ci to
denote a composition, Cmi and Cni denote the component and connector, PtCi , PtCmi , and PtCni

denotes the set of ports in a composition, component, and connector respectively. structurally, we
have

Petri Net: Theory and Applications 508

1.

2. (PtCi) (PtCmi PtCni).
The architecture structure mapping function defines the structure relation between
composition and its subcomponents and connectors. The function has two parts, one
regulates the components and connectors in the composition, and another maps the ports of
the composition with those of components and connectors. The constraints mapping can be
considered in the behavior mapping. Since the behavior description of SAM architecture
model is available in the bottom level of the hierarchy, we inherit this character from SAM
directly without any update. Some service sorts SS can be more abstract in the higher level
abstraction. The result services after discovery and matching of these service descriptions
can be satisfied with the service from requestor if there is more detailed information
provided and discovered.
Definition 7 (SO-SAM Structure Mapping Function) The mapping function f defined for SO-
SAM model between two levels is the composition of behavior mapping function and architecture
structure mapping function, i.e.,
f = .
Considering the fact that behavior description is only available in the bottom level (which is
inherited from SAM), this structure mapping function is also suitable for the mapping
relation of SAM model.
Definition 8 (Service Component) Each component Cmi in SO-SAM is defined by a tuple,
component name CmiID, mapping function f , set of ports Pt that is composed of the set of input ports
PtI and the set of output ports PtO, the set of initial ports Ptini Pt, the set of finial ports Ptf nl Pt, a
service net SN, and a set of temporal logic formulae ST, e.g., Cim < Cim ID, f, Ptini, Ptf nl, Ptinternal,
SN, S T >.
Initial ports are represented by dash line bold half circles, and final ports are represented by
solid line bold half circles. Each set of initial ports in a service component must connect to a
set of final ports in another service component through a connector, and vice versa.
In the component, each service must be started from one set of initial ports, but can be
ended at multiple finial ports separately. This is because a service can reach different final
states but starts at the same condition.
Connector of SO-SAM model is used to but not limited to describe the following activities:
1. Service publishing. This is an advertisement process of a service provider. The

descriptions of a service or update of a service description is disclosed to possible
requestors. A locating of possible matching service can be done afterwards.

2. Service discovery. We consider service discovery and finding to be the process of
locating candidate service providers. Service repository maintains lists of service
providers categorized according to proprietary classification schemes. Service requestor
located the service based on the request and service description provided. Temporal
and spatial availability for all requests is demanding for a service. Request refinement
does not belong to this process.

3. Service binding. Service binding is a process that based on the discovery a connection
between provider and requestor is established. A protocol for the negotiation is used
after discovery.

4. Service substitution. Substitution uses accurate service descriptions to allow rational

 =
Cmi Cni, if Cmi, Cni Ci

PtCmi PtCni, if PtCmi, PtCni Cmi Cni Cmi, Cni Ci

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 509

optimization of sub-services within a composition. Assume we have two services A and
B, Service A may be an electronic new report and service B an electronic weather report.
If we try to outsource them then difficulties arise. A may only be offered in the USA
and B in Chile. Composition of them becomes useless if you live in iceland; and pretty
useless too if A is available on weekdays and B only on weekends. This raises the
notion of substitutability in the context. The subsititution one function F by another G
can be done if G has weaker preconditions and stronger postconditions. Some rules can
be established for service substitution by weakening preconditions.

5. Service integration. The majority of businesses today are in an extremely dis-integrated
state. Years of piecemeal IT development and investment have led to a situation
common in all but the smallest organizations where there are numerous non-
compatible systems. Many have been developed on different platforms using different
languages. Thus organizations have created numerous barriers within their own IT
infrastructures. Web services define a transport method for processes defined in XML.
At the core of the Web service revolution is their ability to allow code to speak to code
without human intervention. In the SO-SAM model, the connector provides the formal
specification that connects service components with different interfaces. The constraint
function R of the transitions in a connector defines the required messages in the input
ports and describes the messages flow to the output ports.

6. Service composition. Compositions produces tightly-coupled integration between sub-
services to ensure that value is added over the sum of the individual service. The
question is: if we have two trusted services A and B, after composition of A and B, we
have a service C, is this service C trustable? Simply, the question is the composition of
sub-services can still hold the properties of its sub-services or not. Connectors in the SO-
SAM model can formally describe the composition of subservices, thus it is possible for
the formal verification of composed service against service properties.

3. Transformation from component and connector view to SO-SAM
Component and connector (C&C) view [42] has been the main underlying design principle
of most ADLs [36], which is also a major view type in several software architecture
documentation models supporting multiple architecture views such as SEI [39] and Siemens
[31]. C&C view is essential and necessary for system dependability analysis since it captures
a system’s dynamic behavioral aspect. SO-SAM model and component and connector view
share a set of common terms such as components, connectors, and ports. Therefore it is
straightforward to map them to the counterparts in SO-SAM. However, due to the meaning
difference and various formal methods to describe elements’ behavior, the concrete
mapping procedure is not that easy. This section shows a method to construct a complete
and executable SO-SAM model from a component and connector view.
A component (connector, resp.) in component and connector view is mapped to a service
component (connector, resp.) in SO-SAM model. It is easy to understand from structural
aspects. However, the behavior mapping is complex since different formal methods are
used to model behavior. UML statechart diagrams are used to model behavior in
component and connector view, contrasting with Petri net model in SO-SAM. Fortunately,
our previous work [12] showed that it is possible to transform statechart diagrams to Petri
net models. In UML statechart diagrams, method invocations and relationships between
variables are implicit in the elements’ structure. For example, in Fig. 6(a), the conditions

Petri Net: Theory and Applications 510

PacketNotFull and PacketFull, and relationship between variable rd and pd is not illustrated
explicitly. However, such information has to be expressed explicitly in order to obtain a
complete and executable Petri net. In order to bridge the gap, we utilize algebraic high level
nets [17], a variant of high level Petri nets, to model behavior of elements. This method is
possible because SO-SAM model does not specify a particular Petri net model as its formal
foundation. We use algebraic specifications [15] to capture structures
of elements obtained from UML statechart diagrams because algebraic specifications are
abstract enough that no additional information about implementation detail is assumed, and
they are also powerful enough to represent implied information about components or
connectors. Although the work [12] is for SAM architecture model, we can still use it and
adapt it to the SO-SAM model since they share the same net structure. The main differences
exist in the service sorts in the net specification, initial and final ports in the net specification
and net inscription. The following rule gives us a general idea to derive components or
connectors in SO-SAM.
Rule 1 (Component and Connector) A Component (connector, resp.) in component and connector
view is mapped to a service component (connector, resp.) in SO-SAM according to following steps:
Step 1 An algebraic specification, which specifies the abstract interface of the component (connector,

resp.), is generated from a UML statechart diagram. The idea to construct algebraic
specification is described later.

Step 2 Construct a complete and executable algebraic high level net from the UML statechart diagram
according to the approach in [12] and the generated algebraic specification. There is a special
place in the generated algebraic high level nets that contains element information and provides
necessary information for transitions.

Step 3 A component (connector, resp.) with a UML statechart diagram in component and connector
view is mapped to a component (connector, resp.) with an algebraic high level net in SO-
SAM.

Step 4 A composited connector in the component and connector view is flattened and mapped to a
connector in the SO-SAM model.

While it is inherently impossible to prove the correctness of the transformation, we have
carefully validated the completeness and consistency of our transformation rule. First, from
structure point of view, concepts of components or connectors in component and connector
view and SO-SAM are the same. Both of them support component composition, binding
with enclosing element, and they can have their own behavior and communication
channels–ports or roles. Therefore, the main functionalities of components or connectors in
component and connector view are presented in SO-SAM counterparts. Second, algebraic
specification can be used to specify modular, more specific classes [16]. Therefore, the
implied information of statechart diagrams, i.e. the operations and their properties can be
correct and fully specified by algebraic specifications. Since functions of algebraic
specifications only define what to be done, no additional implementation information not
implied in statechart diagrams is introduced. Finally, our previous work [12] and others
work [41] have shown that the behavior described by statechart diagrams can be fully
captured by corresponding Petri nets.
The idea to obtain algebraic specifications from UML statechart diagrams is as follows:

For each element (component and connector), its algebraic specification defines a sort,
called element sort, like packetizer for component Packetizer and packetpipe for connector
PacketPipe. If a data type of parameters is not defined by a primitive algebraic
specification, a new algebraic specification is imported. Such a imported algebraic

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 511

specification generally defines only one sort, like Packet for component Packetizer. Each
action of transitions in a UML statechart diagram is considered as a function such that:

action name : element sort parameters sort list element sort. Here parameters sort list
includes service sorts as well. For a guard condition of a transition, a function from
element sort (with necessary parameter sorts) to boolean is added.

For each variable that is defined in the element (i.e. the variable is not defined in the

related events), a function like GetVariableTypeName : element sort element sort
VariableType2 is specified. The properties of these functions can be constructed as
equations if they are implied in the UML statechart diagrams, like guards PacketNotFull
and PacketFull cannot hold at the same time.

From the above idea, we know that the algebraic specification for component Packetizer
contains four functions, two of them correspond to guard conditions_.PacketNotFull(),
_.PacketFull() : packetizer bool; and one is obtained from actions: _.AddRawData() :

packetizer rawdata packetizer, and one from undefined variable: _.GetPacket() :

packetizer packetizer packet. In these functions, “_” is used to indicate a variable
placeholder, bool is a sort defined in primitive algebraic specification Bool [15], and sorts
rawdata and packet are defined in imported algebraic specifications Packet and RawData
respectively, which are defined by users and normally only one sort (rawdata, packet resp.)
is specified. Appendix A gives complete algebraic specifications of component Packetizer
and connector Packet-Pipe obtained from Fig. 6.
With these algebra specifications, we can generate corresponding algebraic high level nets
according to Rule 1. Fig. 7 shows the generated Petri nets from UML statechart diagrams in
Fig. 6. Each generated Petri net has three special places: RECV containing messages from
environment, SEND temporarily storing messages generated for its environment, and the
place whose name is the same as its element’s name (here, Packetizer and PacketPipe resp.),
holding the abstract structural information of the element. In additional to these three
places, there is a corresponding place indicating current status for each state in statechart
diagrams, for example, places idle,waiting, init packet and add data for the same name states.
A special token in these places indicates if the corresponding state is active. Place RECV
sends events from external environment to places that are interested in the event. In Fig. 7(a)
place idle and waiting are interested in event dataReady and rawdata(rd) respectively. If
state idle is active and an event dataReady is available, transition t215 is fired. As a result, an
event requestData is added to place SEND, and place waiting becomes active. State add data
becomes active if state waiting is active and an event rawdata(rd) is available. At the same
time, the token in place packetizer is changed to another one through operation
.AddRawData() of algebraic specification Packetizer.
Components and connectors in component and connector view are connected through a
connection if they are enclosed directly by the same element and the corresponding ports
and roles obey (conjugate) a compatible protocol. Therefore, the mapping from ports or
roles in component and connector view to ports in SO-SAM is actually the mapping from
relevant protocols describing behavior of ports or roles to ports of SO-SAM
components/connectors. However, ports in SO-SAM models have their own characteristics.

2 This is actually the abbreviation of two functions: GetVariable : element sort VariableTypes

and UpdateElement : element sort element sort since these two functions are invoked
sequently in our example.

Petri Net: Theory and Applications 512

A port in SO-SAM model is a place that has either no incoming arcs or no outgoing arcs. In
other words, the communication between ports is unidirectional. Therefore, a protocol in
component and connector view, which consists of a set of incoming message types, a set of
outgoing message types and the valid message exchange sequences, is mapped into a set of
interface places (To avoid confusion, we use interface places to refer to ports in SOSAM

model). The type of tokens in an interface place is OID OID MESSAGE_TYPE, where
OID is a set of unique identification number for each instance of the element, which specifies
sender and receiver of a message, and MESSAGE_TYPE is the set of message types of the
protocol (Here we ignore the parameters of messages for brief). Rule 2 specifies how to map
a port/role in component and connector view to interface places in SO-SAM.

Fig. 7. Behavior Model of Elements

Rule 2 (Ports and Roles) A port (role, resp.) of a component (connector, resp.) in component and
connector view is mapped to a set of interface places of the corresponding component (connector,
resp.) specified by Rule 1: For each protocol that the port (role, resp.) obeys (conjugate), each kind of
incoming messages is mapped to an incoming (outgoing, resp.) interface place of the component
(connector, resp.) with the name of the message type; and each kind of outgoing messages is mapped
to an outgoing (incoming resp.) interface place of the component (connector, resp.).
Initial and final ports can not be obtained from the UML architecture description directly. We
provided two possible solutions:

One is extending C&C view with new UML stereotypes initialPort and finalPort. This would
bring a direct transformation from C&C architecture to SOSAM. The problem is this also brings
more complexity into UML architecture description.
Another is manually adding the specification for these ports according to the system architecture
description. For instance, we can say dataReady and RawData as initial port and frameout and
final port in our case.

A port (role, resp.) of an element is actually –roughly speaking– a “channel” that forwards
messages of specified types either from element itself to environment, or from environment
to element. In Rule 2, a token represents an occurrence of an message of specified type, and
the direction of a message is specified by the place containing the token – incoming or
outgoing. Therefore, the mapping in Rule 2 conserves the main structural features of
ports/roles and related protocols, and the reverse mapping exists, which ensures the

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 513

correctness of the rule.
The behavior of a protocol, defined by UML sequence diagrams to demonstrate valid
message exchange sequences, actually specifies possible sequences of relevant messages
along time axle. A sequence of protocol messages illustrates their occurrence order, which
can be specified by a set of temporal constraints, the basic predicates of which are the names
of interface places obtained through Rule 2. For example, from Rule 2, we know port
RawData of Packetizer is represented by two incoming places dataReady and rawData, and
one outgoing place requestData. We use predicate dataReady(<sid, rid,mdataReady>) to
describe if place dataReady contains a token representing an event dataReady that is sent to
rid by sid.
In order to construct temporal constraints, we consider two elements communicating with
each other through a protocol, for example RawData. First we only consider a pair of
adjacent events, for example DataReady and requestData. For this pair of events, it means if
an event DataReady occurs, then an event requestData must occur some time later, which is
described by a temporal formula:

<sid,rid,md>, (dataReady(<sid, rid,md>) requestData(<sid, rid, mr>)) (1)

However, this temporal formula cannot reflect the situation implied in the sequence
diagram of the protocol: no other events of the protocol can occur between events
dataReady and requestData. In order to describe this implied property, we have a
reasonable assumption at architecture level that the communication media is reliable, no
message is lost and no need to resend a message. Therefore, another temporal formula is
introduced to address this missing situation:

<sid,rid,md>, (dataReady(<sid,rid,md>) ((dataReady(<sid,rid,md>))

requestData(<rid,sid,mr>) rawData(<sid; rid;mrd>)) U requestData(<sid,rid,mr>)) (2)

This temporal formula means if an event of dataReady occurs, no other events such as
dataReady, requestData and rawData can occur before the first event of request-Data.
Predicate dataReady(<sid, rid,md>) is used to guarantee that the temporal formula is
satisfied at the time the event dataReady occurs. Therefore, given a sequence diagram of a

protocol with n messages, we can obtain (n - 1) 2 temporal formulas.
In addition to the consideration of one session of a protocol, we have to inspect the
relationship of two adjacent sessions of the same protocol between two objects, i.e. one
session can start only after the previous session ends. Such a relationship is specified by a
temporal constraint:

<sid,rid,mrd>, (rawData(<sid,rid,mrd>) (dataReady(<sid,rid,md>) requestData

(<rid,sid,mr>) (rawData(<sid,rid,mrd>))) U dataReady(<sid, rid,md>)) (3)

Although we think the above generated constraints are strong enough, there is still one
more case we ignored: the first session of a protocol in a running system may starts with any
messages but the first message. For example, a session of protocol RawData starts with
message dataReady, and then obeys relevant part of the sequence diagram. We can see this
session satisfies the above temporal formulas, but conflicts with the behavior of the protocol.
Such a case can be avoided in three different ways, and the choice of them is up to users.
One is to introduce a temporal predicate basetime that holds only at the time “zero”, and a

Petri Net: Theory and Applications 514

new temporal formula:

(basetime (dataReady(<sid, rid,md>) requestData(<rid, sid, mr>) rawData

 (<sid, rid, mrd>)) U dataReady(<sid, rid, md>)) (4)

The second method is to introduce a past time operator such as “eventually in the past”. The
final way is to prove that system structure guarantees that such case cannot happen.
Thus, from the above discussion, a sequence diagram for a protocol is mapped to a set of
temporal constraints. Appendix B shows the full property constraints derived from the
sequence diagrams of protocols RawData, DataPacket and RequestDataPacket.
The following rule is used to construct a set of constraints for components or connectors
according to the above discussion.
Rule 3 (Constraint) For each protocol that a port (role, resp.) obeys (conjugate), a set of constraints,
generated from the corresponding sequence diagram according to the above discussion, is added to the
property specification of corresponding components (connectors, resp.) . When a constraint is added
to a component (connector, resp.), sid or rid in tokens (the choice is up to the direction of
corresponding message) is substituted by the actual identification number of the component
(connector, resp.) since the component (connector, resp.) can only receive messages sent to itself.
A sequence diagram of a protocol specifies possible message communication sequences.
However, it is impossible to limit the firing sequences of transitions in Petri nets to meet
specified occurrence sequences of tokens in places. Although we cannot specify the firing
sequences of transitions, but we can prove that if each possible firing sequence meets the
behavior of a protocol. From the above discussion, we can see the generated set of temporal
formulas exactly realizes the behavior of a protocol – the message sequences. By adding
these temporal formulas as property specifications to components/connectors obeying the
protocol, inconsistencies between behavior of elements and protocols can be easily detected.
Since the behavior mapping in Rule 1 is complete and consistent, we know the detected
inconsistencies also exist in the original model, i.e. Rule 3 is complete and consistent.
We may obtain a component (connector, resp.) with a behavioral model, and related ports
and constraints according to Rules 1, 2 and 3 respectively. Next task is to get a complete
component or connector, i.e. ports of a component or connector has to be integrated with its
behavior model. Rule 4 is used to guide such a procedure, and Rule 5 establishes the
connection between components and connectors.
Rule 4 (Integration) The interface places, i.e. ports of a component (connector, resp.) in SO-SAM
are integrated into its behavior model with the previous generated algebraic high level nets according
to the following steps:
Step 1 Each incoming interface place is connected to place RECV through a transition, firing of

which transmits tokens in the incoming place that are sent to the instance of component or
connector to place RECV unconditionally.

Step 2 Each outgoing interface place is connected to place SEND through a transition, which
forwards tokens of a special type in place SEND to the outgoing place.

Rule 5 (Connection) From Rules 2 and 4, if there is a connection between ports of a component and
a role of a connector, then generated behavior models of the component and connector share a set of
places that corresponds to the protocol they obey (conjugate). Therefore, to establish the connection
between a component and a connector in SO-SAM, we merge these shared interface places because an
incoming (outgoing, resp.) interface place in the component has an outgoing (incoming, resp.)
counterpart in the connector such that they contain messages of the same type, and vice versa.

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 515

In component and connector view, relationships between ports and behaviors are not
specified explicitly. A port forwards incoming messages to the queue of the component/
connector, which provide events for its behavior – the statechart diagram. The statechart
diagram sends messages to its environment through a port. In Rule 4, place SEND serves as
output queue and place RECV is input queue. The forward action is represented by the
firing of transitions connecting place SEND, RECV and other interface places. Therefore
Rule 4 captures the communication between ports and the corresponding behaviors in
component and connector view.
Due to the space limitation, we cannot specify the transformation of binding and
multiplicity. However, such transformations are similar and straightforward. Fig. 8 shows
the final result of generated SO-SAM model from the running example. In order to give a
concise description, algebraic specifications and internal parts of behavioral models are
omitted.

Fig. 8. ImageProcessing in SO-SAM

In Fig. 8, components, for example component Packetizer and component ImageProcessing
are represented by solid rectangles, while connectors such as PacketPipe are represented by
dashed rectangles. The Petri nets enclosed by rectangles are the behavior models of
components or connectors. Semicircles on the edge of rectangles are places that represent
ports derived from relevant protocols. An inside semicircle indicates an incoming place that
only receives tokens from environment, while an outside semicircle indicates an outgoing
place that only sends tokens to environment. For example, component Packetizer has two
incoming places dataReady, rawData, and one outgoing place requestData. These three
places are derived from protocol RawData according to Rule 2. Component Packetizer and
connector PacketPipe is connected through Rule 5. The binding between components and
its enclosing component is implemented as a transition between corresponding places,
which only forwards tokens from one place to another according to types of places (i.e.
incoming or outgoing). For example, transition t111 forwards tokens in place dataReady of
ImageProcessing to place dataReady of Packetizer, while transition t113 forwards tokens in
place requestData of Packetizer to place requestData of ImageProcessing.
Finally, we give an execution path of component ImageProcessing. Let component
Packetizer be in state idle, connector PacketPipe in state waiting, and place Image-
Processing.dataReady contains a token representing message dataReady. This initial

Petri Net: Theory and Applications 516

condition can be represented by the initial marking (ImageProcessing.dataReady,
Packetizer.idle, PacketPipe.waiting). Here we only list related places (not including places
such as packetizer and PacketPipe) that contain tokens, and ignore concrete token values
that can be derived from context. We also assume that a packet consists of only one raw
data, i.e. operation PacketFull() will be true if AddRawData() is invoked once. Table 2 shows
the execution of communication based on protocols RawData and DataPacket. This example
demonstrates the application of our method.

4. Validation of the approach
The SO-SAM model allows formal validation of a service net against system constraints and
property specified on its abstraction represented by a component or connector. Here,
validation means that the developer can animate the specification by providing initial
markings and checking if the responses meet the expected results. Validation of SO-SAM is
based on the precise syntax and semantics of Petri net formal language and temporal logic.
The validation will cover the topology and dynamic behavior of the Petri net as well as
temporal logic formulae. Here we simply introduce how to translate SO-SAM model to the
Maude [9] language. For the details, please refer to the work [22].

Step Marking of Component ImageProcessing Fired Transition

1 idle, ImageProcessing.dataReady, PacketPipe.waiting t111

2 idle, Packetizer.dataReady, PacketPipe.waiting t219

3 idle, Packetizer.RECV, acketPipe.waiting t212

4 idle, PacketPipe.waiting t215

5 Packetizer.waiting, Packetize.SEND, PacketPipe.waiting t2111

6 Packetizer.waiting, Packetizer.requestData, PacketPipe.waiting t113

7
Packetizer. waiting, Image Processing. request Data,

PacketPipe. waiting
unspecified
transition

8 Packetizer.waiting, PacketPipe.waiting
unspecified
transition

9
Packetizer.waiting, ImageProcessing.rawData,

PacketPipe.waiting
t112

10 Packetizer.waiting, Packetizer.rawData, PacketPipe.waiting t2110

11 Packetizer.waiting, Packetizer.RECV, PacketPipe.waiting t213

12 Packetizer.waiting, PacketPipe.waiting t216

13 Packetizer.add data, PacketPipe.waiting t217

14 Packetizer.initial packet, Packetizer.SEND, PacketPipe.waiting, t218

15 Packetizer.idle, Packetizer.SEND, Packetpipe.Waiting, t2112

16 Packetizer.idle, Packetizer.packet, PacketPipe.waiting t2213

17 Packetizer.idle, PackePipe.RECV, PacketPipe.waiting t221

18 Packetizer.idle, PacketPipe.waiting t226

Packetizer.idle, PacketPipe.waiting

Table 2. A Path of Executing Protocols RawData and DataPacket

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 517

4.1 Translation from SO-SAM to Maude
First, we presented a stepwised translation algorithm from SO-SAM model to Maude
programming language. After that, the experimental results are illustrated.
Step 1. Translation to the functional module: generate the sorts operators used in the

functional modules for the model signatures. This step translates each place, sorts,
markings in a Petri net into the corresponding part in Maude’s functional module.

Step 2. Translation to the system modules: there are three types of system modules, one is
for the model signature that corresponds to the architecture structure and dynamic
behavior of the model, one is for the mapping to the predicates, and one is for the
model checking, which includes the property specification.

1. Each basic component and connector are defined as a system module (SysID) with the
declaration of variables and necessary rules and operators. Each composition is
specified as a system module that including its sub-components and connector that are
predefined as a module. All guard conditions in a transition are a (un)conditional rule.

2. Each place is mapped to an operator in the predicate system module (SysID-PREDS).
The connection between operators and predicate is established by an equation.

3. Model checking module (SysID-CHECK) is mainly for the initial marking and property
specification.

In our translation, system signature such as sorts and operators are declared in the
functional module. This translates the places/ports, sorts into algebra in Maude that will be
used in the system modules. The dynamic semantics of Petri net can be mapped to the
rewriting rules used in Maude. Computationally, the meaning of rewriting rules is to
specify local concurrent transitions that can take place in a system if the pattern in the rule’s
lefthand side matches a fragment of the system state and the rule’s condition is satisfied. In
that case, the transition specified by the rule can take place, and the matched fragment of the
state is transformed into the corresponding instance of the righthand side. Thus we can see
an amazing match between semantics of Petri net and rewriting logic. These are theoretic
aspect of the above translation algorithm.

4.2 Results
The basic requirements for the image processing in the distributed web applications are
correctness, robustness and reliability. We use model checker of Maude [9] to validate the
SO-SAM model obtained from UML architecture description against system properties.
After studying models and the errors discovered during the model validation, two main
property categories have been selected:
1. Structural properties: this kind of properties is closely related to the topology of the

model. These properties can be directly verified on the SO-SAM model without
animating the transactions. These properties are necessary conditions that ensure the
feasibility of the state transitions. If one of them is not fulfilled, we can assert firmly that
the communication between ports in UML description cannot happen.

2. Behavioral properties: the dynamic feature of these properties means that they are
related to state changing of the system. The evaluation of the dynamic properties are
based on the behavior description – Petri nets. Its verification is achieved on a set of
places describing a possible evolution of the system. All four properties in section 3 fall
in this group. The results output from Maude are true for all the above formulae. Most
the above formulae are safety properties.

Petri Net: Theory and Applications 518

The results can be obtained within 10ms. It is worth to notice that the model checking
technique used for the verification of system properties are only available for propositional
formula. For the first order formula, it is still a challenge research topic in this area.

5. Related work
We can identify in the literature two categories of works that are mostly related to our
research. The first one concerns works that modeling service oriented architecture
descriptions using UML. The second one is composed of the works of formalizing the
semantics of SOA in different aspects.

5.1 UML description of SOA
In the first category most use UML profiles to describe the service oriented architecture. [11]
proposed UML profiles to specify functional aspects in SOA, which are defined based on the
XML schema of Web Service Description Language (WSDL) [5]. The profile provides a set of
stereotypes and tagged values that correspond to elements in WSDL, such as Service, Port,
Messages and Binding. There is no consideration of nonfunctional aspects of web services.
In work [34] a case study is presented on the investigation of the UML profile specification
of SOA.
Compared to work [34] and [11], [6] proposes a UML profile to describe both functional and
non-functional aspects in SOA. This work provides generic stereotypes to specify a wide
range of applications. However, the semantics of this profile tend to be ambiguous. For
example, several stereotypes for nonfunctional aspects (<<policy>>, <<permission>> and
<<obligation>>) are intended to specify the responsibility of a service. There is no precise
definition of how developers specify web applications with these stereotypes.
[29] proposes a UML profile to facilitate dynamic service discovery in SOA. This profile
provides a set of stereotypes (e.g., <<uses>>, <<requires>> and <<satisfies>>) to specify
relationships among service implementations, service interfaces and functional
requirements. For examples, users can specify relationships in which a service uses other
services, and a service requires other services that satisfy certain functional requirements.
These relationship specifications are intended to effectively aid dynamic discovery of
services.
[23] and [10] define UML profiles to specify service orchestration in UML and map it to
Business Process Execution Language (BPEL) [1]. These profiles provide a limited support of
non-functional aspects in message transmission, such as messaging synchrony. The
proposed profile does not focus on service orchestration, but a comprehensive support of
non-functional aspects in message transmission, message processing and service
deployment.
[43] describes a UML profile for data integration in SOA. It provides data structures to
specify messages so that users can build data dictionaries that maintain message data used
in existing systems and new applications. The non-functional aspect of data integration is
separated from functional one in this profile. Data integration can be enabled in an
implementation independent manner.
There is less work on the service architecture description using UML architecture model.
[40] specifies a series of service architecture patterns using UML service component. For
instance, interaction service pattern describes capabilities and functions to deliver content

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 519

and data using a portal, or other related Web technologies, to consumers or users. This work
infuses the component design with service building block to facilitate large scale system
design. However, there is no formal reasoning of these patterns and how develop workers
to use these patterns.

5.2 Formalizing SOA
In this paper we have briefly shown how UML architecture description model can be
formalized using a biformalism SAM extension – SO-SAM, and the benefits that can be
obtained from such formalization, namely the definition of integration and composition
verifications between services, and the architecture reasoning that can bridge the differences
between a priori incompatible Web services. Thus we have shown how existing formal
methods can be successfully applied in the context of Web services, providing useful and
practical advantages.
In addition, the formal specification of service properties using temporal logic provides us
with a tool for expressing other complicated safety and liveness properties (apart from those
already mentioned). In fact, any property expressed as a temporal logic formula can be
considered as a sub-system specification, and therefore, checking that property on a certain
web service component, would consist in reasoning the service-oriented architecture. On
the other hand, having a simple formal description to describe web service architecture and
integrations will allow us the application of model-checking techniques to construct (or
extend) existing validation tools, as made in [19] with Promela.
Two major approaches for describing web service applications can be categorized: (a) the
application oriented view of the service oriented applications or web systems (built only on
the individual WSDL descriptions of the constituent web services); (b) the platform
independent, architecture oriented view of service-oriented applications, which consists of
different (simple) “global model” that describes how such independently defined service
integration and compostion in high level abstraction.
BPEL4WS, WSFL and WSCDL are notations that use the application oriented view
approach, whilst UML profile, service components, and web component are examples of the
architecture oriented view approach. Application oriented view notations are in general
more adaptable to each particular situation and system, but are not as amenable to web
service reuse as architecture view descriptions are. Although the web service community is
currently divided trying to decide which is the best approach, we argue that they can be
considered as complementary tactics, rather than rivals.
The way to marry both approaches can be achieved by integrating and infusing the results
from different categories, similarly like what we have discussed in this paper, mapping the
UML architecture description to SO-SAM model and simply checking that the system
properties defined over its constituent web services that can be replaced (in our sense),
integrated or composed by their individual constituents (can be defined using an
application oriented view approach). In this way, both approaches could easily co-exist.
Apart from the previous work of the authors [20, 22], there is a large amount of proposals in
the literature dealing with composition, interoperation and adaptation issues in the field of
Component-Based Software Engineering (CBSE), and in protocol verification in general [19].
Some of these works have been also applied to web service architecture reasoning. In cite
[18], building on previous work in the field of Software Architecture by the same authors, a
model-based approach is proposed for verifying Web service composition, using Message

Petri Net: Theory and Applications 520

Sequence Charts (MSCs) and BPEL4WS. In [38], and from a semantic Web point of view, a
first-order logical language and Petri Nets are proposed for checking the composition of
Web services. In [19], model-checking using Promela and SPIN is proposed for analysing the
composability of choreographies written in WSFL. All these works deal with the (either
manual or automated) simulation and analysis of Web service composites, been able to
detect mismatch between their choreographies.

6. Conclusion
In this paper, we proposed a method to use SO-SAM to formally specify service-oriented
application architectures modeled by an extension of UML – component and connector
view. By doing so, we combine the benefit of UML – easy to comprehend and extensive
tools support, and the analyzability of SO-SAM.
The cost of our methods mainly comes from three parts: the construction of algebraic
specifications, the generation of algebraic high-level nets from statechart diagrams, and the
creation of temporal formulas from sequence diagrams. Since an algebraic specification is
used to model the implied information of statechart diagrams, generally speaking we can
generate operation and sort definitions of an algebraic specification automatically, but not
for the relationships among these operations. The size of a generated algebraic specification
is “linear” to the size of implied information. From our previous work [12], we know the
generation of Petri nets from a statechart diagram can be fulfilled automatically for most
cases, and a Petri net and the corresponding statechart diagram are at the same size. The
generation of temporal logic formulas from sequence diagrams can be largely automated
since the generation is very simple and straightforward.
There are at least three immediate extensions to the work we have presented here. First, we
intend to integrate the translation from UML architecture to SO-SAM with the mapping
from SO-SAM to Maude so that some existing tool we have developed can be used for the
model checking of system properties. And second, we intend to make effective use of the
tools currently available for SAM model [21] to reason about the web specifications during
the runtime. Finally, the translation into SO-SAM presented here must be extended in order
to consider full application oriented view approach such as WSCI [4]; in particular, dealing
with constructs such as correlations, transactions, properties and others, that have been
omitted in this work. This extension would allow the analyzing on the more application
oriented view approach using UML architecture descriptions.

7. Acknowledgments
This work is supported in part by Alabam A&M University.

8. References
[1] Business Process Execution Language for Web Services (BPEL4WS). Available from

http://www.ibm.com/developerworks/library/wsbpel.
[2] DAML-S and OWL-S. Available from http://www.daml.org/services/owl-s/.
[3] Simple Object Access Protocol (SOAP), W3C Note 08. Available from

http://www.w3.org/TR/SOAP/.
[4] Web Service Choreography Interface (WSCI) 1.0. Available from

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 521

 http://www.w3.org/TR/2002/NOTEwsci-20020808/.
[5] Web Services Description Language (WSDL) 1.1. Available from

http://www.w3.org/TR/wsdl.
[6] R. Amir and A. Zeid. A UML profile for service oriented architectures. In OOPSLA ’04:

Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 192–193, New York, NY,
USA, 2004. ACM Press.

[7] H. S. Bhatt, V. H. Patel, and A. K. Aggarwal. Web enabled client-server model for
development environment of distributed image processing. In Proceedings of the
First IEEE/ACM InternationalWorkshop on Grid Computing (GRID’00), pages 135–
145, London, UK, 2000. Springer-Verlag.

[8] S.-W. Cheng and D. Garlan. Mapping Architectural Concepts to UML-RT. In
Proceedings of International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’2001), June 2001.

[9] M. Clavel, F. Dur´an, S. Eker, P. Lincoln, N. Mart´ı-Oliet, J. Meseguer, and J. F. Quesada.
Maude: specification and programming in rewriting logic. Theoretical Computer
Science, 285(2):187–243, 2002.

[10] DeveloperWorks. UML 1.4 Profile for Software Services with a Mapping to BPEL 1.0,
July 2004.

[11] DeveloperWorks. UML 2.0 Profile for Software Services, April 2005.
[12] Z. Dong, Y. Fu, and X. He. Deriving Hierarchical Predicate/Transition Nets from

Statechart Diagrams. In Proceedings of The 15th International Conference on
Software Engineering and Knowledge Engineering (SEKE2005), 2003.

[13] A. Egyed. Automating Architectural View Integration in UML. Technical Report
USCCSE-99511, Center for Software Engineering, University of Southern
California,Los Angeles, CA, 1999.

[14] A. Egyed and N. Medvidovic. Extending Architectural Representation in UML with
View Integration. In Proceedings of the 2nd International Conference on the
Unified Modeling Language, pages 2–16, October 1999.

[15] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics. Springer-Verlag, 1985.

[16] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications
and Constraints. Springer-Verlag, 1990.

[17] H. Ehrig, J. Padberg, and L. Ribeiro. Algebraic High-Level Nets: Petri Nets Revisited. In
Proceedings of Recent Trends in Data Type Specification, 9th Workshop on
Specification of Abstract Data Types Joint with the 4th COMPASS Workshop,
volume 785 of Lecture Notes in Computer Science, pages 188–206. Springer, 1994.

[18] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service
Compositions. In 18th IEEE International Conference on Automated Software
Engineering (ASE’03), volume 00, page 152, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[19] X. Fu, T. Bultan, and J. Su. Formal verification of e-services and workflows. In Revised
Papers from the International Workshop on Web Services, E-Business, and the
Semantic Web (CAiSE’02/WES’02), pages 188–202, London, UK, 2002. Springer-
Verlag.

[20] Y. Fu, Z. Dong, and X. He. An Approach to Web Services Oriented Modeling and
Validation. In Proceedings of the 28th ICSE workshop on Service Oriented

Petri Net: Theory and Applications 522

Software Engineering (SOSE2006), 2006.
[21] Y. Fu, Z. Dong, and X. He. A method for realizing software architecture design. In

Proceedings of the Sixth International Conference on Quality Software(QSIC’06),
pages 57–64, Washington, DC, USA, 2006. IEEE Computer Society.

[22] Y. Fu, Z. Dong, and X. He. Modeling, Validating and Automating Composition of Web
Services. In Proceedings of The Sixth International Conference on Web Engineering
(ICWE 2006), 2006.

[23] T. Gardner. UML Modeling of Automated Business Processes with a Mapping to
BPEL4WS. In ECOOP Workshop on OO and Web Services, July 2003.

[24] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling the Needs of Architectural
Description with Object-Modeling Notations. Science of Computer Programming,
44(1):23–49, July 2002.

[25] H. J. Genrich. Predicate/Transition Nets. Lecture Notes in Computer Science, 254, 1987.
[26] X. He. A formal definition of hierarchical predicate transition nets. In Proceedings of

the 17th International Conference on Application and Theory of Petri Nets, pages
212–229, London, UK, 1996. Springer-Verlag.

[27] X. He and Y. Deng. A Framework for Specifying and Verifying Software Architecture
Specifications in SAM. volume 45 of The Computer Journal, pages 111–128, 2002.

[28] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng. Formally analyzing software architectural
specifications using sam. Journal of Systems and Software, 71(1-2):11–29, 2004.

[29] R. Heckel, M. Lohmann, and S. Th¨one. Towards a UML Profile for Service-Oriented
Architectures. In Workshop on Model Driven Architecture: Foundations and
Applications, 2003.

[30] R. Heckel, H. Voigt, J. K¨uster, and S. Th¨one. Towards Consistency of Web Service
Architectures. Available from

 http://www.upb.de/cs/agengels/Papers/2003/HeckelVoigtKuesterThoene-
CI03.pdf.

[31] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture. Addison Wesley,
2000.

[32] C. Hofmeister, R. L. Nord, and D. Soni. Describing Software Architecture with UML. In
Proceedings of the TC2 1st Working IFIP Conference on Software Architecture
(WICSA1), pages 145 – 160, 1999.

[33] R. Hull, M. Benedikt, V. Christophides, and J. Su. Eservices: A look behind the curtain.
In Proceedings of the International Symposium on Principles of Database Systems
(PODS). ACM Press, June 2003.

[34] E. Marcos, V. de Castro, and B. Vela. Representing web services with UML: A case
study. International Conference on Service Oriented Computing, 2003.

[35] N. Medvidovic, A. Egyed, and D. S. Rosenblum. Round-Trip Software Engineering
Using UML:From Architecture to Design and Back. In Proceedings of the 2nd
Workshop on Object-Oriented Reengineering, pages 1–8, September 1999.

[36] N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. Software Engineering, 26(1):70–93,
2000.

[37] T. Murata. Petri Nets: Properties, Analysis and Applications. In Proceedings of the
IEEE, 77(4):541–580, 1989.

[38] S. Narayanan and S. A. McIlraith. Simulation, verification and automated composition

Formalizing and Validating UML Architecture Description of Service-Oriented Applications 523

of web services. In WWW ’02: Proceedings of the 11th international conference on
World Wide Web, pages 77–88, New York, NY, USA, 2002. ACM Press.

[39] J. S. Paul Clements, Len Bass. Documenting Software Architectures: Views and Beyond.
Addison-Wesley, January 2003.

[40] I. Prithvi Rao, Certified IT Architect. Using uml service components to represent the
SOA architecture pattern. Available from

 http://www.ibm.com/developerworks/architecture/library/arlogsoa/.
[41] J. Saldhana, S. M. Shatz, and Z. Hu. Formalization of Object Behavior and Interactions

From UML Models. International Journal of Software Engineering and Knowledge
Engineering, pages 643–673, 2001.

[42] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[43] M. Vok´ac and J. M. Glattetre. Using a domainspecific language and custom tools to
model a multitier service-oriented application—experiences and challenges. In C.
W. Lionel Briand, editor, Models 2005, Montego Bay, Jamaica October 2-7, LNCS
3713, pages 492–506, Heidelberg, 2005. Springer-Verlag GmbH.

[44] J. Wang, X. He, and Y. Deng. Introducing Software Architecture Specification and
Analysis in SAM through an Example. Information and Software Technology,
41(7):451–467, 1999. Appendix

A Algebraic specifications for Packetizer and PacketPipe

Packetizer(Packet, RawData) = Bool + Packet + RawData
sorts: packetizer

opns: _.PacketNotFull(): packetizer bool

_.PacketFull(): packetizer bool

_.AddRawData(): packetizer rawdata packetizer

_.GetPacket(): packetizer packetizer packet

eqns: c packetizer

c.PacketNotFull() = c.PacketFull()

PacketPipe(Client) := Bool + Client
sorts: packetpipe

opns: ReadByAll(): packetpipe bool

_.PacketRead(): packetpipe bool

_.PacketNotRead(): packetpipe bool

_.IsClientReady(): packetpipe client bool

_.NoClientReady(): packetpipe bool

_.AddClient(): packetpipe client packetpipe

_.RemoveClient(): packetpipe client packetpipe

_.AppendPacket(): packetpipe packet packetpipe

_.SetClientReady():packetpipe client packetpipe

_.GetPacket(): packetpipe packetpipe packet

_.UpdatePacket(): packetpipe packetpipe

eqns: pp packetpipe, c client, p packet

pp.IsClientReady(c) = true pp.NoClientReady()=false

Petri Net: Theory and Applications 524

(pp.SetClientReady(c)).IsClientReady(c) = true
(pp.AddClient(c)).IsClientReady(c) = false

B Temporal constraints obtained from UML sequence diagrams
Temporal formulas for protocol RawData:

sid, rid,

 (dataReady(<sid, rid, md>) requestData(<sid, rid, mr>))

(dataReady(< sid, rid, md >) ((dataReady(< sid, rid,md >)) requestData(< rid, sid, mr >)
rawData(< sid, rid, mrd >))UrequestData(<sid, rid, mr>))

 (requestData(<sid, rid, mr>) rawData(<sid, rid,mrd>))

 (requestData(<sid, rid, mr >) (dataReady(< rid, sid, md >) (requestData(<sid, rid, mr >))

rawData(< rid, sid, mrd >))UrawData(<rid, sid, mrd>))

 (rawData(< sid, rid, mrd >) (dataReady(< sid, rid, md >) requestData(< rid, sid, mr >)
(rawData(< sid, rid, mrd >)))UdataReady(<sid, rid, md>))

Temporal formulas for protocol DataPacket:

(<sid, rid, mp>), (packet(<sid, rid, mp>) true)

Temporal formulas for protocol RequestDataPacket:

sid, rid,

 (subscribe(<sid, rid, ms>) requestPacket(<sid, rid, mr>))

 (subscribe(<sid, rid, ms >) ((subscribe(<sid, rid, ms >)) requestPacket(<sid, rid, mr>)

packet(<rid, sid, mp>)
desubscribe(<sid, rid, md>))UrequestPacket(<sid, rid, mr>))

 (requestPacket(<sid, rid, mr>) packet(<rid, sid, mp>))

 (requestPacket(< sid, rid, mr >) (subscribe(<sid, rid, ms >) (requestPacket(<sid, rid, mr
>)) packet(<rid, sid, mp >)
desubscribe(<sid, rid, md>))Upacket(<rid, sid, mp>))

 (packet(< sid, rid, mp >) (desubscribe(< rid, sid,md >) requestPacket(<rid, sid, mr>)))

 (packet(<sid, rid, mp >) (subscribe(<rid, sid, ms >) requestPacket(<rid, sid, mr>)

(packet(<sid, rid, mp>))

desubscribe(< rid, sid, md >))U (desubscribe(<rid, sid, md >) requestPacket(<rid, sid, mr>)))

 (desubscribe(<sid, rid, mp >) (subscribe(<sid, rid, ms>) requestPacket(<sid, rid, mr >)

packet(<rid, sid, mp >)
(desubscribe(<sid, rid, md>)))Usubscribe(<sid, rid, md>))

23

Music Description and Processing: An
Approach Based on Petri Nets and XML

Adriano Baratè
Laboratorio di Informatica Musicale (LIM),

Dipartimento di Informatica e Comunicazione (DiCO)
Università degli Studi di Milano

 Italy

1. Introduction
Music description and processing require formal tools which are suitable for the

representation of iteration, concurrency, ordering, hierarchy, causality, timing, synchrony,

non-determinism. Petri Nets are a tool which allows to describe and process musical objects

within both analysis/composition and performing environments. To accomplish this

objective, a specific extension known as Music Petri Nets was developed.

2. Music Petri nets
This Petri Net formalism can be applied to music field by associating music objects to places

and music operators to transitions.

According to the definition in (Haus & Rodriguez, 1993), a music object may be anything that

could have a music meaning and that could be thought as an entity, either simple or

complex, either abstract or detailed. Such entity will present some relationship with other

music objects. In a Music Petri Net, when a place containing an object receives a token, the

music object is executed, i.e. played. To understand the following examples about

transitions’ behaviour, two simple music objects are shown in Figure 1 as notated fragments.

MO1 (Music Object 1)

MO2 (Music Object 2)

Fig. 1. Two simple music objects: MO1 and MO2

In Music Petri Nets the role played by transitions is very important: they determine –

together with tokens – the evolution of the net. In our extension of Petri Nets transitions can

have associated music operators. A transition without an algorithmic behaviour is considered

having a null operator associated. When no music operators are associated, transitions are

Petri Net: Theory and Applications 526

only devoted to net evolution. Their role is dropping tokens from input places and adding

tokens to output places, such as in common Petri Nets.

As stated before, when a token arrives at place with an associated music object, this object is

played. In Music Petri Nets, the temporization of the execution is achieved considering the

durations of the music objects (eventually) associated to the places. When a place receives

one or more tokens from incoming transitions, the (eventually) associated music fragment is

executed, and the tokens are blocked in the place (i.e. they cannot be transferred to outgoing

transitions) until such execution is completed.

An example is provided in Figure 2, where the music object MO1 is associated to the left

place with the same name, and MO2 is associated to the right one. The first measure is

played when a token arrives in MO1, causing its execution. Then, only when the entire

music object is played, the token is free to leave the place, and in fact it is moved to the

subsequent one, originating the juxtaposed execution of the second measure. The overall

result is noted in the score.

Fig. 2. The sequence structure

Various music structures can be created even by using transitions without music operators.

In Figure 3 five simple nets illustrate respectively a fusion (from two objects to one object), a

split (from an object to two objects), an alternative (a non-deterministic choice between two

objects), and a joint structure (a logical connection between two objects).

 Fusion

 Split

Music Description and Processing: An Approach Based on Petri Nets and XML 527

 Alternative

 Joint
Fig. 3. Some PN structures and the corresponding executions

We have said that transitions might have associated music operators. When a music
operator is specified, its purpose is applying an algorithm to change input objects (i.e.
objects coming from input places), and then passing the transformed objects to output
places. Typical operators associated to transitions reflect common music operators, such as
inversion, retrogradation, and transposition. For example, Figure 4 shows the application of
the last mentioned operator. In this net a music object is associated to the place MO3, while
the right place has no associated objects. When the transition fires, it receives MO3 in input,
a transposition is performed and the modified music fragment is passed to the outgoing
place, that executes the new object.

Fig. 4. Music Object 3 before (left) and after (right) the transposition

2.1 Extensions
In Music Petri Nets some basic extensions are considered. Since this formalism is used to
represent the structure of music pieces, together with its hierarchies, the natural choice is to
include the refinement as a simple morphism mechanism. With this extension, deeper music

Petri Net: Theory and Applications 528

analyses can be integrated in subnets, permitting a better comprehension and decreasing the
net complexity.
An example of refinement is presented in Figure 5. It must be noted that a node with a
subnet must be of the same type of the subnet’s input and output nodes, to achieve the
expansion of the entire net.

a) The main net

b) The subnet P2

c) The expanded net

Fig. 5. An example of refinement

Another extension we have introduced is the probabilistic weight of arcs. This extension is

used when fires of transitions are in conflict or in alternative, and is graphically represented

by a numeric value over the arc, in square brackets. Normally, in non-deterministic

Music Description and Processing: An Approach Based on Petri Nets and XML 529

situations, which transitions will fire is randomly chosen. With the probabilistic weight, we

can instead control this choice, even dynamically.

For example, let us consider the Petri Net in Figure 6 with 3 arcs: A1 (probabilistic weight W1

= 5), A2 (W2 = 10), and A3 (W3 = 300). If at a given time t1 the choice is between all the three

arcs, A1 shall have a probability of 5/315 (1.6%) to fire, A2 a probability of 10/315 (3.2%),

and A3 a probability of 300/315 (95.2%). At the time t2 > t1, let only A1 and A2 be enabled:

their new probabilities will be 5/15 (33.3%) and 10/15 (66.7%) respectively.

Fig. 6. The probabilistic weight extension

A particular situation occurs when an arc has a probabilistic weight equal to 0. In this case,

the associated transition will fire only if there are no other alternative or conflicting arcs

with greater probabilistic weight.

2.2 Music Petri nets applicability
At LIM1, Petri Nets have been applied to music since 1982, and two paths were followed:

music analysis and music creation. In other words, in some cases (Degli Antoni & Haus,

1983; Baratè et al., 2005) it has been investigated the possibility of describing causality in

music processes through the formal approach of Petri Nets, while other studies focus on

music creation ex-novo (Baratè et al., 2007).

It must be noted that different applications of Petri Nets to music analysis lead to apparently

contradictory results. While Ravel’s Bolero structure has been very well described in a

convenient series of models (Haus & Rodriguez, 1993), some limitations of this approach

have become evident when trying to describe, for example, the complexity of Stravinsky’s

Rite of Spring (De Matteis & Haus, 1996).

From the analytical perspective, excellent or poor results in representing music analysis
through Petri Nets formalism mainly depend on three factors:
1. The intrinsic characteristics of the piece to be described. For instance, the music form

known as canon, based on the literal repetition of the same music objects in different

voices at different instants, can be represented in a very efficient and compact way with

Petri Nets (see Figure 7).

1 Laboratorio di Informatica Musicale, Università degli Studi di Milano.

Petri Net: Theory and Applications 530

2. The ability in confining those music objects which prove to be efficient from Petri Nets

point of view. The concept of music object is deliberately vague and can include whole

episodes of a music work, as well as atomic musical events. For this context,

segmentation will be defined as the activity of isolating music objects and discovering

their mutual relationships.

3. The degree of detail the analysis wants to reach. This statement can justify the

contradictory results obtained when considering different music pieces. To illustrate

this concept, we can consider for instance the test case presented at CMMR 2005 (Baratè

et al., 2005), where the first movement of a sonata by W.A. Mozart is modelled. In

Figure 8 is presented the very simple and compact net that describes the entire

movement at the higher level of abstraction, while in Figure 9 the complexity of the

transition in the recapitulation part of the piece is clear even without going into a

detailed description of the Petri Net.

Fig. 7. The Music Petri Net of a canon

Fig. 8. The Music Petri Net of a sonata form

Music Description and Processing: An Approach Based on Petri Nets and XML 531

Fig. 9. The Music Petri Net of a part of the recapitulation in a sonata form

2.3. ScoreSynth
Music Petri Nets can be designed, developed and executed with an application named
ScoreSynth (Figure 10). This application has an integrated environment to manage complex
Petri Nets projects and to execute them in different ways:

until no transitions are enabled;

a step every “n” seconds;

manual step by step;

manual “object execution” by “object execution”.
In ScoreSynth music objects associated to places are encoded in an XML format named MX.

Fig. 10. The ScoreSynth interface

Petri Net: Theory and Applications 532

3. MX
MX is an XML dialect currently undergoing the IEEE standardization process (IEEE SA
PAR1599). The main purpose of this format is having a comprehensive description of music
(Haus & Longari, 2005). Even if specific encoding formats that represent peculiar music
features, such as audio tracks or scores, are already commonly accepted and in use, they are
not conceived to encode all this features together. On the contrary, we are interested in a
comprehensive description of music, containing heterogeneous representations in a
synchronized way.
In order to achieve a comprehensive description of music and complete synchronization

among both homogeneous and heterogeneous representations of music contents, MX is

based on two key concepts: an XML-based multi-layer structure and a space-time construct

called spine. In the following sub-sections, we will define these concepts in detail.

3.1 Multi-layer structure
A comprehensive analysis of music richness and complexity highlights six different levels of
music description: general, logical, structural, notational, performance, and audio layers (see
Figure 11).

Fig. 11. MX multi-layer structure

General layer is mainly devoted to contain catalogue information about the encoded music

piece. Logic layer contains information referenced by all other layers, and it is composed of

two elements: the Spine, a sort of a “table of contents” used to mark music events in order to

reference them from the other layers and the LOS (Logically Organized Symbols), that

describes the score from a symbolic point of view (e.g. chords, rests). Structural layer

contains compositional and musicological descriptions of the structure of the music piece (in

this layer Music Petri Net links are allowed). Notational layer links visual instances of a

music piece, such as digital images of the score. Performance layer links parameters of notes

to be played and parameters of sounds to be created by a computer performance (e.g. MIDI

and Csound). Finally, Audio layer describes audio information coming from recorded

performances.

Spine

LOS

General

Logic

Structural

Notational

Performance

Audio

Music Description and Processing: An Approach Based on Petri Nets and XML 533

It must be noted that this approach allows MX to import commonly accepted formats aimed
at music encoding, only by linking them in a particular layer, and then creating a mapping
of the described events.

3.2 Spine
In order to synchronize the material described in all the MX layers, we introduced the
concept of spine, a structure that relates time and spatial information. Spine is made of an
ordered list of events, marked through a unique identifier to permit a reference from a
particular layer. Each spine event can be described in different layers as well as in different
instances within the same layer; e.g., in three different audio clips mapped in Audio layer.
Thanks to spine, MX achieves also a form of synchronization among layers (inter-layer
synchronization) and among instances within a layer (intra-layer synchronization). Through
such a mapping, it is possible to fix a point in a layer instance (e.g. Notational layer) and
jump to the corresponding point in another one (e.g. Audio layer). This peculiarity was used
in various applications to allow an evolved and integrated form of music enjoyment (Baggi
et al., 2005; Baratè & Ludovico, 2007).

4. Music Petri nets and MX interaction
The adoption of the MX format in order to encode music objects in Music Petri Nets opens
new possibilities to analysis and composition of music pieces. In a musicological
perspective, an existing piece can be described by Petri Net models that can be linked
together with other information in a single MX file. With specific applications, the analyst is
able to have a global perspective at various levels of abstraction, described in different MX
layers.
Another aspect that take advantages of this formalism is music creation. By using the MX
format a composer could concentrate on the structure of the music piece he wants to obtain,
without minding lower level material involved in the mixing process, such as the file
formats of the linked objects. Thanks to MX, the final result automatically generates
synchronisation of various kinds of music representation, permitting a new type of musical
experience.

5. Acknowledgments
The author wants to acknowledge researchers and graduate students at LIM, and the
members of the IEEE Standards Association WG on MX (PAR1599) for their cooperation and
efforts. Special acknowledgments are due to: Denis Baggi, Goffredo Haus and Luca Andrea
Ludovico for their invaluable work as working group chair, co-chair, and coordinator of the
IEEE Standard Association WG on MX (PAR1599).

6. References
Baggi, D.; Baratè, A.; Haus, G.; Ludovico, L.A. (2006). Developing Intuition in Engineering

Education: New Technology To Capture Structures in Music, Proceedings of the 35th
International IGIP Symposium, in cooperation with IEEE / ASEE / SEFI, Tallinn, Estonia

Petri Net: Theory and Applications 534

Baratè, A.; Haus, G. & Ludovico, L.A. (2005). Music Analysis and Modeling through Petri
Nets, In: Computer Music Modeling and Retrieval, R. Kronland-Martinet, T. Voiner, S.
Ystad (Eds.), pp. 201-218, Springer Berlin Heidelberg, 3-540-34027-0, Berlin

Baratè, A.; Haus, G. & Ludovico, L.A. (2007). Petri Nets Applicability to Music Analysis and
Composition, Proceedings of the International Computer Music Conference '07 (ICMC
2007), Holmen Island, Copenhagen, Denmark, 08-2007

Baratè, A.; Ludovico, L.A. (2007). An XML-based Synchronization of Audio and Graphical
Representations of Music Scores, Proceedings of the 8th International Workshop on
Image Analysis for Multimedia Interactive Services (WIAMIS 2007), Santorini, Greece

Degli Antoni, G. & Haus, G. (1983). Music and Causality, Proceedings of 1982 International
Computer Music Conference, pp. 279-296, La Biennale, Venezia. Computer Music
Association Publ., San Francisco

De Matteis, A. & Haus, G. (1996). Formalisation of Generative Structures within Stravinsky’s
“Rite of Spring”. Journal of New Music Research, Vol. 25, No. 1, pp. 47-76

Haus, G. & Longari, M. (2005). A Multi-Layered Time-Based Music Description Approach
based on XML. Computer Music Journal. MIT Press

Haus, G. & Rodriguez, A. (1993). Formal Music Representation; a Case Study: the Model of
Ravel's Bolero by Petri Nets, In: Music Processing, G. Haus (Ed.), Computer Music
and Digital Audio Series, pp. 165-232, A-R Editions, Madison

